C OQ“JcmV'*’jO

Witango Studio 5.5 User Guide

Windows

August 2003

With Enterprise Pty Ltd
Level I,
44 Miller Street,
North Sydney, NSV, 2060

Australia

Telephone:+612 9460 0500
Fax:+612 9460 0502

Email:info@witango.com

Web: www.witango.com

WITH ENTERPRISE

http://www.witango.com

Table of Contents

Table of Contents

Introduction |
Using Witango Studio 3

I Witango StudioBasicsciiiiiiee... 5

Witango Studio Window Componentsc.ciiuiiniunenen... 6
Viewing Interface Componentsc.oiiiiiniinnnnenn.. 7
Floating and Docking Interface Components. 8
Floating and Docking the Workspace Window 8
Using Context-Sensitive Menus i, 9
Properties Window. it e 9
HTML Editing Window e 9
Working With Multi-column Lists 18
The SQLQuery Windowot 20
Finding and Replacing Text o i i, 25
Keyboard Shortcutsttt 31
Witango ACIONSttt e 33
The HTML Toolbar i 36
Working With Actions 43
Addingan Action 44
Namingan Actionottt e i 45
Deletingan Actionttt 46
Editingan Action 46
Moving an Actionttt 47
Copying an ACtion. oottt e 47
Context-Sensitive ActionMenu oo oo 49
Action Propertiesttt 49
Assigning Attributes to Actions i 50
Adding HTML (Results Action)coiiiiiiiiiininenn.. 56
Presentation Action i 56

Using Witango Application Fileso ... 59
XML Format 59
Application File Window. i 60
Unsaved Changes Indicator i, 61
Creating an Application File i 6l
Saving an Application File i 62
Saving a Witango Application File or Witango Class File as Run-Only .. 63
Executing Application Files i 64

Debugging Files o i e 65
TurningDebug On 65

Table of Contents

Viewing Debug e 66

2 Using Projects and Source Control69

Basics of Witango Projectso 70
Understanding the Project File. 71
Using the Project Workspace i, 71
CreatingaNew Projecto i 72
Addinga Folder toaProject i 74
Adding FilestoaProject.o i 75
Removing Files and Folders From a Project 76
Opening and Closinga Project. o ... 76
Editing HTMLand Text Files i .. 77

Additional Features of Witango Projects 78
Working With Project Dependencies 78
Working With Application Files 79
Working With Presentation Pages 80
Working With Project Data Sources 82
Working With Project Objects 82
Working With Project FTP Sites i, 82
Application-Specific Witango (AST) Signatures for Projects........... 82
Project Root Properties i 84

Deploying and Downloading Witango Projects via FTP............... ... 86
FTP Usinga TIS Proxy Server o it 86
Passive Mode FTP 87
Deploying and Downloading Projects 87
Definingan FTP Site i 87
Adding an FTP Site to Your Project 89
Deploying Filesor Folders i i 90
Downloading From Remote Sites 92
Browsing a Project’s FTP Site with a Web Browser................. 95

Using Source Control in Witango. it .. 97
Adding Projects to Source Control 98
Adding Files to Source Control 100
Removing Files From Source Control [0l
Opening a Witango Project Already Under Source Control 102
Getting the Latest Versionof Files 102
Checking OQut Files i e 103
CheckingInFiles. oo 105
Undoing Checked Out Files 107
Refreshing File Status i 108
Launching Your Source Control System 108
Modifying a File Under Source Control 109

Table of Contents

3 UsingDataSourcesccvvvvviineeeeaas

About DataSources il 112
The Data Sources Workspace. ..., 113
Using Primary Key Columns. i 115
Data Source Operationsccuuieuiiiieinnenneeneennennn. 116
CreatingaDataSource i 16
Modifyinga DataSource 123
Deletinga Data Sourcec.c.iiiiniiniiiiinennnn.. 124
Reloadinga DataSource it 124
Handling Unknown DataSources. o... 125
Assigning Data Sources to ACtiONsovitiiiinnn.. 126
Setting Up Deployment Data Sources. i, 128
Setting Deployment Data Source Properties...................... 128
Meta Tags and Deployment Data Sources 130
Setting Data Sources for Actions.t 131
Using the Data Source Selection DialogBox 131
Using the Action Properties Dialog Box., 132
Disabling the Use of Meta Tags in Data Sources....................... 134
Working With Data Source Properties 135
Data Source Propertiesot 135
Table Propertieso 137
Column Propertiesottt 137
Connecting to Data Sourcesttt 138
Connecting to Large Data Sources. o ... 138
Editing and Executing Files on Different Computers 139

4 UsingSnippetscciiiiiitiiiiiineneeaaa.. 141

AbBOUL SNIPPELS . . . ottt e 142
The Snippets Workspacet 142
Working With Snippetso 144
Inserting SNIPPetsttt e 144
Creating and Editing Snippets oL 145
Managing Snippets and Snippets Folders. 148
Copying, Moving, and Deleting Snippets. 149
Searching Snippets 150
Column SNIPPeLS. . . .t ettt e 152

5 Setting Preferences 153
Using the Preferences Dialog Box |54

Table of Contents

Selecting OptioNns. . .. oottt e 155
General 155
T OXt ottt e 157
Source Control e 159
ObjeCts . .t e 161
Compile ... 162

Witango Building Blocks 165

6 WorkingwithMetaTags..............cvvnnn. 167
About Meta Tagst e 168
Where YouCan UseMetaTagsccooiiiiiiiiiiinnaon.. 169
CombiningMeta Tagscoiiiiiini i e 170
Quoting Attribute Values. 171
InsertingMeta Tagsottt e 172

Meta Tagswith Help i 177

7 Working With Variables 18]

Assigning Variables With the Assign Action, 182
Editing Variable Assignments i, 182
Shortcuts to Configuration Variable Assignments: Snippets 186

Witango Builders 189

8 Building Actions Using Witango Builders 191
Adding a Builder to an Application File. 192
Page Format Table Settings 193

Building the Actions. i 195

9 Configuring the Search Builder 197

About the Search Builder. ool 198
What Users See in Their Web Browser 198
How You Create These Web Pages 200
Main Steps to Use the Search Builder 202

Setting Search Options it i e 204
Search Columns List i 204
Column OPLioNS . ..o i it e 205
Fixed Value oo 209
Summary: Setting Column Options, 210

Formatting the Search Form i .. 212

Table of Contents

Customizing Your Search Form and Response Messages................ 213
Header, Footer,and No Results HTML 213
Changing Button Titles it 214

Setting Record List Optionsc.c.iiiiniininininennnn.. 215
Display Columns it e 215
Order By . ..o e 215
Column OPLiONS . . .ottt e 216
Maximum Matches 219

Formatting the Record List Web Page.......... 221

Customizing Your Record List WebPage 222
Header and Footer HTML 222

Setting Record Detail Options.o i, 223
Display Columns it e 223
Column OPLiONS . . .ottt e 224
Record Maintenance Optionscoviiiiiinin e, 225

Formatting the Record Detail Web Page 227

Customizing Your Record Detail Web Page and Response Messages. 228
Header, Footer, Update Response, and Delete Response HTML. 228
Button Titles i 229

Simplified Steps to Use the Search Builder 231

Defining Joinsot e 232

Actions Built by the Search Builder 233
HTMLSnippets i 235

10 Configuring the New Record Builder 237

About the New Record Builder. o o 238
Main Steps to Use the New Record Builder 239

Setting New Record Options i, 240
Summary: Setting Column Options. oo, 243

Formatting the New Record Entry Form 245

Customizing Your Form and Response Messages 246
Header, Footer, and New Record Response HTML 246
Changing Button Titles o i i 247
Actions Built by the New Record Builder 248
HTML Snippetso i 250

Witango Actions 251

Il Using Actionsciiiiierenereeencncannnns 253
AbOUL ACIONSt 254

Table of Contents

Working With ACtionsttt e e 257
Addingan Action i 257
Namingan Actionoiuiiiiiiii it 258
Deletingan Actionottt 259
Editing an Action e 259
Moving an Actionou ittt e 260
Copying an ACtionttt e 260
Context-Sensitive Action Menu o oL 262
Action Propertiesot e 262

Assigning Attributes to Actions i 264
Results HTML 265
NoResults HTML i 267
Error HTML ... 268
Push . 269
DebugFile i 269

Adding HTML (Results Action) ...t 270

Presentation Action o i 271
Uses of the Presentation Action 271
How the Presentation Action Works 271
Setting Up a Presentation Action 272

12 Grouping Actionscciiiieeiiniinneeeaa. 273

About Grouped ACIONS u ottt e 274
Working With Action Groupsc...coiiiiiniinininenenn... 275
Adding an Action Groupoiiuiiii i 275
Adding an Action to a Groupviiiiiii i 275
Removing an Action Froma Group 275
Ungrouping ACtionsottt e 276
Deletingan Action Groupoiiiiiiiiii i 276
Effects of Editingan Action Group. oo, 276
Branching to an Action Group.ttt 276
Executing Grouped Actions.ttt 277

I3 Using Basic Database Actions 279

Searchinga Database i 280
Setting Upa Search Action iiiiiiiiiiiiinn... 280
Executinga Search Action i 292

Adding Recordstoa Database i, 293
Setting Upan Insert Actionc..oiiiiiiiniiniinnn... 293
Executing an Insert Action il 294

Modifyinga Database Record i 295

Table of Contents

Setting Up an Update Action i, 295
Executingan Update Action i 296
Removinga Database Record. i i, 297
SettingUpaDelete Action, 297
Executinga Delete Action it 297
Adding Custom Columns to Database Actions 298
14 Using Control Actionscciivvennn. 299
Jumping to a Designated Action (Branch Action) 300
Branch Action DestinationRules 300
Executinga Branch Action i i, 302
Branchand Return. it 302
Setting UpaBranch Action i i, 303
Branch Action Destination Navigation 304
Deciding Course of Actions (Conditional Actions) 306
Example: Sports Fan Web Site il 306
General Forms of Conditional Actions 306
Nested Conditional Actionso i, 308
Performing Operations on Conditional Actions 308
Setting Up Conditional Actionsc.couiuiiininenneen... 309
Repeating a Set of Actions (Loop Actions) ..., 314
Example: Music Store 314
General
Forms of Loop Actionsoouiiuiiiniiiiiiiian.n. 314
Nested Loop Actionsc..iiuiiiiiiiiiniii i, 316
Setting Up Loop Actions.ttt 316
Executing Loop Actionsot 318
Performing Operations on Loop Actions. 319
Exiting a Loop (Break Action)ot 320
Ending File Processing (Return Action) oo, 321
I5 Extending Witango Functionality 323
Executing JavaScript 324
SettingUpaScript Action.ttt 324
Executinga Script Actiont 325
Using an External Action i 326
Setting Up an External Action 326
Configuringa DLL Call i, 326
Usinga Command Line 327
Configuringa Java Actionttt 329
Assigning Attributes e 330

Table of Contents

Deleting Parameters.t 331
Executing an External Action 331
Disabling JavaScript, Java and External Actions. 332

16 Sending Electronic Mail From Witango............ 333
SettingUpaMail Action 334
General Tabt e 334
Options Tabo 336
Attachments Tab 337
Disabling Mail 339

17 Reading, Writing, and Deleting Files 34l

SettingUp aFile Action i 342
Setting UpRead Optionsottt 342
Setting Up Write Optionsoouiiiiiinn .. 343
Setting Up Delete Options.ooitiiii i 345

Handling File Security. 346

18 Using Advanced Database Actions................ 347

Using Database Transactionsiiiuiiuieinnennenn.en 348
Setting Up a Transaction Action, 348
Executinga Transaction Action, 351

Using SQL Directlyttt e e 352
Setting Up a Direct DBMS Action, 352
The Direct DBMS Action Editing Window 353
Executing a Direct DBMS Action. i, 355

Joining Database Tables i 357
Working With Joins 358
Creatinga Joinina Search Actionc.iiiiiiinenan. 359
Insertinga Join o e 360
Editinga Join o 361
Deletinga Join. 361
Creating a Join in the Search Builder 362

Witango and Objects 363

19 Understanding Objects in Witango 365
What are Objects?ot e 366
Objects as Black Boxes.o 366

Object Interface: Methods 367
Method Elements: Parameters iiiiiiiiiian.. 368

Table of Contents

Class, Object, and Object Instancecoiiiieaon .. 368
Creating Object Instancest iinaen .. 369
Using Available Object Instances 370
CallingMethods 370
Example |: Investment Scenarios il 371
Example 2: More Investment Scenarios 372
Benefits of Using Objects inWitango oo iiiiin... 374
WhentoUse Objects i, 374
Object Types Supported in Witangoc..coiiiiiiinnenn.. 375
Object Type Independencet 375
COM ObJECES . o vttt ettt e e e e 375
JavaBeans 376
Witango Class Files i 376
General Requirements oottt ennennnn 377
Understanding Data Types.ottt i 378
Setting up Security for Executing Objects 379

20 UsingObjectsciiiieeeeinnnnneeeenaaas. 381

Preparing to Use Objects inWitangoc.oviiiiiiienn... 382
Planningto Usean Object.ottt 382
Installingan Objectttt 382

Overview of Using Objects in Witangoc.cciiiinienn.. 384

Adding an Object to the Objects Workspace 385
COM Objects in the Objects Workspace, 385
JavaBeans in the Objects Workspace 387
Witango Class Files in the Objects Workspace 388

Removing an Object From the Objects Workspace 390

Viewing Object Information in the Objects Workspace. 391
Attributes Folder 392
Object Propertiesttt i e e 393
Caching and Refreshing of Object Information 395

Adding a Create Object Instance Action. 396
Shortcut to Adding a Create Object Instance Action 397

Completing the Create Object Instance Action 398
Object Name. o 399
Object Instance Variable. i 399
INStanNCe 399
Expiry URL. . ..o 401

Adding a Call Method Actionot 402
Shortcut to Adding a Call Method Action 403

Table of Contents

Completing the Call Method Action 404
Object/Method Name i 405
Object Instance Variable 405
Result Variable i 406
Parameter Listt 407

Using the Objects Loop Actionc.. ittt iinennen... 410
Example of Using an Objects Loop oot 410
Using an Objects LOOpttt 411

2] WitangoClassFilesciiieiae. 413

What are Witango Class Files? i i 414

Benefits of Using Witango Class Files. 415
When to Develop and Use Witango Class Files 416

Using Witango Class Files i 417

Developing Witango Class Files 418
Method List Pane it 419
Method Editing Pane i 420
Instance Variables ListPane il 422
Method Definition Window i, 423

CreatingaWitango Class File. i it 426

Editinga Witango Class File. i i i 427
AddingaNew Method 428
RenamingaMethod i 428
DeletingaMethod i 429
CopyingaMethod i 429
ModifyingaMethod 430
Setting Return Values and Parameters............, 430
Method Properties i 432

DebuggingMethods i 433

Setting Search Paths for Witango Class Files 434
Witango Studio 434
Witango Server.ottt e 434

Witango Compiler 437

22 Compiling Witango Application Files 439

The Compilation Processottt 440
Syntax Checking o i 44|
Creating a Syntax Check Report i, 44|
Filtering the Syntax Check Report 444
Understanding a Syntax Check Report 445

Table of Contents

Correcting Issues located in a Syntax Check Report 446
Rechecking the Syntax 447
Printinga Syntax Report i 448
Compiling you Witango Application, 449
Executinga compile for J2EE. L L 449
Cleaning aftera compile 454

Glossary of Terms 457

Table of Contents

CHAPTER ONE

Introduction

An overview of this User Guide

The User’s Guide introduces you to Witango and tells you how to perform
the tasks necessary to create your applications. It is your main source of
information on how to use the Witango Studio. Topics covered include
Witango basics, including using application files, data sources, snippets,
and action builders. This User Guide should be used in conjunction with
the Witango Programmers Guide which provides all detail relating to the
Witango Meta Tags, Configuration Variables, Custom Meta Tags, DOMs
Error Codes and Expression Operators .

What is Witango is a powerful yet easy-to-use tool for creating dynamic,

Witango intelligent Web sites that integrate with popular database systems. With
Witango’s actions and builders, you build solutions by using Witango’s
intuitive point-and-click, drag-and-drop interface. You can create simple
applications in minutes—without ever writing any code. You can
customize your application files by adding your own HTML, database
queries, and control flow, and by accessing external programs. You can
send data to and retrieve data from external objects.

Witango Witango consists of two main programs: Witango Studio and Witango
Components Application Server, hereafter known simply as Witango Server.

* Witango Studio is the development environment, featuring a
complete graphical user interface in which to develop and compile
Witango application files (or simply, application files).

* Witango Server is an application server that executes Witango
application files created with Witango Studio. It works in conjunction
with an HTTP (Web) server to return HTML to a Web browser.

For definitions of terms used throughout the document, see Appendix A.

SECTION |

Using Witango Studio

How to Use Witango Studio

This section of the Witango User’s Guide gives details on the basics of
Witango Studio, including the Witango Studio environment, working with
Witango application files, Witango projects (including source control and
deploying and downloading projects), working with data sources,
snippets, and setting Witango Studio preferences.

This section contains chapters on the following topics:

Chapter 2, Witango Studio Basics on page 5

Chapter 3, Using Projects and Source Control on page 69
Chapter 4, Using Data Sources on page |||

Chapter 5, Using Snippets on page 141

Chapter 6, Setting Preferences on page 153.

Chapter 2, the applicable parts of Chapter 3, and Chapters 4-5 in this
section are strongly recommended for new users of Witango.

CHAPTER TwoO

Witango Studio Basics

Introducing the basics of the Witango Studio Interface and
Witango Application Files

This chapter helps you orient yourself to the Witango Studio interface
and some of the common operations available to you, looks at how
Witango actions work and describes Witango application file operations.

The topics covered in this chapter include:

* Witango Studio window components
* overview of the Witango Studio window
* using context-sensitive menus
» using HTML editing windows
* using Word Wrap
» working with multi-column lists in action editing windows
* using the SQL Query window
» finding and replacing text or regular expressions
* keyboard shortcuts.
* Working with actions:
* the Actions bar
» working with actions
* assigning attributes to actions
* the Results action
* the Presentation action.
* Using Witango application files
* XML file format details
» the Witango application file window
* creating and saving Witango application files
* debugging Witango application files

* executing Witango application files

Witango Studio Window Components

Witango Studio Window Components

@ To start Witango Studio, do one of the following:
* In the Witango folder, double-click the Witango Studio icon.
\S/Z/l:?iggo * From the Start menu, choose Programs, choose Witango, then

choose Witango Studio.
The main Witango Studio window appears:

dard Command Toolbar 5. A

|- Main Title Bar 4.

=lalx]
2. Menu Bar _>P!| Ve Altrkades)
— i
& 1 DDBC
a £ Ovacte
1. Actions Bar —> ¥
-
a
)
B
2
a
E 6. Workspace
=
2
a
a
sy
C
I
Iee | [Actioms | Brower [
Ll
=
=
=
:
5
=
d
£ =
8. Starus Bar — sy I CT T T %

I The main title bar displays the Witango Studio name and the name
of the current (front most) Witango application file or the SQL
Query window.

2 The menu bar contains pull-down menus for Witango Studio
commands. Click a menu title to open it, then click a command to
select it. Commands appearing in gray are disabled and do not apply
to the operation you are trying to perform.

3 Click icons on the Actions bar and drag them into an open
Witango application file to add them to the file.

4 Click icons on the toolbar to select the main Witango Studio
Standard File commands. For example, to save a Witango

Viewing
Interface
Components

Witango Studio Window Components

application file, you can either choose Save from the File menu, or
click the Save icon on the toolbar.

5 Click icons on the Attributes bar to assign attributes to selected
actions.

6 The Workspace includes tabs for Data Sources, Objects, Snippets,
and Projects, if any exist. You switch among the four sections of the
Workspace by clicking the corresponding tab. The four sections are
called Data Sources Workspace, Object Workspace, Snippets
Workspace, and Project Workspace, respectively.

7 The Main Window Area displays one or more Witango application
file windows, action editing windows, attribute editing windows, or
the SQL Query window.

8 The Status bar displays messages about the Witango Studio
environment, such as when connecting to a data source, the
currently connected data source, or when passing the cursor over a
toolbar icon to display its name/function. It also shows if CAPS LOCK,
NUM Lock, and SCROLL LOCK on the keyboard are switched on.

You can choose to show or hide the Workspace window and any of the
toolbars, the status bar, or the Properties window by enabling the
component’s name from the View menu. A check mark beside the name
indicates the component is visible in the interface. Uncheck the name to
hide the component.

[Workspace Chrl+1
v Actions Bar Chrl+2
v Atkributes Bar Chrl+3
v Toolbar Chrl+4
v Status Bar Chrl45

v HTML Toolbar Chrl+6
Busild Wind o el 7

Cycle Workspace Chrl+”

Properties Alb+Enter

Ward Wral p

To hide the Workspace window, you can also right-click the window and
choose Hide from the context-sensitive menu that appears.

Witango Studio Window Components

Floating and
Docking
Interface
Components

Floating and
Docking the
Workspace
Window

The Workspace window and toolbars are, by default, docked to the
Witango Studio interface. You can drag them from the interface to
undock, or float, them anywhere on your desktop. You can also dock
them again.

To float an interface component on your desktop, simply click the
undocking bars and drag the component to the desktop. If you want, you
can then resize the component. Position the cursor over the component’s
border, and when the cursor changes to the resize arrow, click and drag
its border.

EEEEEIEEEE LR

\
~
.

2
T ARASEA | vt mexE |

To dock the component to the interface again, drag it anywhere in the
toolbar area.

You can float the Workspace window in the Witango Studio main
window or anywhere on your desktop, or dock it to the interface. To do
this, you check or uncheck commands appearing in the Workspace
window’s context-sensitive menu.

To float the Workspace window only in the Witango Studio main
window, right-click the Workspace window, and click Float in Main
Window. A check mark appears beside the command indicating the
option is on. This prevents you from dragging the Workspace window
beyond the borders of Witango Studio.

If you want to drag the Workspace window on your desktop, disable
Float in Main Window, and drag the Workspace window to another
position.

To dock the Workspace window to the interface, drag the Workspace
window to the toolbar area.

Note You cannot dock the Workspace window to the interface with
the Float in Main Window option checked.

To avoid inadvertently docking the Workspace window to the interface,
right-click the Workspace window and deselect Allow Docking.

Witango Studio Window Components

Using Context- In many Witango Studio windows and dialog boxes, you can position the

Sensitive Menus cursor on a particular area of the screen and clickthe right mouse button
to display a context-sensitive menu of commands. The commands that
appear relate to the item you click. Grayed-out commands are not
applicable to the current item.

Properties The Properties window allows you to view information about and add

Window comments to a selected item. Selectable Witango items include data
sources (including tables and columns), application files, and actions. In
general, the Properties window changes to show the properties of the
currently selected item.

The following is an example of an Action Properties window for a Search
Builder action:

General | Development DS I Deployment DS I

Mame: RecordList

Type: Search
LComments: ™ Push

To open any Properties window
I Select the item you want to view information about.
2 Do one of the following:

* From the View menu, choose Properties.

* Right-click the item, and choose Properties from the
context-sensitive menu that appears.

* Type ALT+ENTER

The Properties window can be left open. Clicking an item with properties
updates the window to show information about that item.

HTML Editing Most actions in an application file can have HTML associated with them.

Window Whenever you open the assigned attribute of an action, the
corresponding HTML editing window appears. You can create or edit any
HTML using this window. This example shows the HTML editing window

Witango Studio Window Components

for the Results HTML of a Search action named “RecordList” within
the Example. taf application file:

[E Example_taf : RecordList : HTML =] E3

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD
<TITLE>Matching Fecords</TITLE>
< /HELD>

<BODT>

<F=
<[IF "<ETOTALROWS: = -17>
There are <Ex<ENUMROWSE:< /B> matching records.
<BELZEIF "<@TOTALROWS: '= 17
There are <ETOTALROWS>< /B> matching recorda.
<BIF "<EMAXNROWS: > 17
<P:Displaying matches
<Br<@STARTROW:< /B>
through
<ECALC "<@ITARTROW: + <ENUMROWS: - 17=.
</BIF>
<BEL3E>
There is <E>=1 matching record.
</HBIF>
<SP

Results |Tﬂ Mo Hesultsl 3 Enorl

The title of the window follows the form:
<Document> : <Action> : <HTML>

Witango Studio supports the standard editing commands. The Edit menu
displays the following editing commands:

Undo Clrl+Z
Redo Clrl+Y

Cut Crl+%
Copy Crl+C
Paste Clrl+
Delete Del

Im=ert Ins:

Select Al Crl+&
Find... Clrl+F
Replace... Chrl+H
Rename Cirl+Enter
ErouE Crl+5

(e el] Shift+Ctrl+5
e ethod

Inzsert Meta Tag... Chrl+M
In=ert Custam Calummn...

In=ert Criteria Separatar:

Snippet 3
Define Sites...

Preferences...

Witango Studio Window Components

Context-sensitive Menu

Unda You can also right-click the HTML editing window to display a context-
e sensitive menu at the cursor position in the window. The following table
cut lists the commands available in the menu:
Copy
Paste
Delete
Command Function
Select Al
Insert Meta Tag... Undo Undoes the last change made to the text.
Redo Re-performs an action that was just undone.
Cut Removes the selected text from the window.
Copy Copies the selected text to the clipboard.
Paste Pastes text on the clipboard at the cursor position.
Delete Deletes the selected text.
Select All Selects all text within the HTML editing window.
Insert Meta Tag Displays the Insert Meta Tag dialog box.

Closing the editing window automatically saves any changes you make. To
cancel any changes, you can choose Undo or close the file without saving
it.

Syntax Coloring

To make editing of your files easier and clearer, many of the HTML and
text components that appear are color-coded—HTML, Witango meta
tags, attributes, default text, and comments. You can change the specified
colors.

You can enter any amount of text in an HTML editing window. You can
also drag and drop text from elsewhere, for example, from other editing
windows.

Word Wrap

Word wrap is available in the HTML editing window as well as many
other windows. See Word Wrap page |5 for further details.

Indenting and Selecting Text

You can also position text using tab characters. Tabs are stored as tab
characters and are not converted to spaces. Tabs have no effect on the
display of HTML in the Web browser; they are used to make the HTML

you enter more readable.

Witango Studio Window Components

You specify the number of space characters that equal one tab character
in the Preferences dialog box. You can also specify whether you want
Witango to insert tab characters to start a new line at the same indent
level as the previous line.

Selecting lines of text in an editing window is easy. You simply use the
selection strip next to the line to select the entire line. When you select
a line, it is highlighted. The following describes the operations you can
perform using the selection strip.

* To select a single line, click the selection strip beside the line you
want to select. The entire line is highlighted.

Selection strip 1.

[

* To select multiple lines, hold down the mouse button in the selection
strip next to the first line you want to select, and drag the cursor up
or down the selection strip to highlight subsequent lines.

g the
_ontinue draggi

v
1 | ¥

Witango Studio Window Components

To indent selected lines, press the TAB key. All selected lines are
indented the number of characters equal to one tab character. Press
the TAB key again to indent the selected lines further; press the
SHIFT+TAB keys to reduce the indentation.

All selected lines are indented
the value of a tab character

rag “the
Continue d

v
1 | ¥

You set the number of characters equal to a tab character in the
Preferences dialog box.

CautionYou can only use the TAB key to indent the selected lines.
Using the SPACE BAR instead replaces all the selected lines with a single
space character.

To move the selected lines elsewhere in the editing window, simply

drag them to a new position. When you drag the selected lines, the
cursor changes to ;. Release the mouse button where you want the
selected lines to appear.

tab 1n a e [1nes selected.
all the selected lines elsewhere, 1ike after
ine.

=
You can tab in all the lines selected.
or move all the selected Tines elsewhere, Tike after
this Tine.
Click the selection strip to select an entire line.
Drag the cursor to select a subsequent line.
‘l Continue dragging to select more Tines.

I

v
1 | ¥

Note You can also use the standard editing commands (such as Undo,
Cut, Copy, Paste, and Delete) on text selected using the selection
strip.

Witango Studio Window Components

HTML Windows: Attributes of Actions

The HTML editing window is common for any of the HTML attributes
that may be assigned to an action—Results HTML, No Results HTML,
and Error HTML. Only the applicable attribute tabs for the selected
action appear at the bottom of the window.

1=
Fezuls l Mo Resuls I Em:url

You switch among the HTML editing windows by clicking the appropriate
tab.

You can also open the attribute HTML associated with an action by doing
one of the following:

* Select an action icon/name, and choose the attribute type from the
Attributes menu.

Altributes
Besultz HTHL... Chil+R
Mo Results HTML... Chil+l
Ermor HTHL... Chil+E

Push

Debug Application File Chil+D

* Right-click the action icon/name, and choose the attribute type from
the context-sensitive menu that appears.

Open

Cut
Copy
Paste
Delete

Fename
Set Data Source

Fiesultz HTML
Mo Results HTML
Ermor HTML

Push

[rebua Application File
SOL Query

Group
Wharoup

Froperties
* Double-click the attribute icon in the application file.

The corresponding HTML editing window opens.

Witango Studio Window Components

Working with HTML and Text Files

In addition to editing an action’s associated HTML, you can also use
Witango’s editing capabilities to create and edit HTML and text files. The
editing capabilities and window settings described for HTML action
attributes apply equally to HTML and text files opened for editing with
Witango Studio.

To create a new HTML or text file

From the File menu, choose New, then HTML or Text File from the
submenu.

Application File Crrl+M

Open... Chrl+0 Llazz File
Lloze Clrl+F4

Save Clrl+5
Save As..

Save Az Bun-Only...

Save All

Convert Text File... Clrl+T

1 Example.taf
2 Example.tep
3 Sample.tep
4 Sample.taf

Exit

:A blank editing window opens

& Untitled1 M= 3
|4 Y

Witango Studio Window Components

The default window name is “Untitled|”, until you save it as another
name. Subsequent new windows are named “Untitledn”, where n is the
next number in the series, that is, the second window opened is
“Untitled2”, and so on.

To save a new HTML or text file

From the File menu, choose Save or Save As. The Save As dialog box
appears.

In the File name field, type the name of your file and an appropriate
extension. The default extension is *.txt.

The Save as type drop-down menu includes file types: *.txt,
*.html, *xml, *.dtd, *java,*.inc.

When you save a text file and a project is open, Witango
automatically asks if you want to add the saved file to the open
project.

To open an HTML or text file

From the File menu, choose Open. The Open dialog box appears.

2 Select the file to open.

3 Click Open.

Tip You can also open a file of a supported type simply by dragging it
from the Windows Explorer into Witango Studio or onto the Witango
Studio icon, if Witango Studio is not already open.

The Browser Window View

The Browser Window allows the user to view the taf file logic, the HTML
editing window and the current action properties window simultaneously.

Witango Studio Window Components

To access the Browser Window

Select the Browser Tab at the bottom of the taf file window.

...\ TutorialE\welcomeE. taf

—1of x|

Object/C

[=}]2 Else_t_Visitor_ls_Supplier
B Supplier_Page
=1+ Else_Menu
B Menu

U ow

Action Attr.. | Details
=& welcomeE taf
=2 1_Visitor_ls_Customer (<@ARG NAME =visitar>
= Assign UsergVisitorName=< @,
B Customer_Page
@ Get_Sales_liems products

3 Music
(<@ARG NAME =visitars

Browser

The window will split to arrange the taf file logic, the properties and
HTML editing options for the current action.

Taf file Logic

Properties of Current Action

i\ TutorialE\welcomeE.taf

=1o]x]|

Action
=8 C\Program Files\,.\TutarislEvwelcomeE ta.
=12 If Misitor_ls_Customer
-2 Assign
[Customer_Page

Sslect | Crteria | Resuts | Joins | Cutaut|

Select Columns:

Select Type: |Mormal -

Order By Columns:

<@ROWS>

<@COLUMN "products.title"><BRY>

Reg. Price OCOLUMN "preducts.price’»<ER>

Sale Price (RCOLUMN "products.sale price"><P>
</BROWS>

<HR>

<A HREF="search.taf"rSearch Product Database</ A

2 |2 Else__\isitor |s_Supplier products.fitle 5| E
") Supplier Page products. price
pplier_Fag products. sale_price
518 Else_Menu
B Menu
4 | o
<P»
Here's what's on sale today.
<P

Aesut | 2 No Result | B Eror

| Actions }\Browser

HTML editing options for current option

The user can switch back to the normal view by selecting the Actions

tab.

Witango Studio Window Components

utorialE'welcomeE.taf _lalx]

Act Attr. | Details Object/C
= & welcomeE taf
= T2 I Visitor_ls_Custorner (<@ARG NAME=visitor>
= Assign UsergVisitorName-<@A,
[Custorner_Page B
@, Get_Sales_tems Ba products 1 Music
[=I? Else_tt_Visitor_ls_Supplier (<@ARG NAME=visitor>
B Supplier_Page]
= Else_Menu
~B Menu B

Actions [\)Browser [

N\

Word Wrap

The Word Wrap command in the View menu is available for certain
text windows.

v Workspace Chrl+1
v Actions Bar Chrl+2
v Attributes Bar Chrl+3
v Toolbar Chrl+4
v Skatus Bar Chrl45

v HTML Toolbar Chrl+6
Euild windio Ly

Cycle workspace Ctrl+”

Properties alt+Enter

Selecting Word Wrap enables or disables word wrap. A check mark

v Word Wrap indicates word wrap is on.

If word wrap is disabled, a horizontal scroll bar is available to view text
outside the boundaries of the text window.

Word wrap is available in the HTML editing windows, Direct DBMS
action window, Script action window, and Mail action window, among
others.

Witango Studio Window Components

Working With Many Witango actions include multi-column lists for entering

Multi-column parameters—the criteria list in the Search action, for example. This
Lists section describes basic techniques for working with these lists.
Select Criteria | Hesultsl Jainz I
Fieturn rows matching these criteria;
Colurnmn Oper. Value Incl. Ernply | Cuote Valﬁl
thltccesslevel AccesslevellD | = false false
and thilser.Uszemame = false true
and thlUser. Password = false true
and thllser. Firsttd ame = false true
and thilser.Lasth ame = false true
and thlUserShartout. UserShartcut... | = false true

To select an entire row

Click the row’s Column cell.

Colurnmn Oper. Value Incl. Empty | Quote Yalue

thltccesslevel AccessLevellD false false

thlUser. Password false true
and thllser. Firsttd ame = false true
and thilser.Lasth ame = false true
and thlUserShartout. UserShartcut... | = false true

To move a row

Select the row and drag it to the desired location.

Colurnmn Oper. Value Incl. Empty | Quote Yalue

thltccesslevel AccessLevellD false

falze
e thlllser, Eirstham = falee. e
and thilser.Lasth ame = false true
and thlUserShartout. UserShartcut... | = false true

A flashing grey line indicates where the row is inserted when the mouse
button is released.

Witango Studio Window Components

Drop-down Menus

Various columns have drop-down menus in each cell. Place the cursor in
the cell and click the mouse. A downward-directional arrow appears.
Click the arrow and the drop-down menu appears.

@ Example.taf : Search M= E3 I
Select Criteria | Hesultsl Jainz I

Fieturn rows matching these criteria;

Colurnmn _Dper. Value Incl. Emnpty | Quote \u"alﬁl;
CUST.CODE] - false false

and CUST.NAME = false true

and CUST.CONTALCT !: false true

and CUST.ADDRESST q false true

and CUST.CITY <= false true

ad | CUSTPROV A false true

and CUST.COUNTRY B eging with falze true

and | CUST.POSTALCODE F”l‘:s with false true

and CUST.PHOME 2 Hull false true e

and CUST.Fax = Mat Mul false true LI

From a cell’s drop-down menu, you can select from preset values.

To resize a column

Click at the edge of the column in the list’s header, and drag.

—_ A double-headed arrow appears when
- Lh_"'-"'amE you move your cursor between
columns. Drag to resize the column.

To resize a column to fit the data in it, double-click its right edge in the
header.

To delete a row
I Select the row to delete.

2 Do one of the following:

¢ From the Edit menu, choose Delete.
¢ Press Delete .
v ¢ On the main toolbar, click the Delete icon.

* Right-click the selected row and choose Delete from the
context-sensitive menu that appears.

Witango Studio Window Components

Dragging Columns

When creating or modifying a Witango application file and actions, you
must specify which database columns to use in various places. To do this,
you drag the columns from the Data Sources Workspace to the
appropriate place in the file.

To ... Do This ...

Select contiguous columns Click the first column you want to select and
Shi ft+click the last one.

Select discontiguous columns Ctrl+click each of the desired columns.

Select all columns in a table Drag the table name into the file.

To see the Data Sources Workspace, click the Data Sources tab. A
workspace appears, containing information about data sources, such as
the currently defined data sources and all tables and columns. If no data
sources are set up Yyet, only the data source types appear.

The SQL Query The SQL Query window gives you a convenient way of performing simple
Window SQL queries within Witango Studio, for example, to test your Direct
DBMS actions or to check database values.

The SQL Query window displays the following components:

Connect Disconnect Commit Rollback Max. Matches list
Execute
SOL Query
/ gl v '.l‘.lJ.lx.l-b.l Maw. Matches: (10
Data =
Source SQL query
text area
If you want to resize the
query and results areas, =l
place the cursor over the
area separator to display Results | Log\ | Area
the resizing icon.Then click T | | | showing
=+ either the
. ¥ results of
and drag it up or down to the SQL
change the sizes of each query or
4| | LI the |0g of
queries.
| 4

Dﬁplays the current Click the Logtab to * Displays the number of
status of a SQL see the log of records returned by a

query. executed queries. query.

Witango Studio Window Components

Setting Up a SQL Query
The components and functions of the SQL Query window are as follows:

* Data Source button allows you to specify the data source you want
to perform query operations against. When you first open the SQL
Query window, the data source is set to None.

If you change the data source assigned to the window, any existing
connection closes.

* Max. Matches displays the maximum number of records you want
the SQL query to return. You can select from 1, 10, 25, 50, or 100.
The default is 10.

For more information on * Commit and Rollback buttons allow you to perform a SQL

SQL COMMIT and COMMIT or ROLLBACK operation on the assigned data source.

ROLLBACK operations,

consult your SQL COMMIT causes any changes made to the data source by the query to

documentation. be saved. ROLLBACK causes any changes made by the query to be
discarded.

These buttons are disabled when you are not connected to a data
source.

» Connect and Disconnect buttons allow you to connect to or
disconnect from the current data source.

When you try to connect without first assigning a data source, the
Data Source Selection dialog box appears; you must select a data
source.

* Execute button allows you to execute the SQL query in the query
text area. If you are not connected to the data source when
Execute is selected, the connection is made automatically.

Any data returned by the SQL query appears in the Results area of
the SQL Query window. If the Results area contains data and the
current query returns no data, the Results area is cleared of any
data.

After execution, the connection to the data source remains open.

To cancel an executed query, press Esc. If results are being returned
when a cancel request is made, the Results area shows all the data
returned to that point.

* Query Text Area displays the SQL query text to be executed.

The query text area supports standard cut, copy, and paste
operations, including drag and drop. You can drag and drop tables
and columns into the SQL Query text area from the Data Sources
Workspace.

Witango Studio Window Components

You can also drag any database action (except Transaction) from an
application file to the SQL Query window to see the SQL Witango
generates for it.

If you select only part of the SQL when executing the query, only
that part is sent to query the database.

Results tab displays in columns and rows the results of the SQL
query.

Log tab displays the log of executed queries.

Witango Studio Window Components

Status Area shows the current status of the SQL query. The status
messages appear as follows:

Status Description

Not connected No connection is established.

Connecting... Appears during connection to the data
source.

Connected Connection is established.

Executing... Appears during execution of query.

Rolling back changes... Appears during rollback operation.

Committing changes... Appears during commit operation.

Dragging Actions into SQL Query Text

You can drag any database action, except a Transaction action, which does
not generate SQL, from an application file into the SQL Query window.

\htdocs',example.tal — | | |£I

Action Ohbject/ Data SU...l Comments
B exampletaf
e Search
SOL Query M= 3
gl ECommerce Data %3 | 2] |J.|x.| -D@l Max. Matches: |10 =
SELECT 51.5hopperlD,51.0rderStatusID FROM SalesOrder 51 WHERE ;I
(51.BillT oM ame="MY" AND 51.5hopperlD>1000 AND 51.5hipT o5tate LIKE ‘4%
Fiesultz | Log |
| | | |
4
Actions 4 Br
4] | v

| | 4

When you do this, some SQL Query window attributes are set based on
the contents of the action. The following attributes are automatically set:

Max. Matches (for a search action) is set to the action's maximum
matches value; otherwise, it is set to unlimited.

The data source is set to the action's data source, and closes any
existing database connection (if the data source is different from the
current data source).

Witango Studio Window Components

* The SQL text is the data source-specific SQL that Witango Server
generates when the action is executed.

Note Any meta tags from the action are placed in the text as-is. The
SQL text also does not include any text automatically added to the
action’s SQL by the server.

* The Results area is cleared of the currently displayed results.

Performing a SQL Query

To perform a SQL query
I Choose the SQL Query command by doing one of the following:

* From the Window menu, choose SQL Query.

* Right-click the application file window or an open action
window, and choose SQL Query from the context-sensitive
menu that appears.

An empty SQL Query window appears.

@l @ 2 Click Data Source.

When you first open the SQL Query window, the data source is
None.

The Data Source Selection dialog box appears:

Data Source Selection E

¥ Set deployment data source

Development data source: ' Use data source default
B ElusSkyeDemo - & Specify

@ Bug System Data ¥ Same a5 development
B CDData

@ cfexamples e I j
3 cfsnippsts Name: I

1 dBASE Files

@ DEMODATA Datahase: |

B E-Bank u I

sername:
i ECommerce Data -
£ Excel Files LI Pazsword: I

Ok I Lancel |

3 Select the data source you want to perform SQL Query window
operations against, and click OK to load the tables and columns of
that database. A Log In dialog box may appear allowing you to type
your user name and password.

Witango Studio Window Components

I From the Max. Matches drop-down menu, select the maximum
number of records to return from a SQL query: I, 10, 25, 50, or

100.
E 2 Click Connect to connect to the current data source.
3 In the SQL Query text area, enter the SQL query text to be
executed.
*3 4 Click the Execute icon.

If you select part of the SQL in the SQL Query text area, only that
part is executed when you click the button.

5 If you want to perform a COMMIT or ROLLBACK operation on the
assigned data source, click the corresponding Commit or Rollback
button.

The results of the SQL query, if any, appear in the Results area.

The following is an example of SQL query text and the returned

results:
S0L Query M=l E3
gl ECommerce Data 49 | “ |J§|x@| -D@l Max. Matches: |10 =
SELECT P1.10,P1.Mame,P1.Description FROM Product F1 ;I
Fiesultz | Log |
D Mame Diescription -

Galactic Glider [G Squar...

Souped up with the new ...

Solar System Starter Kit ...

It seems anyone can buy ...

Rover Guide to Felasatio...

Complete with pictures an...

The Plate Instructions

.| This free manual will nat b...

Getting Started with Gala...

Leam the tricks to maintai...

Solar System Starter Kit M...

Left aut of the packaging ...

Ringer Reference

.. | The definative guide in Ri...

| Total Rows: 10 [i

In Witango Studio, you can perform operations to find, or to find-and-
replace text in application files. Witango Studio can perform both normal
searches and searches using regular expressions.

Finding and
Replacing Text

Performing Find Operations

For the purpose of this discussion, the term string refers to both
character strings (that is, text) and regular expressions. You specify that
the search is to treat the string in the Find field as a regular expression

Witango Studio Window Components

by selecting the Regular expression option in the Find or Replace
dialog box.

If you want to find a certain string, you specify that string in the Find
dialog box. If you want to find a certain string and replace it with another
string, you do that in the Replace dialog box.

Find =
Fin: | FindWest |

Find in Find: | Firdest |
' Current window

& Filg Example.taf Replace with: I Replace |

" Allfiles in project ™ Match caze [~ Regular expression Fieplace Al |

v -
V' Start at top Find in Close |

' Current window

& Filg Example.taf
&l files in project

V' Start at top

You can find any string that can be entered in any non-modal Witango
Studio window. This includes values in criteria lists, action parameters
you have entered—such as for the Limit to field in a Search action’s
Results window, custom SQL, If action conditions, External action
parameters, custom column definitions, and HTML. Witango Studio
cannot find a string you did not explicitly enter, for example, data source
names, user names or passwords entered by users, column names in
Select lists, and join information.

You can perform find and find-and-replace operations in open application
files, action editing windows, HTML editing windows, and projects. Unless
specified otherwise, Witango Studio begins searching at the insertion
point indicated by the cursor and continues to the end of the search
range specified in the Find in section of the dialog box.

To find or find-and-replace a string

I Do one of the following:

* Depending on the operation you want to perform, choose
either Find or Replace from the Edit menu.

The corresponding Find or Replace dialog box appears.
2 Specify your find or replace options as follows:

* Find. Enter the string you want to find.

* Replace with. Enter the string that you want to replace
the string in the Find field with.

Witango Studio Window Components

Match case. If you want to perform a case-sensitive search,
select the Match case option; otherwise, Witango Studio
searches for a match irrespective of letter case. For
example, a search for “customer” would find all instances of
“customer”, “Customer”, and “CUSTOMER”.

Regular expression. If you want to search for the string as
a regular expression, you must select the Regular
expression option. Otherwise, a normal search is
performed.

Find in. You specify the search range in this area of the
dialog box.

Current window. Select this option to perform the find or
replace operation in the window active at the time you
choose the Find or Replace command. If you have a string
selected in the active window, it automatically appears in the
Find field.

File filename. Select this option to perform the find or
replace operation in the file specified by filename. The name
of the currently active file automatically appears as filename.

All files in project. If you have a project open, this option
is checked. Select this option to perform the find or replace
operation in all the files of the active project. If you have
another application file open at the same time, which is not
part of the project, Witango Studio excludes it from the find
or replace operation.

Start at top. Select this option to start the find or find-

and-replace operation at the top of the search range
specified in the Find in section.

Tip To start your search at the top of your project, check All files in
project and Start at top in the Replace dialog box.

If this option is not selected, Witango Studio performs the
search starting from the current cursor position.

Note If a search range is specified and the current cursor position is
not within that range, the current cursor position is ignored and the
search starts at the top of the specified range.

Find Next. Click to start the search for the string specified
in the Find field from the specified starting position.

Witango Studio Window Components

* Replace. Click to replace the string specified in the Find
field with the string specified in the Replace with field.
Following the replace operation, Witango Studio
automatically searches for the next instance of the find
string.

* You can undo the last replace performed by choosing Undo
from the Edit menu.

* Replace All. Click to replace automatically all instances of
the string specified in the Find field with the string specified
in the Replace with field.

The following dialog box appears, indicating the number of
replacements made:

@ 33 ocourrences have been replaced.

Note You cannot undo the Replace All operation. You can, however,
choose to close a file without saving the changes to return it to its
former state.

If the search range involves several items, those items in which
replacements are made are opened so you can save or discard
the changes.

» Cancel. Click to end the find or find-and-replace operation
and to close the dialog box.

Using Regular Expressions

A regular expression is formed by one or more special characters that
represent a string of text.

Note To find a special character, precede it with a backslash, for
example, \ * finds the asterisk (*¥) character.

Witango Studio Window Components

To find any single character

A period (.) finds any character except a newline character.

Expression ... Finds ...

.use fuse but not house

To repeat expressions
Repeat expressions with an asterisk (*) or a plus sign (+).

A regular expression followed by an asterisk finds zero or more
occurrences of the regular expression. If there is any choice, Witango
Studio chooses the longest, left-most matching string in a line.

A regular expression followed by a plus sign finds one or more
occurrences of the one-character regular expression. If there is any
choice, Witango Studio chooses the longest left-most matching string in a
line.

Expression ... Finds ...

atb ab and aab but nota or b

a*b b, ab, and aab but not baa

Fuse use, mouse, and paint the house, but
not chair

To group expressions

If an expression is enclosed in parentheses, (), Witango Studio treats it as
one expression and applies an asterisk or plus sign to the whole

expression.
Expression ... Finds ...
(ab)*c abc, ababc, and ¢, but not aabbcc
(-a)+b xab, xaxab, but not b

Witango Studio Window Components

To choose any character from many

A string of characters enclosed in square brackets, [], finds any one
character in that string. If the first character in the brackets is a caret (*),
it finds any character except those in the string.

Expression ... Finds ...
[abc] a, b, orc,butnotx,y, orz
[*abc] X, Yy, or z, but not a, b, or ¢

A minus sign (-) within square brackets indicates a range of consecutive
ASCII characters. For example, [0-9] is the same as [0123456789].
The minus sign loses its special meaning if it is the first character (after an
initial caret, if any) or last character in the string.

If a right square bracket is immediately after a left square bracket, it does
not terminate the string; however, it is considered to be one of the
characters to match. If any special character—such as the backslash (\),
asterisk (*), or plus sign (+)—is immediately after the left square bracket,
it does not have its special meaning and is considered to be one of the
characters to match.

Expression ... Finds ...

[aeiou][0-9] a9 but not ae

[*bm]ate date but not bate or mate
ENDI.] END. but not END;

To find the beginning or end of a line
* You can specify that a regular expression finds only the beginning or
end of the line.

* Ifacaret () is at the beginning of the entire regular expression, it
finds the beginning of the line.

* Ifadollar sign ($) is at the end of the entire expression, it finds the
end of the line.

* If an entire expression is enclosed by a caret and dollar sign (for
example, “the ends), it finds an entire line.

Expression... Finds...
A(the house).+ the house guest but not paint the house
.*+(the house)$ paint the house but not the house guest

Witango Studio Window Components

To re-use a regular expression in the Replace field

Witango extends the regular expression functionality and allows you to
remember and recall a part of a regular expression. Enclose the part to
remember with parentheses. To recall it, use \n, where n is a digit that
specifies which expression in parentheses to recall. Determine n by
counting occurrences of “(” from the left. You can only use this feature
in the Replace field of the dialog box.

Tip For more information on constructing POSIX regular expressions,
ask your local UNIX guru, consult the FreeBSD regex man page, or try
doing an Internet search for the term “POSIX 1003.2*.

Keyboard The keyboard shortcuts, as they appear in Witango Studio menus, are as
Shortcuts follows:

Menu Command Shortcut

File New (Witango application file) CTRL+N
Open CTRL+O
Close CTRL+F4
Save CTRL+S
Convert Text Files CTRL+T

Edit Undo CTRL+Z
Redo CTRL+Y
Cut CTRL+X
Copy CTRL+C
Paste CTRL+V
Delete Del
Insert Ins
Select All CTRL+A
Find CTRL+F
Replace CTRL+H
Rename CTRL+ENTER
Group CTRL+G
Ungroup SHIFT+CTRL+G
Insert Meta Tag CTRL+M

View Workspace CTRL+I
Actions Bar CTRL+2
Attributes Bar CTRL+3
Toolbar Ctrl+4
Status Bar Ctrl+5
Cycle Workspace CTRL+’ (single back quote)

Properties

ALT+ENTER

Witango Studio Window Components

Menu Command Shortcut
Attributes Results HTML CTRL+R
No Results HTML CTRL+U
Error HTML CTRL+E
Debug File CTRL+D
DataSource Reload F5
Window SQL Query CTRL+Q
Help Help Home Page Fl

View Menu Shortcuts

To view the Workspace, Actions bar, or Attributes bar, you can also use
the View menu commands. For example, to view the Actions bar, either
choose Actions Bar from the View menu, or press

Ctrl+2. If the bar is already displayed, choosing the command or
pressing the shortcut hides it.

The Cycle Workspace command allows you to move consecutively
from one workspace window to the next.

For example, if you are currently viewing the Project Workspace, pressing
Ctrl+’ (the single back quote character located to the left of the “1” key
on most keyboards), or choosing Cycle Workspace from the View
menu, switches your display to the Data Source Workspace. If you are
viewing the Snippets Workspace, pressing CTRL+" or choosing Cycle
Workspace switches your display to the Project Workspace.

Project Workspace Shortcuts

When working in the Project, Data Sources, and Snippets Workspaces,
or in the application file window, you can expand and collapse any parent
object by one level using the left and right keyboard cursor keys. A parent
object is any object denoted in the view by the plus sign (#-, expandable)
and negative sign (=, collapsible).

* To expand the selected parent one level, press @ (right cursor key).

Witango Studio Window Components

* To collapse the selected parent one level, press @ (left cursor key).

CE Builder Snippets

: Column Snippets
Configuration Variables
s My Snippets

My Snippets
- i
+ Corda PopChart Examples

CZ Builder Shippets
“-[L Colurnn Srippets
[Conliguration Varables

HTHL
JavaScript
Meta Tags
2 ML

You can also use keyboard shortcut keys in an open application file
parent object through all levels at one

window to expand and collapse the
time.

* To expand the selected parent,

press CTRL+ @

* To collapse the selected parent, press CTRL+ @

Exampletaf CTRL @

CTRL @

=B Example taf
E}ic'i Search_Builder

=-T2 IFom
[Farm
[=1-|?7? ElseliList
L. RecordList
E||'” ElselfDetail
B RecordDetail
=113 ElseError
(- InvalidFunctian
. © Retumn

Witango
Actions

Witango Actions are icon based representations of the logic within a
Witango application file. Actions exist to deal with all strands of required
logic to build a web application. Actions can be categorised into 4
different groups:

* Business Logic

* Database Logic

* Presentation Logic

* Extenal Data Acquisition Logic.

Witango Studio Window Components

Actions dealing with Business Logic

The Business Logic Actions control how the application flow. They are
listed in the table below:

Icon Action Function

Assign Makes specified value
assignments to a variable.

IL

Group Groups related actions
together.

IF, ELSE IF, ELSE Executes an expression, and,
[2 |» based on the result of that
" expression affects the control
of flow within the file.

While Loop, For Loop Repeats a set of contained

[0 actions: until an expression
evaluates to true of for a

[® specified number of loops.

Break Terminates processing within a
loop.

Branch Causes a jump to another
action or action group.

Return Ends execution of an
= application file and returns the
accumulated Results HTML to
the browser.

Actions dealing with Database Acquisition Logic

The Database Acquisition Actions control the interaction with available
databases including SELECT, UPDATE, INSERT and DELETE. Witango
actions also exist to allow a developer to carry out ad hoc SQL
statements or stored procedure calls with the Direct DBMS action. They
are listed in the table below:

Icon Action Function
Search Retrieves records from a
O\ database.

Witango Studio Window Components

Icon Action Function

Insert Adds records to a database.
Update Changes records in a database.

&
Delete Removes records from a

m database.
Direct DBMS Executes SQL statements.
Begin Transaction Begins a transaction and ends a

B 8 End Transaction transaction with a rollback or
commit.

Actions dealing with Presentation Logic

The Presentation Actions control how the results appear on the end
user’s browser. They are listed in the table below:

Icon Action Function
Results Performs no special function of
its own, this action allows

HTML to be appended to the
Results HTML.

Presentation Allows user to reference
=] presentation pages.

Actions dealing with External Data Aquistion Logic

The External Data Acquisition Actions control the interaction with back
office systems, this is typically achieved with actions such as MAIL,
OBJECT, FILE and EXTERNAL. They are listed in the table below:

Icon Action Function
Mail Sends out electronic mail.
|
File Reads, writes and deletes files
on the filesystem.

The HTML
Toolbar

Witango Studio Window Components

Icon Action Function
Script Used to specify server side
JavaScript code to execute

such as Shellscript.

External Calls an external code module
g to perform a function and
return results.

Create Object Instance Creates object instances for
N | COM, Java Beans, and Witango
Class File Objects.
Call Method Calls methods on the object
s instances that are created.
Objects Loop Loops over collection objects

[

Witango Studio incorporates a HTML toolbar to assist the user in editing
HTML code in the HTML Editing Window. This toolbar is by default
locked to the workspace but can be made a floating toolbar by simply
dragging it from the workspace. For more information see Floating and
Docking Interface Components page 5.

=]
DBODB|awssus EEUTY -2 0B3

To insert a HTML tag in the HTML Editing Window

I Place the cursor in the location you wish the HTML to be inserted
with the HTML editing window.

2 Click on the icon for the HTML tag you wish to be inserted.
3 Where a window is created for further information, complete the
details and select ther OK button.
To wrap existing text in a HTML tag

I Open the HTML editing windowand highlight the text you wish to
wrap in a HTML tag.

2 Click on the icon for the HTML tag you wish to be wrapped around
this text.

3 Where a window is created for further information, complete the
details and select ther OK button.

Witango Studio Window Components

Elements on the HTML toolbar

Icon Title Function
Page Template Adds HTML, Header title and
Oy body tags.
Mix Frame Pops a window to allow user
to define a mixed frameset. See
i} Mix Frame Set page 36.
Vertical Frame Pops a window to allow user
to define a vertical frameset.
1N} See Vertical Frame Set page 39
Horizontal Frame Pops a window to allow user
to define a horizontal frameset.
=) See Horizontal Frame Set page
38
Font Pops a window to allow user
to define Font Properties. See
A Font Settings page 39.
Heading Pops a window to allow user
to enter heading tags. See
H? Heading Settings page 41.
Bold Adds bold tags.
B
Italic Adds italic tags.
rFa
Underline Adds underline tags.
o
Left Justify Adds document division tags
= which align left.
Center Justify Adds document division tags

which align center.

Right Justify Adds document division tags
which align right.

Unordered List Adds unordered list tags.

Witango Studio Window Components

Icon Title

Function

Ordered List

Adds ordered list tags.

List Item Adds list item tags.
LI
Paragraph Adds paragraph tags.
T
Line Break Adds break tag.
|
Horizontal Rule Adds horizontal rule tag.
Email Adds email link tag.
=
Hyperlink Adds hyperlink tag.
&
Image Adds image tag.
Table Adds table tags.
O
Table Row Adds table row tags.
|
Table Data Cell Adds table data cell tags.
=

Mix Frame Set

If the user selects the icon for Mix Frame they are presented with a Mix
FrameSet Window. This window allows the user to set the dimensions of
each frame. When the user has set the dimensions, the OK button is
pushed, and the HTML code which appears in the HTML Editing Window
will generate a frame set of the required dimensions.

The Mix FrameSet Window is shown below.

Witango Studio Window Components

Mix FrameSet

Frame A

Frame B

Frame C

—Frame B&C

—Frame &

{* Percentage I o5
" Pixels I 0

% Percentage I 75
" Pixels I 0

r" ® ,""' *
FiIe:I
—Frame B —Frame C

% Percentage I o5
" Pixels I 0

i o®

% Percentage I 75
" Pixels I 0

i o®

FiIe:I

FiIe:I

Cancel |

The output of the above window would be:

<frameset rows="25%,75%">

<frame src="">

<frameset cols="25%,75%">

<frame src="">
<frame src="">
</frameset>
</frameset>

Horizontal Frame Set

Witango Studio Window Components

If the user selects the icon for Horizontal Frame Set they are presented
with a Horizontal Frame Set Window. This window allows the user to set
the dimensions of each frame. When the user has set the dimensions,

the OK button is pushed, and the HTML code which appears in the
HTML Editing Window will generate a frame set of the required

dimensions.

The Horizontal Frame Set Window is shown below.

Frame A

Frame B

—Frame &

* Percentage I 23
= Pixels I o

i *

—Frame B

* Percentage I 73
= Pixels I o

i *

File:l

FiIe:I

Cancel |

The output of the above window would be:

<frameset rows="25%,75%">

<frame src="">
<frame src="">
</frameset>

Witango Studio Window Components

Vertical Frame Set

If the user selects the icon for Vertical Frame Set they are presented with
a Vertical Frame Set Window. This window allows the user to set the
dimensions of each frame. When the user has set the dimensions, the
OK button is pushed, and the HTML code which appears in the HTML
Editing Window will generate a frame set of the required dimensions.

The Vertical Frame Set Window is shown below.

¥ertical Frame X |

Frame A

Frame B

—Frame &

% Percentage I 23
" Pixels I o

ol

FiIe:I

—Frame B

% Percentage I 73
" Pixels I o

ol

FiIe:I

Cancel |

The output of the above window would be:

<frameset cols="25%,75%">

<frame src="">
<frame src="">
</frameset>

Font Settings

If the user selects the icon for Font Settings they are presented with a
Font Window. This window allows the user to set the font, size, color

Font:

Algerian
Antigue

Arial

Arial Black
Arial Marrow
Arial Rounded

-
=)

Text Color:

[3 I TR O L

Witango Studio Window Components

The Font Window is shown below.

Size:

=

Background Color:

Color

Basic colors:

and style settings for this font tag. The text and background color
selection will pop a color palette window when selected. When the user
has set the all the required font properties, the OK button is pushed, and
the HTML font tags which appears in the HTML Editing Window will have
attributes to match the users selections.

Style:

[T Strikethrought
™ SupScript

[SubScript

[Bigger

[~ Smaller

[~ Emphasis

[Stronger

[Citation

[Code

[Definition

[~ Keyboard

[Monospaced Tyefaced
[~ Sarmple

[~ “ariable

Cancel |

T .
M [O Y.
...
HEEEEEEE
N O

Custom colors:

N O I
U A

Define Custom Colars > |

o]

Cancel |

x|

Witango Studio Window Components

Working With
Actions

Heading Settings

If the user selects the icon for Heading they are presented with a Heading
Window. This window allows the user to select which heading tag is
required. Once the selection is made, the OK button is pushed, and the
HTML heading tags which appears in the HTML Editing Window will
reflect the users selection.

x

Select

Cancel |

The application file window shows the actions that you want Witango
Server to execute. Generally speaking, Witango Server executes actions
sequentially, from top to bottom, until it encounters a control action.
Control actions make decisions and cause execution to jump to another
action or action group.

Adding an
Action

Witango Studio Window Components

The following is an example of the application file window:

Unique action Actions and action
name. groups.

@l CDD ata.taf
Altributes

af
. Site_wéation]

/ Data Source | Comments

=L List_Recording
----- q Search_Recording @ CD Data Searches for the recording
----- q Search_Track @ CD Data Listz the tracks on the recording
: Dizplay_‘ariables
----- = Retum
[]--[Dizplay_Musicians Listz musicians on the recording
=L Count_fccess
----- q Get_Access @ CD Data
----- q Search m ﬁ] @ CD Data
----- &7 Update_sccess Count ﬁ] @ CD Data
1L Display_Last_10 | I Dizplay the last ten users
----- = End_Access Count |

%

Optional attributes Data source or Any additional
assigned to action. object for action. comments about
the action.

An action icon in the Action column indicates the type of action. Each
action must have a name that is unique in the application file.

An action can have attributes. Action attribute icons in the Attributes
column indicate which attributes are associated with the action on that
row.

Some actions require database operations. The Object/Data Source
column indicates which data source an action is associated with.

To add an action to an application file

Do one of the following:

* Drag an action icon from the Actions bar into the application file
window (the cursor changes to include crosshairs and the action icon
you are adding), and drop it where you want to add the action.

Witango Studio Window Components

Naming an
Action

Click an action icon, move the cursor into the application file

window (the cursor changes to crosshairs), and click where you want
to add the action.

| Attributes | Object / Dat... | Comments

In either method, a gray line indicates where the new action is to be
placed.

If the action has an editing window, it opens automatically.

Tip To prevent the action’s editing window from being opened

automatically, hold down the CTRL key while dragging the new action
into the document window.

Each action in an application file must have a unique name. Witango
Studio gives actions a unique name automatically.

The default name for an action is its action type. When you add an action
that already exists in the application file with its default name, Witango

appends the default name with a numeric starting at “|”; for example,
“Searchl”.

Tip To make your application files more readable, you should always
replace default action names with more meaningful ones.

To rename an action in an application file
I Select the action you want to rename.
2 Do one of the following:
* Click the name of the action.
¢ From the Edit menu, choose Rename.

Right-click the selected action and choose Rename from
the context-sensitive menu that appears.

Witango Studio Window Components

3 Type the new name.

Note Action names can contain only letters, numbers, and
underscores. No spaces, punctuation, or other characters are allowed.
Adding spaces automatically adds underscores.

When you rename an action, Witango automatically updates any Branch
actions in the same application file referring to the action. If you rename
an action that is the destination for branches from other application files,
the Branch actions in other application files are not updated.

Witango does N O T automatically update action results references for
renamed actions.

Deleting an To delete an action from an application file

Action I Select the action you want to delete.

2 Do one of the following:
¢ From the Edit menu, choose Delete.
ﬂ ¢ On the main toolbar, click the Delete icon.

¢ Press DELETE.

* Right-click and choose Delete from the context-sensitive
menu that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Tip You can bypass the confirmation dialog box by holding down the
Ctrl key when choosing Delete.

Editing an All of the actions—except Return, Group, and Break actions—have
Action associated attributes and parameters. You can set these parameters in the
action’s editing window.
To edit an action in an application file
* Double-click the action icon in the application file window.

The action’s editing window opens.

If the action is associated with a data source, the Data Sources
Workspace opens, listing the tables and columns for the data source. If
Witango Studio has not loaded the data source yet, it is loaded first.

Witango Studio Window Components

Moving an
Action

Copying an
Action

Witango executes the actions in an application file sequentially, from top
to bottom; however, you can use control actions to modify this sequence.

If you want the actions to be performed in a different order, you can
rearrange them. Move them to another location in the application file by
dragging them to the position you want.

To move an action to a new location

Do one of the following:

* Select the action you want to move, and drag the action to its new
position.

* Select the action, and cut and paste it using the edit commands.

Actions are pasted after the currently selected action, or at the end
of the file if no action is selected.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

When you move an action, Branch actions referring to it continue to
branch to the action, even though its position has changed.

You may want to create an action that performs a task similar to one
performed by an existing action in another application file. Instead of
having to recreate the action and specify all its parameters again, Witango
Studio allows you to duplicate an action.

To copy an action in the same application file

Do one of the following:

* Select the action you want to copy, hold down the Cctrl key, and
drag the action to where you want the new action to appear.

* Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

The copied action is given a new, unique name, which you should change
to a more descriptive name.
To copy an action into another application file

Do one of the following:

Witango Studio Window Components

* Select the action you want to copy, and drag the action into another

application file.

B Example A.taf = =101
Action Altributes Object / Data Source | Comments
E}‘E Example &.taf *
LI Branch
..... . Branchl
..... mp Branch2
..... & Branch3
..... w Branchd | T Example B_taf = =L
----- InvalidFunction [Ackion Attributes | Object / Data Source | Comments
..... “ Retun B Example B.taf *
S ple B.Lal
..... Form Eranch
..... ‘= Retumnl Irvealid_Function
..... q Search_for_it EBranchl
..... ‘= Retumn?2 Retum
..... Q Detall Results

* Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

Be careful when copying database actions. For an action to work
correctly in the new application file, the data source must be the same as

in the original one.

Alternatively, you may assign another data source to the action in the new
application file.

Witango Studio Window Components

Context- When you right-click an action icon in the application file window, or
Y g PP
Sensitive anywhere in the file window with an action selected, a context-sensitive
Action Menu menu of action commands appears:
Open
Cut
Copy
Paste
Delete

Fename
Set Data Source

Fiesultz HTML
Mo Results HTML
Ermor HTML

Push

[rebua Application File
SOL Query

Group
Wharoup

Froperties

* Open opens the action editing window for the selected action.

* Cut, Copy, Paste and Delete perform the standard window
editing functions.

* Rename allows you to edit the current name of the action.
* Set Data Source allows you to set the data source for one or
more actions.

* Results HTML, No Results HTML, Error HTML, and Push are
attributes you can assign to actions which support them.

* Debug File is an attribute of the entire application file or Witango
class file.

* SQL Query opens the SQL Query window so you can perform
SQL queries from within Witango.

* Group and Ungroup allows you to group related actions and also
to ungroup them.

* Properties displays the action properties window.

Action When you select an action and choose Properties from either the
Properties View menu or the context-sensitive menu, the Action Properties
window for that action appears.

Assigning
Attributes to
Actions

Witango Studio Window Components

This window displays current information about the selected action and
the assigned data source.

General | Development DS I Deployment DS I

Mame: Search_for_it
Type: Search

LComments:

Search for widget type

Using this window, you can change some of the action’s properties.

In addition to the parameters specific to each action type, which are
edited using the action’s editing window, actions can also have the
following attributes:

Results HTML applies to all actions, except control actions (other
than Branch). After the action is executed, this HTML is added to the
results returned.

No Results HTML applies only to Search, Direct DBMS, Script,
File, and External actions. When the action does not return data, this
HTML is returned instead of the Results HTML.

Error HTML applies to most action types except certain control
actions (including Return and Break). In the event of an error in the
action’s execution, this HTML is returned immediately.

Push causes the Results HTML accumulated so far to be sent back
to the Web browser when the action to which it is assigned finishes
executing. Execution then continues normally.

Debug File lets you see useful information about your application
file or Witango class file execution in your Web browser application.
This attribute applies to the entire application file, not a particular
action. For more information, see Debugging Files on page 63.

To assign Results HTML, No Results HTML, Error HTML, or Push

Do one of the following:

Select the action in the application file window, then select an
attribute from the Attributes menu or from the Attributes bar.

Witango Studio Window Components

* Right-click the action in the application file window and choose the
attribute that applies to the selected action from the context-
sensitive menu that appears.

i[NP
Besultz HTHL... Chil+R J
Mo Results HTML... Chrl+ll
A check mark Enor HTML... ChlE
appears beside Push Push
and Debug File —
when they are Debug File Chil+D

selected. The HTML action attributes in the Attributes

menu have a corresponding button on the
Attributes bar.

Action attribute icons appear beside the action name in the Attributes
column of the application file window..

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.

Results HTML

Many actions in an application file can have HTML associated with them.
This HTML is stored in the Results HTML attribute. If Results HTML
contains any text, the Results HTML icon appears in the attributes
column of the application file window; otherwise, it does not.

As Witango Server executes the actions in a file, the Results HTML
associated with each is accumulated. When execution of the file is
complete, the HTML is returned.

Results HTML can also contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is interpreted by the
user’s Web browser and returned as is (via the Web server), Witango
Server first substitutes meta tags with other values.

The <@COLUMN> meta tag causes a database value to be placed in the
HTML. There are many others, including tags for referencing form field
and search argument values, and conditional tags for displaying HTML
only if the result of a given comparison is true.

To create or edit the Results HTML for an action

I Select the action in the application file window.

2 Do one of the following:

Witango Studio Window Components

¢ From the Attributes menu, choose Results HTML.
¢ Click the Results HTML icon on the Attributes bar.

* Right-click the action and choose Results HTML from the
context-sensitive menu that appears.

The Results HTML editing window appears:

[E CDData.taf : RecordList : HTML [_ O[]

LrC!DDCTYPE HTML PUBLIC "-//W3iC//DTD HTML 3.2//EN"> =l
<HTML>
<HEAD

<TITLE>Matching Fecords</TITLE>
< /HELD>

<BODT>

<F=
<[IF "<ETOTALROWS: = -17>
There are <Ex<ENUMROWSE:< /B> matching records.
<BELZEIF "<@TOTALROWS: '= 17
There are <ETOTALROWS>< /B> matching recorda.
<BIF "<EMAXNROWS: > 17
<P:Displaying matches
<Br<@STARTROW:< /B>
through
<ECALC "<@ITARTROW: + <ENUMROWS: - 17=.
</BIF>
<BEL3E>
There is <E>=1 matching record. _ILI
3

| |
Results |Tﬂ Mo Hesultsl 3 Enorl

3 Type the Results HTML into the HTML text area. The text can
include any valid HTMLI or Witango meta tags.

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.

You can add column values (for Search actions only) and any HTML
snippets you have defined to the Results HTML editing window from the
Snippets Workspace. As well, you can add from the list of standard
Witango snippets that allow for easy entry of many of the meta tags.

To include any of these items in your Results HTML, select the snippet
and either drag it, or copy and paste it into the desired location in your
text.

For HTML snippets that have placeholders for the current selection,
select the text and drag the snippet over the selected text. The snippet is

I Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible. If you use other content types, you are responsible for setting the

HTTP header appropriately.

Witango Studio Window Components

wrapped around the selection. For example, “Tit1le” becomes
“<H1>Title</H1>".

You can also easily add many of the common Witango meta tags.

To add a meta tag
I Click the editing area where you want to add a meta tag.
2 Do one of the following:

* From the Edit menu, choose Insert Meta Tag.

* Right-click, and choose Insert Meta Tag from the context-
sensitive menu that appears.

The Insert Meta Tag dialog box appears. For information on using the
Insert Meta Tag dialog box.

No Results HTML

E You can associate No Results HTML text with Search, Direct DBMS,
Script, and External actions. If the action execution does not return any
data, this text is added to the application file’s accumulated HTML instead
of the Results HTML. This is useful when you want to display a special
message to users when their queries do not return data.

Note If both Results HTML and No Results HTML appear as
attributes, Witango accumulates one or the other, but never both.

After Witango Server processes the No Results HTML, execution of the
application file continues normally to the next action.

No Results HTML can contain any of the Witango meta tags used in
Results HTML, except for those related to displaying result data items,
such as <@ROWS>, <@COLUMN >, and <@COL>.

To create or edit the No Results HTML for an action

I Select the appropriate action in the application file window (Search,
Direct DBMS, Script, and External actions).

2 Do one of the following:

¢ From the Attributes menu, select No Results HTML.
¢ Click the No Results HTML icon on the Attributes bar.

* Right-click the action and choose No Results HTML from
the context-sensitive menu that appears.

The No Results HTML editing window appears:

Witango Studio Window Components

3 Type the No Results HTML into the HTML text area. The text can
include any valid HTML or Witango meta tags.

Error HTML

Error HTML allows you to specify your own error messages in HTML
format, instead of having Witango Server produce them. The other
alternative is to modify the Error . htx file.

You can associate Error HTML with most actions. If an action fails for any
reason, execution ends and the Error HTML for the action is returned
immediately to the user.

Error HTML can contain all the Witango meta tags used in Results HTML,
except for those related to displaying result data items.

There are also special Witango meta tags for displaying error information.

If no Error HTML has been assigned to an action and an error occurs in
that action, Witango returns a default error message using the following
HTML:

<h3>Error</h3>

An error occurred while processing your request:<p>
<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1l><brs>
<@ifequal <@ERROR PART=NUMBER2> 0>
<@else>
Secondary Error Number: <@ERROR
PART=NUMBER2 >

</@ifequal><p>
<i>
<@ERROR PART=MESSAGEl>

<@ifequal @ERROR PART=MESSAGE2> "'">
<@else>
@ERROR PART=MESSAGE2>

</@ifequal><p>
</i>
</@ERRORS >

To create or edit the Error HTML for an action
I Select the action in the application file window.

2 Do one of the following:

¢ From the Attributes menu, select Error HTML.

Witango Studio Window Components

¢ Click the Error HTML icon on the Attributes bar.

* Right-click the action and choose Error HTML from
thecontext-sensitive menu that appears.

The Error HTML editing window appears:

3 Type the Error HTML into the HTML text area. The text can include
any valid HTML or Witango meta tags.

To specify your own custom default error message
I Create a text file containing the desired HTML and meta tags.
2 Name the file error.htx.

3 Save or copy it to the following directory at WITANGO_PATH/
MiscFiles/.

If Witango Server finds this file, it processes and returns it instead of the
built-in default Error HTML. Error HTML assigned to an action is used if
it exists.

The name and location of this file is determined by the
defaultErrorFile configuration variable, which can be modified using
the Administration Application config.taf. The values when Witango
is first started are given above. If you modify the path or name of the
error file, place the file in the directory you specified instead.

Push

The Push attribute causes the Results HTML accumulated so far to be
sent back to the Web browser, when the action to which the Push
attribute is assigned finishes executing. Execution then continues.

Normally, Witango waits until all execution is finished before returning
the results at one time. If you want the user to see some of the results
while Witango continues with the rest of the execution, set the Push
attribute of the action.

Note Some Web browsers may not display table HTML immediately if
you use the Push attribute to return an unclosed table.

Debug File

For more information, see Debugging Files on page 63.

Witango Studio Window Components

Adding HTML The Results action adds HTML to an application file’s results.

(Results Action) When you drag the Results action icon from the Actions bar into an
| application file, a blank HTML editing window appears.

X E Example.taf : Results : HTML [_ (O] %]
Results Action

Results | 3 E”U'I

Results HTML can contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is returned as is to
your Web browser (via the Web server), any meta tags are first
substituted with other values by Witango Server. You can also associate
Error HTML with the Results action.

Presentation Uses of the Presentation Action

Action The main benefit of using the Presentation action is to facilitate the

separation of the business logic from the presentation logic when you
develop your Witango application.

Business logic involves the use of Witango actions and meta tags to access
the appropriate Web pages and data sources. Presentation logic involves
the use of HTML to display the Web pages.

Because developing the business logic and the presentation logic generally
require different skill sets, setting up independent teams to work on these
two areas can improve the effectiveness and efficiency of the project.
Furthermore, changing the business logic—for example, accessing a
different data source—often does not affect the presentation logic, or
vice versa. Keeping the two areas separate simplifies the maintenance of
your project.

A Presentation action in your application file points to an HTML page. It is
the link between the business logic and the presentation logic of your

project.

Witango Studio Window Components

The Document Object Model (DOM) allows you to create your own
complex data structures in XML, and return them into presentation
pages.

How the Presentation Action Works

The Presentation action allows you to include individual presentation pages
in your Witango application file. The presentation page—the file the
Presentation action points to—can contain HTML, Witango meta tags, or
any other sort of document markup. When Witango Server executes
your application file and arrives at a Presentation action, it processes the
presentation page associated with the Presentation action.

The Presentation action performs an operation similar to that of including
an HTML or other file in a Witango application file using the
<@INCLUDE> meta tag.

The file referenced by the Presentation action is part of the current
project, and can be opened and edited by double-clicking on the file icon
within the Presentation Pages folder in the Project section of the
Workspace.

You can also designate files in your project as presentation pages, and
manage files within the Presentation Pages folder.

Setting Up a Presentation Action

When you drag the Presentation action from the Actions bar into an
application file, the Presentation dialog box appears:

&= Example.taf : Presentation M= 3

FPresentation Page:

Iindex.html j Browse. .. |

Fath to target page on server

& Same as source page

' Other: I

Do one of the following:

* In the Presentation Page field, enter the name of the presentation
page, or if you have previously specified a presentation page in the
current Project, choose a file name from the drop-down menu.

* Click Browse to navigate to the location of the presentation page.
If the file is not in your current project, you are prompted to add it to the

project, where it appears in the Presentation Pages folder and in the
Files folder of the Project tab of the Workspace.

Witango Studio Window Components

In the Path to target page on server area, select Same as source
page if the presentation page is located in the same folder as the current
application file, or select Other.

If you choose Other, you specify the path to the presentation page. This
value is a slash-separated path from the Web server document root, and
may include literal text, meta tags, or both. To insert a meta tag in this
field, right-click in the text field and choose Insert Meta Tag... from the
context-sensitive menu that appears.

For example, you could enter the following into the text field:
Witango/MyDirectory/

This example includes the specified file residing in the MyDirectory
folder within the Witango folder in the Web server document root
folder.

<@APPFILEPATH>

This example includes the specified file residing in the same folder as the
currently-executing application file.

Using Witango Application Files

Using Witango Application Files

XML Format

For details about the XML
file format, see
www.w3.org/xml/.

A Witango application file (or simply, application file) provides a powerful
and flexible means for you to construct dynamic applications that run on
your Web server and that interact with databases, other applications, and
users running Web browsers. They are like programs or scripts in that
they determine what operations Witango Server performs. Witango
Server provides the brains, but it does nothing without the specific
instructions you provide in the form of application files.

You add actions to an application file. When Witango Server runs the
application file, it generates the HTML that is used by the Web browser
to display the forms required to allow interaction with databases and
other applications.

You can use the Search Builder and New Record Builder to have Witango
Studio build search and insert record applications for you.

An application file is a file containing a series of Witango actions that,
when executed by Witango Server, generates HTML and controls
interaction with databases and other applications.

(You can also create Witango class files, which are reusable software
components that you can incorporate in Witango application files.

Witango application files and Witango class files are stored in an
Extensible Markup Language (XML) format, which means they are
structured text based on a specific document type definition. This is a
substantial change from the binary formats of files in previous versions of
Witango. However, the file suffixes for Witango have not changed;
Witango application files have the . taf suffix.

What is XML?

XML is a text-based and widely-endorsed standard markup language,
similar to HTML, but much more flexible and robust. It is a subset of
SGML (Standard Generalized Markup Language), an ISO standard. Its goal
is to enable generic SGML (that is, structured documents) to be served,
received, and processed on the VWeb in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.

Witango XML file formats give Witango users the following advantages:

¢ XML files are human-readable.

For more information
about document type
definitions and how to read
them, see www.oasis-
open.org/cover/
sgml-xml.html.

Application File
Window

Using Witango Application Files

* Text-processing tools can be used on Witango application files to
perform file differences, complex searches involving regular
expressions, and so on.

* Files can be stored more efficiently in source code control systems.

* The Witango XML file format is now public and exactly specified, so
other applications can create Witango application files and Witango
class files.

SGML and XML specifications require a document type definition (DTD).
The DTD defines the structure of the various elements that make up an
XML document. It ensures that all applications that read and write the
XML document do so consistently way. In effect, it is the schema of the
document.

The Witango DTD for Witango application files and Witango class files is
specified by the file Witango.dtd. This file is located in the XML folder
inside the folder where Witango is installed.

In Witango Studio, whenever you open an application file, the Witango
application file window (or simply, application file window) shows you the
following information:

* action icons and names, including those for builders, in the order
Witango Server executes them (unless a control action redirects the
flow of the execution)

* attributes assigned to an action, if any
* data sources for all database actions

* any associated comments.

Using Witango Application Files

The application file window also includes icons for attributes, objects, and
data sources. The following diagram shows a typical application file
window and its components:

Icons of the attributes
Collapsible/expandable assigned to an action.

view showing all actions
. > The data source or
and builders in the named) -
/ object for the action

application file. / to be performed on.

| |

=10l%]
—]

Object/ Data 5... | Comments

Action Aftributes Details

=} CAProgram Files} AT

=7 i User_Level_To. (<@VAR NAME=ULevel SCOPE=.
El .

Comments for this action
@ Abort

=2 IfForm

Farm
[=}-]2? Elselfinsent
2 IiMissingRequ

('<@ARG _function>'='nrform") or...

[<@ARG _functian>'='insert)
(LEN{¢@ARG login_id>'}) or (ILE

-B MissingFie B
-+ ElseDalnsert
L Insert siteusers i Music
InsertResp..
=-1* ElseErar
InvalidFunction
< Return

Actions { Browser f

L I_'—l
Detail column showing further details about Comments associated

the action. (This can be the test used in the with the action.
IF_THEN_ELSE statement, the table which is
subject to the insert statement etc).

Unsaved Whenever you change a Witango application file or class file, and the file
Changes has not been saved, an asterisk appears beside the file name. This asterisk
Indicator is called a dirty (unsaved changes) indicator..

Dirty indicator

H Cexample.taf *

=lax||

Once you save the application file, this indicator disappears.

Creating an
Application File

' * From the File menu, choose New, then Witango Application

New Witango File.
Application File » Click the New Witango Application File icon on the toolbar.

To create a new application file

Do one of the following:

Using Witango Application Files

An untitled application file opens:

=1a]x]

Action Details Object/ Data Source Comments

. Untitled2

4] |
Actions |, Browser f

Saving an To save an application file
Application File |

From the File menu, choose Save or click the Save icon on the
toolbar.

If the application file has never been saved, the Save As dialog box
appears.

If it has been saved previously, Witango Studio saves it using the
existing name and location.

& Save changes to C:ATemphE xample.taf?

Mo | Cancel |

2 Navigate to the desired location for the application file.

For Witango Server to execute the application file, it must be located
in or below the Web server’s document root folder.

3 Name the Witango application file.

Witango application file names end in . taf. This is the standard
suffix used to identify files that Witango Server should execute. The
.taf extension is added if no extension is specified.

4 Click Save.

Tip To save all open Witango application and text files with their

ﬁ current name and location, choose Save all from the File menu, or
click the Save All icon on the Witango Toolbar. The Save As dialog box
Save Al appears for new, unnamed files.

Using Witango Application Files

Saving a
Witango
Application File
or Witango
Class File as Run-
Only

Run-only Witango application files and Witango class files can be
executed by Witango Server, but they cannot be opened by Witango
Studio.

Saving an application file or Witango class file as run-only allows you to
create and distribute packaged Witango solutions while preventing users
from editing the actual application file.

Run-only application files and Witango class files are executed and
referenced by Witango Server in the same way as editable files. Saving an
application file or Witango class file as run-only does not make its
execution any faster.

CautionYou cannot edit a run-only copy of an application file or
Witango class file, and there is no way to make a run-only file editable.
Make sure you keep an editable copy of any run-only file.

To make an application file or Witango class file run-only

I With an application file open in Witango Studio, choose Save As
Run-Only from the File menu.

The Save As dialog box appears.

You are saving a copy of your Witango application file or Witango
class file as run-only. Your original application file or Witango class
file is not changed.

2 Name the run-only Witango application file or Witango class file.

Tip You may want to give the run-only versions of your files a special
name to identify their type, such as CustomersRO. taf or
CustomerRO. tcf, where “RO” represents run-only.

3 Click Save.

A run-only version of the application file or Witango class file is saved
in the location you specified.

Note If you are distributing your Witango solution, your customers
need to purchase Witango Server. Alternatively, you can license
Witango Server for distribution with your solution. Contact
sales@witango.com for more information.

Executing
Application
Files

Using Witango Application Files

Application files are executed in the same way HTML files are viewed—by
specifying the name of the file in 2 URL. For example:

http://localhost/shop/additem.taf

This example executes an application file called additem. taf, located in
the root directory of your local webserver. If you are using the Witango
CGil, you may need to include the path to and name of the Witango CGil

in your URL, for example:

http://www.example.com/Witango-bin/wcgi.exe/
witango/additem.taf

You can pass parameters to the application file by using search arguments.
These are name-value pairs appearing after a question mark in the URL.

For example:
http://www.example.com/shop/additem.taf?item num=80
In this example, the item num search argument has a value of “80”.

There are other ways of passing values to Witango application files. Form
fields (post arguments) and cookies are two examples.

Debugging Files

Debugging Files

Setting the debug mode in Witango Studio lets you see useful information
about your application file or Witango class file execution in your Web
browser application.

Turning Debug To set debug mode
On

I Open the application file or Witango class file you want debug
information on.

2 Do one of the following:

* From the Attributes menu, select Debug File.

Besultz HTHL... Chil+R
Mo Results HTML... Chrl+ll
Ermor HTHL... Chil+E
Push

Crl+D

A check mark beside the command indicates the debug mode is
on.

* Right-click the application file window, and select Debug
File from the context-sensitive menu that appears:

Open

Cut
Copy
Paste
Delete

Fename

Set Data Source

Fiesultz HTML
Mo Results HTML
Ermor HTML

SOL Query

Group
Wharoup

Froperties

* (Witango application files only): Select the application file
icon. From theView menu, choose Properties. Then

¥ Debug Mode

Debugging Files

enable Debug Mode in the Application File Properties
dialog box that appears:

General | Eommentsl Dependenciesl Advancedl

File M ame: Example. taf

Last Modified: 07/08/33 15:30:50 ™ Diebug Mode
Tile: |

Author: I Wergion: I

* Check the Debug Checkbox.

A debug icon appears beside the application file icon when Debug File is
checked.

Tl C:\Program Files\.\htdocs\Untitled2.taf

Action

Debu
=@ Untitiede tef . g
O, Search products & music icon

Details | Object/ Data Source Comments

Atributes
E

Viewing Debug When you execute the application file, debugging information appears at
the bottom of the results returned. The debugging information shows
information such as:

* arguments passed in (search and post arguments)
* theactions executed

* values of variables

* SQL generated by database actions

* warnings (such as references to missing arguments).

The debug feature is extremely helpful in tracking the flow through a
.taf when the output of the file is not what the programmer is
expecting.

Debugging Files

G O Yen Fpode [ok e

The User ID andfor Password entered are incorrect.

Please try again,
[Application File]

[Create Object Action]
[guery]

[Thread]
[Thread]

[Thread]
[Thread)

[1f Action]

[ElseIf Action]
[Call Methed Action]
[guery]

[Application File]
[search Action]
[guery]

[ActionResults]
[Changed Vazs]
[Changed vars]

[Applicaticn File]
[Results Action]
[If Actien])
[Results Action]
[Return Action]
[usex§ Vars)

[23] 5TART /musicstore/loginitcf.taf Witango Server 3
_function=lists_UserReference=8FFE1SEALG93IBIFEIEFDEAIC login_id=username_sentered
passwd=password_entered Total Length of Postargs: 49

(23] Create_authentication

(23] {object creation of cbject TCF://authentication.tcf?
Class=authentication:Local§fred

[24] Looking for class authentication in fmusicstore/authentication.tcf
[24) Getting netwerk file C:\Frogram Files\Apache Group\Apachel
\htdocs\muzicatore\authentication.tef
[25] Got file
[30] Hetwork file loaded: C:\Frogram Files\Apache Group\Apachel
\htdocs\muzicstore\authentication.tcf
[31] IfForn
[31) ElseIfList
[31] Authentication
[81] [Invocation of method "Authentication” of object "TCF://authentication.tcf?
Class=authentication:RequestSfred® with parameters [login_id=username_entered,
passwdspassword_entered, firstnames, lastnemes, ulevels, validlogine]
[52] /musicstore/authentication.tcf
(52) RecordList
[636] SELECT =l.siteusers_key,sl.ulevel,sl.firstnane,sl.lascnane FROM siteuzers sl
WHERE (21.login_id="username_entered” AND =l.passwd="password entered’}
[1030]
[1030] methodjvalidlogin=0:
[1031] methodfvalidlogi
usersvalidlogin=0;
[1031] /musicstore/loginstef.tal
[1031] Resultsl
[1031) If_Invalid_Login [
[1032] Invalid_Login_Page
[1032] Retucn
[1032)] variableTinecut=30; ulevel

i user§firstname=; user§lastname=; userfulevels=;

lastnome=; firstnome=: validlogin=0;

CHAPTER THREE

Using Projects and Source
Control

The Basics of Witango Projects and Managing Files Using
Source Control

A project is a logical grouping of folders and files. Projects allow you to
organize your work in terms of like-sets of files, including application,
HTML, and text files—in fact, for any type of file. Projects exist in
Witango Studio only and do not interact with Witango Server.

Witango Studio can conveniently access popular source control systems,
such as Microsoft® Visual SourceSafeTM, INTERSOLV® PVCS®, and

StarBase® Versions®. You can manage all your files from the Project
Workspace, without having to launch your source control system
separately.

This chapter covers the following topics:
* Working with Witango projects
* adding and removing project files and folders
* project dependencies
* opening Witango 3.x projects
* deploying and downloading Witango projects via FTP
» application-specific Witango (AST) signatures for projects
* Using source control in Witango
» adding and removing projects and files to source control
* checking files in and out

* launching your source control system.

Basics of Witango Projects

Basics of Witango Projects

For more information, see
“Working With
Presentation Pages” on
page 80

For more information, see
“Working With Project
Data Sources” on page 82

For more information, see
“Working With Project
Objects” on page 82

When you create a new project or open an existing project, the Project
Workspace (Project section of the Workspace) displays the project name
and the folders included in the project. The project name is the file name
you assigned to the project prefixed to the word “Project”.

Note To see the Project Workspace tab you must first open or create
a Project.

The Project Workspace allows you to work with all files, data sources,
objects, and resources associated with your Witango project without
having to switch tabs in the Workspace.

x|

Example Project

(& Files

Fresentation Pages
(8 Data Sources

[#] Objects

(@ Sites

T @[alalE]

The following five folders are always displayed at the root level in the
Project Workspace and cannot be deleted:

¢ Files

This folder contains all the files referenced in your project. The files
in this folder may be organized into a hierarchy of subfolders.

* Presentation Pages

This folder contains all the files in your project that you want to
designate as presentation pages. Presentation pages are HTML,
graphic, or text files available for use with Presentation actions. All
the files listed under this folder are also listed under the Files folder.

* Data Sources
This folder lists the data sources used in your project.
* Objects

This folder lists the objects used in your project.

For more information, see
“Working With Project
FTP Sites” on page 82

Understanding
the Project File

Using the
Project
Workspace

For more information on
setting Witango Studio
preferences, see Setting
Preferences on page 153.

For more information on
files under source control,
see Using Source Control
in Witango on page 97 and
Modifying a File Under
Source Control on

page 109.

Basics of Witango Projects

¢ Sites

This folder lists the FTP (file transfer protocol) sites associated with
the current project for the deployment of project files.

The project file contains information on your project, including a listing of
the project’s folders and files (in the Files folder).

The purpose of the project file is to help you manage your project. It
contains pointers to all the folders and files that you include in the
project; it does not contain the actual folders and files.

You perform operations on the project file separately from the folders
and files it contains; that is, deleting a file from the project removes it
from the project file, but does not actually delete the file.

Note Path names of files stored in the project file are stored relative to
the project file’s location; that is, if you move the project file, the files
within it will not be found.

Opening Files in the Project Workspace

You can open any file appearing in the Project Workspace simply by
double-clicking the file name.

The file automatically opens and displays its contents in the application
defined by its Windows suffix mapping. Witango application files
automatically open in Witango Studio; if you set Witango Studio as the
default Studio in the Preferences dialog box, HTML and text files also
open in Witango Studio.

If you try to open an application file that is currently under source control
and not checked out, Witango Studio prompts you to check it out first.

Basics of Witango Projects

Using Context-sensitive Menus

You can also conveniently execute certain project commands directly in
the Workspace. Right-clicking a project, folder, or file displays a menu of
project, folder, and file commands and Workspace window commands.

Project Folder File
CONTROL+clicking the project coONTROL+clicking the CONTROL+*clicking a file
name or icon displays a menu of folder displays a menu of displays a menu of
commands commands commands
[—
Add Files... #dd Files ko Folder... ‘' Open
Remnyve Remove Rernove
Close Mew Folder j Mew Folder
Maodify Project AST Signature... REenanme Benarnme
Iy Folder
Rename Add St Add Site. ..
Browse Sike Erowse Site
fdd Site. ..
Browse Site v Allow Docking v Allow Docking
plE) Hide
v Allow Docking
Hide: Fliepeilizs Froperties
Properties

Note Source control commands only appear in Witango Studio if you
have a supported source control system installed on your machine.

Moving Files and Folders in the Project Workspace

You can move folders and files within the Project Workspace by dragging
them to a new location within the Files folder.

Dragging a file to a folder adds that file to the target folder. Dragging a
folder to another folder makes it—and any files in it—a subfolder of the
target folder.

Creating a New To create a new project

Project I Do one of the following:

Basics of Witango Projects

* From the Project menu, choose New.

Project Window Help

' Mew. ..
Open...
Close

Build »

Source Conkrol 4

Mdew Folder:
Add Files...
Remove

Modify Project AST Signature. .,

add Site, ..
[ep|ony

e o T, ..
Downlnad
Dawrload|From...
Browwse Sike

* Click New Project on the main toolbar.

New Project

The Create a Project File dialog box appears:

Create a Project File _?Iél

~| e ®E e B

Sawve i

}=ALocal Disk (C:)
@Compact Disc (D)

File name: IPrDjecﬂ tep
Sawve as ype: IWitangD Studio Projects (* tep) LI Cancel |

2 Specify a project file name and location.

Project file names end in . tep. This is the standard extension
used to identify the file that lists the folders and files forming a
project.

3 Click Save.

The project name appears in the Project Workspace.

Basics of Witango Projects

Adding a Folder
to a Project

You can add a new folder to the Files folder or Presentation Pages
folder of a project. You can also add an existing folder to the Files folder.
You cannot add a folder to the other Project folders.

To add a new folder to the Files folder or Presentation Pages folder
I Select the Files folder or Presentation Pages folder.
2 Do one of the following:

* From the Project menu, choose New Folder.

* Right-click the Files or Presentation Pages folder of the
project, and choose New Folder from the context-sensitive
menu that appears.

When you add a new folder, the name New Folder appears
under the Presentation Pages or Files folder. Witango may
add a suffix to the default name (for example, New Folder 2)
to make the name unique. This default name is automatically
selected for easy renaming. A folder name must be unique at the
level you are adding the folder.

=l

Example Project

Folder 1
Fresentation Pages
(81 Data Sources
[Ohjects
& Sites

Bl DGR

To add an existing folder to the Files folder

* From the Windows Explorer, drag an existing folder into the

Files folder or any of its subfolders.

Note You cannot drag a folder from the Windows Explorer into the
Presentation Pages folder or any of its subfolders.

All the subfolders and files within this existing folder are added to the
project at the specified location.

A folder name must be unique at the level you are adding the folder;
rename a folder if necessary.

Adding Files to
a Project

For more information, see
“Working With
Presentation Pages” on
page 80

For more information on
setting source control
preferences, see Source
Control on page 159.

Basics of Witango Projects

To rename a project folder
Do one of the following:

* Click the name of the folder; click the name again.

* Right-click the folder icon or name and choose Rename from the
context-sensitive menu that appears.

You can add files to the Files folder from the Windows Explorer. You
cannot add a file to the Files folder if that filename already exists
somewhere within the Files folder; rename files if necessary.

You cannot add files to the Presentation Pages folder from the
Windows Explorer; however, you can designate certain files in the Files
folder as presentation pages.

Filenames appear alphabetically in the Files folder. The order of
application files in this folder has no bearing on the order that Witango
Server executes them.

If you checked the Prompt to add files when inserted into a
project option in Witango Studio’s source control preferences, you are
prompted to add the files to source control. Click Yes to add the files, or
click No to cancel.

To add files to the Files folder or its subfolder
I Select the Files folder or one of its subfolders.
2 Do one of the following:

* From the Project menu, choose Add Files.... Go to step 3.

* Right-click the File folder or its subfolder, and choose Add
Files to Folder... from the context-sensitive menu that
appears. Go to step 3.

* From the Windows Explorer, drag one or more files into the
Files folder or its subfolder. Go to step 4.

3 The Add Files into Project dialog box appears. The types of file
selection supported include the following:

Type File Extension

Witango Application Files ~ *.taf

Witango Class Files *.tef

Witango Application and *taf, *.qry
Query Files

Text Files *.txt, *.html, *.xml, *.dtd, *.inc, *.java

Basics of Witango Projects

Type File Extension
Graphics Files *.gif, *.jpg
All Files **

Select the files you want to add to the project and click Open.

4 The added files appear in the Files folder or its subfolder.

Removing Files You can remove files and folders from the Files folder. When you remove
and Folders a folder, you remove it along with all its subfolders and files.

From a Project Removing a file from a project does not delete the file. The file remains
intact so you can use it again or add it to another project.
To remove files and folders from a project
I Select the files or folder you want to remove.
2 Do one of the following:

* From the Project menu, choose Remove.

¢ Click the Delete icon on the Toolbar.

* Press DELETE.

* Right-click the file or folder, and choose Remove from the

context-sensitive menu that appears.

A message appears, asking you to confirm that you want to
remove the selected item(s).

3 Click Yes.
Opening and To open an existing project
CIo§mg a I From the Project menu, choose Open.
Project

Only one project can be open at a time. If another project is already
open, Witango closes it and then opens the selected project. Any
changes that you made to the project being closed are automatically
saved.

When you open a project, the last view state is restored; that is,
folders appear expanded or collapsed as they did previously.

To close an open project

I From the Project menu, choose Close.

Basics of Witango Projects

Any changes you make to an open project are automatically saved as
you make them.

Editing HTML In addition to Witango application files and Witango class files, a project
and Text Files file can include any other type of file. For HTML and text files, Witango
has built-in editing capabilities. (See HTML Editing Window on page 6.)

When you open any file included in a project that has a Witango
extension, Witango’s HTML editing window opens (if you check the
Open text files in projects using Witango Studio option in
Witango Studio’s source control preferences). Otherwise, Witango
launches the Opens with application you have specified in the Windows
Explorer for that file type.

If a project is open when you save an HTML or text file in Witango, you
are automatically asked if you want to add the file to the current project.
Click Yes to add the file to the project root or No to cancel.

Finding and Replacing Text in Projects

For more information, see ~ One of the powerful editing features of Witango is its ability to find and

Ei:ii:ggea;g Replacing Text - Laplace character strings in all filess—Witango application files, Witango
class files, HTML, and text—of a project. The project must be open for
the find-and-replace operation to take place in the applicable files of the
project; all non-text files are ignored. If Witango finds the specified text
string, it automatically opens an editing window showing the
corresponding file or HTML attribute for an application file.

Additional Features of Witango Projects

Additional Features of Witango Projects

Working With Dependencies are those data sources and objects that are used or
Project referenced by Witango application files and Witango class files in the
Dependencies

project. Witango Studio shows the data source and object dependencies

of your project, warns you of unresolved dependencies (if enabled), and
helps you resolve them.

To enable unresolved dependency notification

I From the Edit menu, choose Preferences.

2 Select the General tab and check Warn me about unresolved
data sources and objects.

When Witango Studio detects an unresolved dependency (for example,
when Witango Studio tries to expand an unresolved item or open an

action that uses an unresolved item for the first time), the following dialog
box appears:

Unresolved Dependencies [%]

The following dependencies could not be resolved.

Editar can help you rezolve these dependencies when pou
attempt to uge them.

-2 Objects

i1 DefaultClass
(B Data Sources

An unresolved dependency has a grayed-out icon. Click OK to close the
Unresolved Dependencies dialog box.

To resolve a dependency

I In the Project Workspace, right-click the unresolved item and
choose Resource Dependency... from the context-sensitive menu
that appears.

2 Do one of the following:

For a data source, Witango prompts you to resolve the
dependency. Clicking Yes opens the Create New Data Source
dialog box for the type of data source requiring resolution.

Working With
Application
Files

Additional Features of Witango Projects

* For aJavaBean or Witango class file, Witango prompts you to
locate the object. Clicking Yes opens a File Open dialog box.

Navigate to the unresolved item and click Open.

* For an unresolved COM object, Witango prompts you to
register the object. Clicking Yes opens a File Open dialog box.
Navigate to the file that represents the COM object (typically
witha .d11, .exe, or .ocx extension), and click Open. Once
the DLL is selected, Witango Studio sends a command to the

server responsible for that object to register it.

The Files folder displays all the files used or referenced by your project.
You can organize files by creating new folders and moving files to
appropriate folders within the Files folder.

Application File Properties

The Application File Properties dialog box allows you to view information
about a selected application file. The Application File Properties dialog
box displays four tabs for a Witango application file in a project.

General. This section displays the name of the application file and last
modified date. A check box allows you to select or deselect Debug

mode. Enter Title, Author, and Version information in the

appropriate fields.

Application File Properties x|

omments I Dependencies I Advanced I

testD efaultClass. taf

File: Mame:

Last Modified: 06/03/33 19:11:26

™ Debug Mode

Title: |

Author: I Wergion: I

Comments. This section allows you to enter comments about the

application file in the text field.

Application File Properties x|

General Comments | Dependenciesl Advancedl

File: Mame: testD efaultClass. taf
LComments:

My comments. .. ;I

Additional Features of Witango Projects

* Dependencies. This section displays the data sources and objects
referenced by the application file. Unresolved dependencies are
identified by grayed-out icons. This section cannot be modified.

Application File Properties x|
Generall Comment: Advancedl
=2 Objects
% DefaultClass

i
(8] Data Sources

For more information, See * Advanced. This section allows you to enter an AST signature for
Modifying a Projects AST the application file in the AST Signature field.

Signature” on page 83.
Application File Properties x|

Generall Eommentsl Dependencies Advanced |

File: Mame: testD efaultClass. taf

AST Signature: IABCI

gCautionAn AST signature assigned to a project application file’s
advanced properties will be overwritten by changes to the project’s
AST signature, which is assigned through the Advanced section of the
Project Root Properties dialog box. For more information, See
“Project Root Properties” on page 84.

Working With The Presentation Pages folder separates presentation pages from

Presentation Witango application files, Witango class files and other HTML, graphic or

Pages text files in the project, allows page-based editing, and makes these files
available to the interface of the Presentation action.

When you assign files to this folder, they are designated as presentation
pages, but also remain listed in the Files folder or its subfolders.

For more information To mark an HTML or text file as a presentation page
about the Presentation
action, see Presentation Do one of the following:

Action on page 271.

Additional Features of Witango Projects

* Right-click on an HTML or text file in the Files folder of the Project
Workspace, and choose Properties from the context-sensitive
menu that appears. The File Properties dialog box appears.

File Properties x|

General |

File Mare: example html
File Size: 7 bvtes Last Modified: 08/06/03 21:54:43
File Location: CADocuments and Settings\SophiDesktopexample.html

Dpen With: CAPragram FileshwitangohDew Studia
b Bywitangostudio.exe

[~ Presentation Pane

Check the Presentation Page checkbox.

* Right-click on an HTML or text file within the Files folder of the
Project Workspace, and choose Presentation Page from the
context-sensitive menu that appears.

zlx

Example Project

=@ Files

D v Presentation Page
Fjr‘E’ Femove

"""" Mew Folder
(8 Dats Renarme
-] Ohijr
(@] Site Add|site, .,

Efawse Site

v Allow Diocking
Hide

Properties

A check mark appears next to Presentation Page.

Marking a file as a presentation page adds it to the Presentation Pages
folder.

* Select an HTML or text file in the Files folder of the Project
Workspace, and drag it to the Presentation Pages folder.

Additional Features of Witango Projects

Working With
Project Data
Sources

Working With
Project Objects

Working With
Project FTP
Sites

Application-
Specific
Witango (AST)
Signatures for
Projects

To remove a file from the Presentation Pages folder
Do one of the following:

* Right-click on a file in the Files folder of the Project Workspace, and
choose Properties from the context-sensitive menu that appears.

Uncheck the Presentation Page check box in the File Properties
dialog box that appears.

* Right-click on a file within the Files folder of the Project Workspace,
and deselect Presentation Page from the context-sensitive menu
that appears.

* Drag a file out of the Presentation Pages folder.

The Data Sources folder contains an alphabetically-sorted list of data
sources that are used in your project. Unresolved dependencies are
identified by grayed-out icons. This folder cannot be modified directly.

The Project Objects folder contains an alphabetically-sorted list of
objects that are used in your project. Unresolved dependencies are
identified by grayed-out icons. This folder cannot be modified directly.

The Sites folder lists the FTP (file transfer protocol) sites associated with
the current project for the deployment of project files. You associate an
FTP site with your project by defining a site in the Define Sites dialog box
and adding it to your project.

To view details about a particular site, right-click on a site icon in the
Project Workspace, and choose Properties from the context-sensitive
menu that appears. The details are presented in the Project Site
Properties dialog box.

Application-specific Witango Servers are available if you want to develop
a Witango application and distribute it with a Witango Server as an all-in-
one solution. This allows your end-user to execute your solution without
having to purchase a Witango Server for your single application.

The AST Server works only with the Witango application files in the
licensed application with the assigned AST signature. You must add this
signature to all Witango application files used in the application in order
for them to be executed by the AST Server. Witango application files
without an AST signature, or with a different AST signature, do not work
with the AST Server.

Additional Features of Witango Projects

Contact sales@witango.com sales for information on purchasing an AST
license for your application.

Modifying a Project’s AST Signature

An application file may belong to more than one project, but it can have
only one AST signature. An application file added to a project will lose
any signature it previously had as a member of another project.

When you modify the AST signature for a project, the project AST
signature is assigned to all application files within that project. Application
files added to a project are automatically assigned the AST signature of
the project. If the project’s AST signature has not been assigned, the
application file’s existing AST signature, if present, is cleared.

To modify a project’s AST signature
I Do one of the following:
* From the Project menu, choose Modify Project AST
Signature....

* Right-click the project name in the Project Workspace, and
choose Modify Project AST Signature... from the
context-sensitive that appears.

* Right-click the project name, choose Properties, and click
Advanced tab to display advanced properties. Click
Modify....

* The Modify Project AST Signature dialog box appears:

Modify Project AST Signature B3
Project AST Signature: IABE

()8 I Cancel |

2 Enter the project’s new AST signature in the Project AST
Signature field.

Valid AST signatures are three characters long and may contain
the characters A to Z (excluding | and O) and the digits 0 to 9.

3 Click OK to save the signature in the project and in every application
file associated with the project.

Witango warns you if an application file in the project is open

mailto:sales@witango.com

Additional Features of Witango Projects

when you try to modify the project’s AST signature:

Editor

& Changing the AST signature requires saving all open application files in the project. Do pou wish ta continue?

4 Click OK to update and save all project application files (including
open application files).

If one or more application files in a project cannot be opened or saved
(for example, files no longer exist, are not checked out from a source
control system, or have “read-only” permission), Witango Studio displays
the following dialog box:

: Files Not Updated! IH[=] E3

One or more files could not be updated. The file(s] may have been deleted or moved.

[:%Program Files\Apache Grouphdpache\htdocshwitangotests. taf

If this occurs, correct the problem (for example, check out the necessary
files), and repeat the steps, starting from step |.

Project Root The Project Root Properties dialog box allows you to view information
Properties about your project.
To display the Project Root Properties dialog box

I In the Project Workspace, highlight the project name by clicking on
the project root.

2 Do one of the following:

* From the View menu, choose Properties.

* Right-click the project root, and choose Properties from
the context-sensitive menu that appears.

The Project Root Properties dialog box displays three tabs.

Additional Features of Witango Projects

* General. This section displays the name of the project, the number of
items contained in the project, and the last modified date.

General | Dependenciesl Advancedl

Froject Mame: MuszicStore
Last Modified: 03/23/00 12:54:34

Mumber of items contained in the project: 4

For more information, See ¢ Dependencies. This section displays the data sources and objects
Worlking With Project referenced by the project. Unresolved dependencies are identified by
Dependencies” on page 78. . ;))

grayed-out icons. This section cannot be modified.

Project Root Properties H
General Dependencies | Advanced I
= [#] Objects

i DefaultClass
------ (8] Data Sources

For more information, See * Advanced. This section allows you to enter an AST signature for the

;E::st:’ggnpgéicgi AST project by clicking the Modify button beside AST Signature.
a ot Properti =]

Generall Dependencies Advanced |

Froject Mame: MusicStore
AST Signature:

Modify Project AST Signature B4
Froject AST Signature: I

()3 I Cancel |

CautionModifying the project’s AST signature overwrites an
application file’s AST signature, which is assigned through the Advanced
section of the Application File Properties dialog box. For more
information, See “Application File Properties” on page 79.

Deploying and Downloading Witango Projects via FTP

Deploying and Downloading Witango Projects via FTP

FTP Using a
TIS Proxy
Server

FTP (file transfer protocol) is a standard method for transferring files
between machines on the Internet. FTP allows a client machine to log in
to a server machine to send or retrieve files.

Within a Witango project, you can define an FTP site and deploy (upload)
files defined in your project to that site, preserving the hierarchical
structure of your project files. You can also download files from a remote
site to replicate a project or share projects with other developers.

The Sites folder in the Project Workspace allows you to associate FTP
sites with your project and deploy files to one or several FTP sites.

The project file stores a project’s site definitions and details about each
site, so that a project can be shared among users or team members.

Witango allows you to route files through a TIS (Trusted Information
Server) proxy server, which accepts FTP requests. The following diagram
shows how files pass through a TIS proxy server on your intranet to an
FTP site on the Internet:

| FTP site

g Firewall

| TIS Proxy 3

| Server |

\ \

| |

| Local machinl:

| on your intranet
- - - - - . . _ _

Witango uses the proxy information specified in your computer’s registry.
You may be able to modify these settings through your Web browser. For
example, if your Web browser is MS Internet Explorer, you modify these
settings from the Connection section of the Internet Options dialog
box.

Deploying and Downloading Witango Projects via FTP

Passive Mode Witango allows you to deploy and download files via passive mode FTP

FTP (PASV-FTP). PASV-FTP allows you to initiate a data connection to the FTP
server; without passive mode, connection is initiated by the FTP server.
To transfer files via PASV-FTP, check the Passive Mode check box on the
Project Site Properties dialog box.

Note Enabling PASV-FTP may be necessary with some firewalls. Check
with your system’s administrator.

Deploying and Once you define an FTP site and add it to your project, you can deploy

Downloading your project to a remote FTP site to share with other developers. When

Projects you deploy your project, its sub-directories are replicated as necessary
on the FTP site. You can also download files from a remote FTP site and
automatically add them to your Witango project.

Deploying and downloading project files can be useful in a development
environment. For example, remote developers could join a development
team and automatically create a working version of the Witango Web
site.

The following diagram shows how projects can be shared among
developers once an FTP site has been established.

Developer A
creates a

Developer A

Developer C
Developer C
joins the team
and replicates

Developer B

downloads the site

to a local machine, a,
Developer B

Definingan FTP You define and update details about FTP sites from the Define Sites dialog
Site box.

Deploying and Downloading Witango Projects via FTP

To define or update an FTP site in the Define Sites list
I From the Edit menu, choose Define Sites....

The Define Sites dialog box appears:

Define Sites
6 o | (ese)
@ quack
@ Meow
Ed Delete

d

Lloze

pdate |
Welete |

2 Do one of the following:

¢ Click New to define an FTP site.

* Select an existing site and click Update to modify the site’s
definitions.

* Select an existing site and click Delete to remove the site.

If you clicked New or Update, the Site Properties dialog box
appears:

Site Properties [%]

Site Mame || ke |
Address I el I

Uszer Mame I

Passward I

™ Save Password

Directory I
™ Passive Mode

Define or update an FTP site by entering or modifying your

Deploying and Downloading Witango Projects via FTP

information in the following fields:

* Site Name. Enter a name for the site. This name will be
displayed in the Project Workspace. FTP site names must be
unique in the Define Sites list. FTP sites listed in the Define
Sites list can be used by any number of projects.

¢ Address. Enter the IP address or domain name.

* User name. Enter the name required to gain FTP access to
the site.

* Password. Enter the password needed to gain FTP access
to the site. You must check the Save Password check box
before you can enter a password.

* If the Save Password check box is unchecked, Witango
prompts each session for a user name and password the
first time an FTP command is executed for that site.

For more information, see * Passive Mode. Check this check box to transfer files using
Passive Mode FTP" on passive mode FTP (PASV-FTP).

page 87

For more information, see * Directory. Enter the FTP site directory you want to access

“Deploying and ; i

Downloading Projects” on for FTP deplo?'ment and .download.lng. This directory

page 87 mirrors the Files folder in the Project Workspace when

project files are deployed. If you leave this field empty, the
FTP site root directory is used as the base directory.

3 Click OK.
The Define Sites dialog box becomes active.

4 Click Close.

Adding an FTP You choose an FTP site from the Define Sites list and add it to the Sites
Site to Your folder in the Project Workspace to associate a site with your project for
Project deployment and downloading.

%

Note Once you add an FTP site to your project, any changes made to
the Site Properties through the Define Sites list are not reflected in the
Project Site Properties. You must edit the site’s properties in the
Project Site Properties dialog box from the Project Workspace, or
delete and re-add the site to the project.

To add an FTP site to your project
Do one of the following:

* From the Project menu, choose Add Site....

Deploying and Downloading Witango Projects via FTP

Deploying Files
or Folders

* Right-click on the project icon or name, and choose Add Site...
from the context-sensitive menu that appears.

The Choose a Site dialog box appears, allowing you to choose a defined
site. An FTP site must exist before you can assign it to a project.

Choose a site E

[uack at Pervasive

The first site added to a project becomes the default site for use with the

Deploy and Download commands. You can change the default only

when more than one site is assigned to your project.

To change the default site for deployment or download

* From the Sites folder, right-click the site you want, and choose
Default Site from the context-sensitive menu that appears.

To view or edit properties of a project site

Do one of the following:

* From the Sites folder, select the site you want; from the View menu,
choose Properties.

* From the Sites folder, right-click the site you want, and choose
Properties from the context-sensitive menu that appears.

The Site Properties dialog box appears, displaying the definitions of this
site.

You can deploy (upload) any project to a remote site via FTP using the
Deploy and Deploy to... commands.

The file and folder hierarchy of a project is preserved during deployment.
Witango replicates the folder structure onto the remote site and creates
directories, if they do not already exist on the FTP server.
To deploy to your project’s default site

I Do one of the following:

* From the Project Workspace, select the file or folder you
want to deploy; from the Project menu, choose Deploy.

Deploying and Downloading Witango Projects via FTP

* Right-click in the Project Workspace on the file or folder to
be deployed and choose Deploy from the context-sensitive
menu that appears.

The following dialog box appears:
Editor B

& *r'ou have chosen to upload the selected items. Files with the same name will be replaced. Do pou want to continue?

Cautionlf you deploy a file to a directory on the server where a file
with the same name exists, the file in the deployment directory is
overwritten with the new file.

2 Click Yes to transfer the files to your project’s default site.

The File Transfer Status dialog box appears. Close this dialog by
clicking Close, or check Close this dialog when operation

completes to automatically close the dialog when the transfer
is complete.

File Transfer Status [%]

File transfer complete.

I Close this dialog when operation completes

Tip You can control automatic dismissal of the File Transfer dialog box
by choosing Preferences... from the Edit menu and enabling or
disabling Close file transfer progress dialog when operation
completes.

To deploy to another site associated with your project
I Do one of the following:

* From the Project Workspace, select the file or folder you want
to deploy; from the Project menu, choose Deploy to....

You can also click on the * Right-click in the Project Workspace on the file or folder to be

file or folder to be i
deployed in the Project deployed and choose Deploy to... from the context-sensitive

Workspace and drag it over menu that appears.
the name or icon of the
FTP site. The Choose a Site dialog box appears.

2 Select a site and click OK.

Deploying and Downloading Witango Projects via FTP

The following dialog box appears:

Editor B

& *r'ou have chosen to upload the selected items. Files with the same name will be replaced. Do pou want to continue?

Cautionlf you deploy a file to a directory on the server where a file
with the same name exists, the file in the deployment directory is
overwritten with the new file.

3 Click Yes to transfer the files to the selected site.

A File Transfer Status dialog box displays the status of the
transfer. Click Close to dismiss this dialog box, or check Close
this dialog when operation completes.

Downloading Projects may also be created by downloading files and folders from a
From Remote remote directory hierarchy via FTP, using the Download and Download
Sites from... commands.

Downloading a remote site replicates the contents of an FTP directory
and its sub-directories onto your local machine.
To download from your project’s default site

I Create a new project or open an existing project.

2 Ifitis a new project, add to this project the site from which you want
to download files. This site is the default site.

3 Do one of the following:
* From the Project Workspace, select the folder you want to
download files to; from the Project menu, choose Download.

* From the Project Workspace, Right-click the folder you want to
download files to; choose Download from the context-
sensitive menu that appears.

Deploying and Downloading Witango Projects via FTP

The following dialog box appears if any file to be downloaded has the
same name as a file that exists in your project’s download folder:

The file you are downloading already existz. Do pou want to replace it?

™ Apply to al

Cautionlf you click Yes, any downloaded files will overwrite files with
the same name that exist in the folder to which you are transferring files
on your machine. If you check Apply to all, all downloaded files will
overwrite files with the same name that exist in the folder to which you
are transferring files on your machine.

4 Check Apply to all to overwrite any existing files in the folder to
which you are transferring with downloaded files of the same name.
Click Yes to download from your project’s default site.

A File Transfer Status dialog box displays the status of the transfer.
Click Close to dismiss this dialog box, or check Close this dialog
when operation completes.

File Transfer Status [%]

File transfer complete.

I Close this dialog when operation completes

If the download of any file is unsuccessful, the following dialog box
appears:

Editor B

@ An ermor occurred while attempting to download the file /TiD Aindex. taf”. Continue downloading files?

Clicking Yes continues the download of files when more than one file
is downloaded.

To download from another site associated with your project
I Open an existing project.

2 If the site from which you want to download files is not yet

associated with this project, add the site to this project.

Deploying and Downloading Witango Projects via FTP

7

3 Do one of the following:

From the Project Workspace, select the folder you want to
download files to; from the Project menu, choose Download
from....

From the Project Workspace, Right-click the folder you want to
be download files to; choose Download from... from the
context-sensitive menu that appears.

The Choose a Site dialog box appears.

4 Select a site and click OK.

The following dialog box appears if any file to be downloaded has
the same name as a file that exists in your project’s download
folder:

The file: you are downloading already exists. Do you want to replace it?

™ Apply to al

Cautionlf you click Yes, any downloaded files will overwrite files with
the same name that exist in the folder to which you are transferring files
on your machine.lf you check Apply to all, all downloaded files will

overwrite files with the same name that exist in the folder to which you

are transferring files on your machine.

5 Check Apply to all to overwrite any existing files in the folder to
which you are transferring with downloaded files of the same name.
Click Yes to download from your project’s default site.

A File Transfer Status dialog box displays the status of the transfer.
Click Close to dismiss this dialog box, or check Close this dialog
when operation completes.

File Transfer Status [%]

File transfer complete.

I Close this dialog when operation completes

Deploying and Downloading Witango Projects via FTP

If the download of any file is unsuccessful, the following dialog box
appears:

Editor H

@ An emor occurred while attempting to download the file "/TiD Aindex.taf*’. Continue downloading files?

Clicking Yes continues the download of files when more than one file
is downloaded.

Browsing a You can browse a project’s FTP site and select files or folders to
Project’s FTP download through your Web browser.
Site with a Web

B To browse the default FTP site associated with your project
rowser

I Do one of the following:

* From the Project menu, choose Browse Site.

* Right-click the Sites folder in the Project Workspace, and
choose Browse Site from the context-sensitive menu that
appears.

Your default Web browser launches with the URL for that FTP
site.

2 If you checked Save Password in the Site Properties dialog box
when you defined the FTP site, the URL contains your user name and
password for access to the FTP site; for example:

ftp://username:password@example/directory

If your user name and password are not specified in the Site
Properties dialog box, some VWeb browsers prompts you for this
information (for example, Netscape and IE5) or generates an error
(for example, IE4).

57

CautionThe default behavior of a Web browser is to display the
username and password of the FTP site in clear text in the URL. If you
do not want the username or password to be seen in the URL, and you
are using Netscape Navigator or Microsoft Internet Explorer as your
Web browser, leave these fields blank in the Site Properties dialog box.
When you browse a site, the Web browser prompts you for this
information.

When you download files through a Web browser, you must
manually add the downloaded files to your Witango project.

Deploying and Downloading Witango Projects via FTP

To browse any FTP site associated with your project
I From the Sites folder, select the FTP site you want to browse.

2 Follow the instructions given in “To browse the default FTP site
associated with your project” on page 95.

Using Source Control in Witango

Using Source Control in Witango

Witango Studio supports source code management features for all files
incorporated into a Witango Studio project.

Note

* Witango Studio supports any source control system that conforms to
Microsoft’s Source Code Control API, also used by Microsoft’s Visual
Studio development environment. In other words, if a particular source
control system works with Visual Studio, it works with Witango Studio.

* If your source control system installation has an option to integrate
with Visual Studio, you must select it for the source control system to
work with Witango Studio. For example, in Microsoft’s SourceSafe 5.0
installer, the option is Enable SourceSafe Integration.

You can perform common source control operations for managing your
files, such as getting the latest versions, checking in and checking out, and
adding to and removing from source control. You can also refresh your
source control system’s database and launch your source control user
interface from within Witango Studio.

The Source Control menu and commands appear as follows:

Mew. ..
Qpen...
Close
Build 4
Control Get Latesk Yersian, ..
Chech out
Iew Folder Check In
Add Files... Undm Check Out.,.

Remove

Add ko Source Contral

Modify Project AST Signature... Remove from Source Combrol,,,

Add Site. ..
DEploy
Deploy Tio, .. Seurce Contral Browser
Download

Dawnload | Fronm...

Refresh Status

Bravse Site

Note

* Source control commands only appear in Witango Studio if you have a
source control system installed on your machine. You must have your

Using Source Control in Witango

Adding Projects
to Source
Control

source control system’s client software installed on the same machine
as Witango Studio.

The commands appearing in the Source Control menu depend on the
source control system you are using. Commands vary from system to
system. The commands appearing in this document are examples of the
commands you may see.

Source control works only when the project is under source control. If it
is not, all source control commands are disabled, except for Add to
Source Control.

If your Witango project does not already exist, first create it as described
in Creating a New Project on page 72.

To add a project to source control

I In the Project Workspace, select the project name.

2 Do one of the following:

From the Project menu, choose Source Control, then Add
to Source Control.

Right-click the project name and choose Add to Source
Control from the context-sensitive menu that appears.

The Add to Source Control dialog box for your particular
source control system appears. The following is an example
using MS Visual SourceSafe:

Add to Source Control [%]

Filez oK

sample.tep

Cancel

Select Al

Elek

V¥ Keep checked out
LComment

Add any comments about the project here,

Note Depending on which source control system you are using, this
dialog box may look different.

Using Source Control in Witango

If you want to add the projects to source control and check
them out at the same time, select the Keep checked out option.
Otherwise, the projects are added to source control but are not
checked out.

3 Click OK to add the project to source control.

If your source control system is not currently active, you are
asked to log in first. Your source control system’s login dialog
box appears so you can log in as you would normally.

The Add to{Source Control System}Project dialog box for your
particular source control system appears. The following is an
example using MS Visual SourceSafe:

Add to SourceSafe Project

Froject: ok

$/

Cancel

il

[ireate
B =
Documentation Help
Mzapi
OralT
WinProjects

4 Depending on your source control system, you may do one of the
following:

* Select from your source control database the source
control project in which to save your Witango Studio
project.

* Enter a new source control project name, select its location
in the database, and click Create.

The new source control project is created in the location
specified.

5 Click OK to add the project to source control.

The Project Workspace changes to show a check box beside the project
name. The check box provides a convenient means of seeing the source
control state of the project and the files it contains.

Using Source Control in Witango

The following table shows the various states that projects and files can be
in, as indicated by their check boxes, and what each state means.

Check box State of File

O Under source control and available for checking
out.

Under source control and checked out.

X

Not under source control, but a member of a
project under source control.

= O

Under source control, but already checked out by
another user.

Adding Files to You must have your Witango project under source control before you
Source Control can add individual files to source control. A project is a file denoted by
the . tep extension and appears as such in your source control system.

To add files to source control

I In the Project Workspace, select the files you want to add to source
control.

2 Do one of the following:

* From the Project menu, choose Source Control, then Add
to Source Control.

* Right-click the selected files, and choose Add to Source
Control from the context-sensitive menu that appears.

If your source control system is not currently active, you are
asked to log in first. Your source control system’s login dialog
box appears so you can log in as you would normally.

The Add to Source Control dialog box for your particular

Removing Files
From Source
Control

Using Source Control in Witango

source control system appears:

Cancel |
Select Al |

V¥ Keep checked out
LComment

Add any comments about the project here,

Depending on which source control system you are using, this
dialog box may look different.

The selected files and working folders appear in the Files list.
3 Click OK to add the files to source control.

If you want to add the files to source control and check them out at
the same time, select the Keep checked out option. Otherwise,
the files are added to source control but are not checked out.

The following is an example of a project and files under source

control:
@ Example Project
(-2 Other

faxregiztration. htm
Hpbarner. gif
prod_T an-ent. gif
registration. htm

------- CI@] temp.taf
B[] Test Files

O Contents. bkt
] Feadme.tst
| Upgrade. tst

N @ Proiectl @ Drata Sources] E] Snippetsl

To remove files from source control

I In the Project Workspace, select the files you want to remove from

Using Source Control in Witango

source control.

2 From the Project menu, choose Source Control, then Remove
from Source Control.

3 When asked if you want to remove the selected files from source
control, click Yes to remove the files or No to cancel.

Editor B

@ Fiemove zelected file(s) from source code control. Are pou sure?

o |

Opening a When you open a Witango project already under source control,
Witango Witango Studio automatically gives you access to your source control
Project Already system’s functionality.

Under Source If your source control system is active when you open the Witango
Control project, Witango Studio’s source control features are made active. If it is

not, your source control system’s login dialog box appears so you can log
in as you would normally.

Getting the When you use the Get Latest Version command, Witango Studio
Latest Version allows you to view, but not modify, files. This command copies the files
of Files from the current source control project into your working folder. The

files retrieved are read-only so modifications cannot be saved.

To get the latest version of files

I In the Project Workspace, select the files you want to get the latest
version of. If you select a folder, all the files in the folder are
automatically selected.

2 From the Project menu, choose Source Control, then Get
Latest Version.

The Get Latest Version dialog box appears, listing the files you

102

Using Source Control in Witango

can perform the Get Latest Version operation on:

Get Latest Yersion [%]
Filez oK

“\Program Files'Apache GrouphApacheihtdocs.. \blackhole. gi Cancel
[1C:%Program Files\Apache GroupiapacheihtdocsT .. \index. htrl
[1C:%Program Files\Apache Groupiapacheihtdocs'.. \Readme. st Selact Al
[1C:AProgram Filez\Apache GroupiApacheihtdocsT..\S ample. taf

[1C:AProgram Filezs\Apache Group\apacheihtdocs’.. \Example.tep

EEkE

Advanced...

The Files list shows the files currently in the Witango project.
The files you selected in the Project Workspace are already
selected to perform the Get Latest Version operation.

To indicate which files you want to get the latest version of, if
different than those shown, select (jw]) or deselect ([]) the
corresponding file’s check box.

To select all the available files, click Select All.

3 If you want to set advanced options for Get Latest Version, click
Advanced.

The Advanced Get Options dialog box appears:

Advanced Get Options E
Beplace writable:
[EET—- Cancel |

Set timestamp:

IEurrent 'l ™ Make witable Help |

Because the options appearing correspond to the options for your
particular source control system’s get latest version feature, they may
appear different than the example shows. Click Help for a
description of each of the available advanced options and how to set
them.

Once set, click OK to return to the Get Latest Version dialog box.

4 Click OK to get the latest version of the selected files.

Checking Out When you use the Check Out command, Witango Studio copies the

Files latest version of the selected files from the current source control project
into your current working folder, and locks the source control system
master copy.

Using Source Control in Witango

To check out files under source control

See also Checking In Files I In the Project Workspace, select the files you want to check out. If

on page 105.

you select a folder, all the files in the folder are automatically

selected.

2 Do one of the following:

Click the check box.

If you select an individual file, click its check box. If you select
multiple files, click any file’s check box to check out all the
selected files.

[] ct

wample Proje
IE]] Example

Right-click the selected files, and choose Check Out from the
context-sensitive menu that appears.

From the Project menu, choose Source Control, then
Check Out.

The selected files are automatically checked out (display of the
Check Out Files dialog box is suppressed). If you check the Use
dialog for checkout option in Witango Studio’s source control
preferences, the Check Out File(s) dialog box appears:

Check Out File[s] [%]
Cancel |

[1C:%Program Files\Apache Groupiapacheihtdocs'.. \Readme. st Select Al |
[1L:"Program Files\Apache GrouphdpachethtdocshT.. \Sample.taf |

Advanced...

LComment

The Files list shows all the files available for checking out. The
files you selected in the Project Workspace are already selected

Using Source Control in Witango

to perform the Check Out operation.

Note If you checked the Use only selected files in dialogs in
Witango Studio’s source control preferences, this dialog box lists only
the files you selected in the Project Workspace for checking out.

3 To indicate which files you want to check out, if different than those
shown, select ([#]) or deselect (["]) the corresponding file’s check
box.

To select all the available files, click Select All.

4 In the Comment area, you can add any comment, such as a brief
description of the reason for the check out.

5 If you want to set advanced check out options, click Advanced.

The Advanced Check Out Options dialog box appears:

Advanced Check Out Options [%]
Beplace writable:

IM vl ™ Dan't get local copy

. = | el rultinle eheckauts Cancel |
Set time:
I Current = l Help |

Because the options appearing correspond to the options for
your particular source control system’s check out feature, they
may appear different than this example shows. Click Help for a
description of each of the available advanced options and how to
set them.

Once set, click OK to return to the Check Out File(s) dialog
box.

6 Click OK to check out the selected files.

Checking In When you use the Check In command, Witango Studio updates your
Files source control system with changes made to the checked out file, and
unlocks the source control system master copy.
To check in files under source control

See also Checking Out Files I In the Project Workspace, select the files you want to check in. If you
on page 103. select a folder, all the files in the folder are automatically selected.

2 Do one of the following:

Using Source Control in Witango

For more information on
setting source control
preferences, see Source
Control on page 159.

* From the Project menu, choose Source Control, then
Check In.

* Right-click the selected files, and choose Check In from the
context-sensitive menu that appears.

* Click a check box in the Project Workspace.

If you selected an individual file, click its check box. If you
selected multiple files, click any file’s check box to check in all
the selected files.

The Check In File(s) dialog box appears:

Check In File[s] [%]

Cancel |

[1C:%Program Files\Apache GroupiapacheihtdocsT .. \index. htrl
Select Al |

[1C:AProgram Filezs\Apache Group\apacheihtdocs’.. \Example.tep
Differences... |

lackhole. gif

rogram Fileshdpache Grouphdpacheihtdocs...

™ Keep checked out
LComment

The Files list shows all the files available for checking in. The
files you selected in the Project Workspace are already selected

Note If you checked the Use only selected files in dialogs in
Witango Studio’s source control preferences, this dialog box lists only
the files you selected in the Project Workspace for checking in.

To indicate which file(s) you want to check in, if different than those
shown, select (jv]) or deselect ([T]) the corresponding file’s check
box.

To select all the checked out files, click Select All.

In the Comment area, you can add any comment, such as a brief
description of the reason for the check in.

To see the differences between the working folder version of the
selected file and the source control database version of the file, click
Differences.

Because the Differences feature depends on your particular
source control system, you should refer to your source control

Using Source Control in Witango

user documentation for a description of the visual difference
feature and how to use it.

When you exit the differences feature, the Check In File(s)
dialog box reappears.

6 Click OK to check in the selected files.

Undoing When you use the Undo Check Out command, Witango Studio cancels
Checked Out the check out operation, undoing all changes. In other words, you lose
Files any changes you made to the working copies of your files. You must have

a working folder set for the undo operation to work properly.

To undo checked out files

I In the Project Workspace, select the checked out files you want to
undo. If you select a folder, all the files in the folder are automatically
selected.

2 Do one of the following:

* From the Project menu, choose Source Control, then Undo
Check Out.

* Right-click the selected files, and choose Undo Check Out
from the context-sensitive menu that appears.

The Undo Check Out dialog box appears, listing the files you can
perform the undo check out operation:

Undo Check DOut [%]

Select Al |
Advanced... |

The Files list shows all the files currently checked out. The files
you selected in the Project Workspace are already selected to

107

Using Source Control in Witango

Refreshing File
Status

Launching Your
Source Control
System

perform the Undo Check Out operation.

%

Note If you checked the Use only selected files in dialogs in
Witango Studio’s source control preferences, this dialog box lists only
the files you selected in the Project Workspace for performing the
Undo Check Out operation.

To indicate which checked out files you want to undo, if different
than those shown, select (|w]) or deselect ([]) the corresponding
file’s check box.

To select all the checked out files, click Select All.

3 If you want to set advanced undo check out options, click
Advanced.

An Undo Check Out Advanced Options dialog box appears:

Undo Check Out Advanced Options E

Local copy: oK

ok |
Cancel |
_ i |

Help

Because the options appearing correspond to the options for your
particular source control system’s undo check out feature, they may
appear different than the example shows. Click Help for a
description of each of the available advanced options and how to set
them.

Once set, click OK to return to the Undo Check Out dialog box.

4 Click OK to undo the check out of the selected files.

When you want to update the status of the files currently under source
control, use the Refresh Status command. From the Project menu,
choose Source Control, and then Refresh Status from the submenu.

This command updates the check in and check out status of all files under
source control.

You can launch your source control system at any time from Witango
Studio.

Using Source Control in Witango

From the Project menu, choose Source Control, and the name of your
particular source control system, which appears at the bottom of the
submenu.7

Project
Mew...
Open...
Cloze

Get Latest Version...

Mew Folder Sl

o Check |n...

£0d Files... Undo Check Out...
Hemove

Ldd ta Source Contral...

el AT e Fiemove from Source Control...

S Siter. Refresh Status
Weploy

[ownlzad
[ownlead|Eram...
Browse Site

Modifying a File If you try to modify a file that is currently under source control and not
Under Source checked out, Witango Studio prompts you to check it out first.
Control Editor =

C:\Program Files\dpache Grouphdpachehtdocsivitan goE xample. taf
iz under source code control and currently has read-only attributes.

Do you want ta check it out?

o |

Files not checked out are read-only. You must check out a file before you
can make any changes.

For more information, see ~ Click Yes to check out the application file, or No to cancel and continue

Checking Out Files on viewing it as a read-only file.
page 103.

Application-Specific Witango (AST) Signatures for Projects

Application-specific Witango Servers are available if you want to develop
a Witango application and distribute it with a Witango Sever as a all-in-
one solution.This allows your end-user to execute your solution without
having to purchase a Witango Server for your single application.

The AST Sever works only with the Witango application files in the
licensed application with the assigned AST signature. You must add this
signature to all witango applications files used in the application in order
for them to be executed by the AST Sever.Witango application files
without an AST signature, or with a different AST signature, do not work
without the AST Sever.

Using Source Control in Witango

Contact sales@witango.com for information on purchasing an AST
license for your application.

CHAPTER FOUR

Using Data Sources

Data Source Basics, Operations, and Properties

A Witango data source contains all the information needed to connect to
a particular database. You use data sources to tell your Witango
applications which databases to connect to. You use Witango Studio to
create and manage data sources.

Both Witango Studio and Witango Server need to have access to data
sources. Witango Studio uses a data source—via the Data Sources
Workspace—to show you the information in the form of tables and their
columns. Witango Server requires the same data source, or a data source
with the same name on the deployment machine, so it can access the
database tables and columns specified within the application file.

The data source properties show the information about the data source,
including information about its tables and columns.

This chapter covers the following topics:

* understanding Witango data sources

* the Data Sources Workspace

* using the primary column key

» using data sources, including creating, modifying, and deleting them
* setting up deployment data sources

» working with data source properties

* connecting to data sources

» assigning data sources to actions.

112

About Data Sources

About Data Sources

ODBC & JDBC
Data Sources

Oracle Data
Sources

Witango supports the following types of data sources:

» ODBC (Open Database Connectivity), in conjunction with third-
party drivers, supports connections to a wide variety of database

types.

*)DBC (Java Database Connectivity), in conjunction with third-party
drivers, supports connections to a wide variety of database types.

* Oracle supports connections to Oracle databases.

OODBC and JDBC are standards developed to allow applications like
Witango to communicate with a wide variety of databases from different
vendors. An ODBC/JDBC client application talks to the ODBC/JDBC
driver manager that in turn talks to a database driver for a specific type of
database.

An ODBC/JDBC driver is a kind of translator. It converts the standard
ODBC/JDBC requests made by the application into a format that can be
understood by the target database system. ODBC drivers are available
for accessing many database management systems (DBMS).

Before creating a data source, you must set up your database server and
create or install a database on this server. Depending on the database
system, you may also need to install and configure additional software to
allow you to connect to the server. Consult your database software and
ODBC/JDBC driver documentation for specific instructions.

Oracle is a high-performance client/server DBMS. To create and use
Oracle data sources, you must have Oracle’s SQL*Net installed. Witango
supports SQL*Net versions 7.1 and 7.3, and greater. For more
information, see the Witango Server Installation Guides for your chosen
platform.

The Data Sources Workspace

The Data Sources Workspace

You perform most data source operations in the Data Sources
Workspace (the Data Sources section of the Workspace). To display the
Data Sources Workspace, click the Data Sources tab in the Workspace
window.

When you open the Data Sources Workspace, you see a folder for each
type of data source that Witango supports.

* Expanding a folder shows the defined data sources for that type.

* Expanding a data source shows the tables in that data source.
Depending on the settings for the data source, you may need to
enter user name and password information before a connection can
be made.

* Expanding a table shows the columns in that table.

==l
Folder for =1 JpBC -
fyar:z o =@ opBC —
8 Conference
Tables in the : 9 Llnkls Tahle
data source. \‘\E@ music
= E products
Key symbol 7
identifies = product_key
primarykey ||| | | - fitle
column. ||| ¢ b i price |
""" sale_price
""" onsale
..... type
""" categaory
""" supplier
""" aist

BB giteusers -
| | >

“e[a]E]

The bolded data source name in the Workspace indicates the currently
active data source—that is, the data source assigned to the front-most
open action window. If no database actions are active, no data source
names are bolded.

The Data Sources Workspace

Once a connection is made to a data source, the user name used for the
connection appears in parentheses after the data source name. This
avoids any confusion when different logins are being used for the same
data source.

SalesManager (root)
address
contact

counter

‘ contact?address
imvoice_detall

invoices

Using Primary Key Columns

Using Primary Key Columns

]

Primary Key

A primary key column is a column (or combination of columns) whose
value uniquely identifies each record (row) in a table. For example, a
customer number might be the primary key in a customers table.

Primary key columns are identified in the Data Sources Workspace by the
column/key icon.

Witango builders rely on the primary key column values in various places
to identify specific records. When using the builders, it is important to
first check that the primary key for each table involved is set correctly. If
the specified column or columns do not uniquely identify each record in a
table, unexpected results can occur when executing the file. For example,
if you mistakenly set the primary key column for a customer table to the
“state” column (many customers likely share the same state), using the
resulting file to delete a particular customer deletes A L L the
customers in the same state.

When connecting to a data source, Witango Studio queries the database
for information to determine the primary keys. If there is no response,
Witango determines the default primary keys by scanning each table for
the first column with an appropriate data type (numeric or character).

To change or add a primary key column
Do one of the following:

* In the Data Sources Workspace, right-click the column and choose
Primary Key from the context-sensitive menu that appears. A
check mark in the menu identifies a primary key column.

* Right-click the column in the Data Sources Workspace, choose
Properties from the context-sensitive menu that appears, and
check or uncheck the Primary Key check box in the Properties
dialog box.

* Select a column in the Data Sources Workspace and choose
Primary Key from the Data Source menu. A check mark in the
menu identifies a column as a primary key.

Data Source Operations

Data Source Operations

Creatinga Data ODBC

Source Before you create an ODBC data source, make sure the required ODBC

drivers are installed and your database server is running (or, for drivers
that access local files, your database files are available).

To create an ODBC data source

I Do one of the following:

¢ From the DataSource menu, select New, and then choose
ODBC.

* Right-click the Data Sources Workspace, and then select New
from the context-sensitive menu that appears.

The Create New Data Source dialog box appears:

Create New Data Source

Select a type of data source:

& File Data Source [Machine independent

" User Data Source [Spplies to this machine only)
" System Data Source [&ppliss to this maching only)

Selecting File Data Source creates a file-based data
source which iz shareable between all uzers with
access to the database.

< Back I Mest » I Cancel

Note The dialog box appearing may look different. The appearance
varies depending on the version of ODBC you have.

2 Select System Data Source from the list of data sources.

Note Witango only supports System data sources.

3 Choose Next.

Data Source Operations

See your ODBC driver The Create New Data Source dialog box guides you through the

documentation for detailed rest of the process. Follow the instructions that appear.
Conﬁguratlon Instructions.

JDBC

To create an JDBC data source

Note Before you will be able to configure a JDBC data source you will
need to have the Java 2 Runtime Environment (at least JVM [.4.1)
installed on your machine. This can be downloaded from http://
java.sun.com.

Note Before you will be able to configure a JDBC data source you will
need to have the JDBC driver for your chosen database on your
machine.

I Add the JAR file for your database driver to the class path in your
environment variables.

* Right-click on ‘My Computer’ and select Properties from
the context sensitive menu that appears.

Open
Explore
Search...
Manage

Map Mebwork Drive, ..
Disconnect Mekwork Drive. ..

Create Shortout
Rename

Properties

* The System Properties window will appear, move to the
Advanced tab and click the Environment Variables
button.

117

Data Source Operations

System Properties _?Ill

General' Nemnrk\dennﬂ:aﬂnn' Hardware' User Profiles Advanced |

i~ Perormance

Performance options control how applications use memary. which
affects the speed of your computer.

Performance Options.

r— Environment Wariahles

Enwironment variables tell your computer where to find certain
types ofinformation

Environment Variables...

i~ Startup and Recovery

Startup and recovery options tell your computer how to start and
whatto do if an error causes your computer to stop

Startup and Recovery.

OK | Cancel | Apply |

The Environment Variables window will open, and in the
System Variables pane you should see an entry for

CLASSPATH. Select the CLASSPATH entry and click on
the Edit button.

—LUser variahles for Soph

Variable ‘ Yalue ‘

TEMP Ci\Documents and Settings\SophtLocal ...

TP C:\Documents and Settiings\SophtLocal ...
Hew... Edit... Celete |

—System variables

[ariabl VR [la
L ‘ ' Al
omSper e Ferstema2iemders
NUMBER_OF_PR... 1
05 Windows_NT
Os2LibPath CHWINNT \system32hos2idll; LI

Mew... | ® Delete |
K I Cancel |

Data Source Operations

* The Edit System Variable window will open, you will need to
edit the current variable value to include the path to all of
the JDBC drivers (JAR files) you wish to use, each path in
the list should be semi-colon separated.

For example:

c:\program files\witango\jdbcdrivers\mysqgl-
connector-java-2.0.14-bin.jar

2[x]

Yariable | CLASSPATH

Yariable Value: IServer 2000 Driver for IDBCYibYrmsutil, jar]

Ok | Cancel |

* Click the OK button to confirm the changes.

2 Do one of the following:
* From the DataSource menu in the Witango Studio, select
New, and then choose JDBC.

* Click the JDBC folder in the Workspace of the Witango
Studio, and then right-click in the Workspace. Select New
from the context-sensitive menu that appears.

==

Mew JDBC data source
a ODBC Modifi...
= Oracle Delete

Set [ata Source, .,

Select Tables. ..
Reload

Brimatsy Kew

v Allow Docking
Hide

Properties

Data Source Operations

* The JDNBC Configuration dialog box appears:

JDBC Configuration b4 |

Data Source I |

Driver Class: I LI

LRL: I

Properties:

Name | ¥alue

3 Complete the details in the JDBC ConfigurationWindow:
Datasource is the name of the datasource being created.

Driver Class is the reference to the JDBC and exact text string will
be included in the documentation of your JDBC Driver
documentation. Common ones have been included in a drop down
menu for your convenience.

%

Note If you wish to add your common drivers to this drop down list,
this can be done by adding the correct entry to the following file:
C:\Program Files\Witango\Dev Studio
5.5\Configuration\JDBCDriverClass.ini

Data Source Operations

IDBC Configuration X |

Diata Source I MLSIC
Driver Class: I LI
com. microsoft jdbe, s
URL: com.rrysql. jobc. Driver
' oracle. jdbc.OracleDriver
P ties:
roperies weblogic, jdbc. mssglserver4.0river
Name Yalue

Ok Cancel |

* URL is the connection string to the database server. This
will aslo be available in your driver documentation.

JDBC Configuration b4 |

Data Source I music
Driver Class: IcDm.mysqI.jdbc.Driver LI
LRL: Ijdbc:mysql:,‘flﬂ.ﬂ.u.1:3306,‘mu5ic
Properties:

Name | ¥Yalue

Cancel |

I
=~

122

Data Source Operations

See your |JDBC driver

documentation for detailed
configuration instructions.

* Additional Properties required for the Connection can then
be added in the Properties table.

4 Choose OK.
The database should appear in the JDBC folder in your Workspace.

x|
=B products
""" E product_key
..... fitle
..... pice
""" sale_price
""" onsale
..... type
""" category
""" supplier
""" artist
=B siteusers
=-0 opBC
""" 0 oracle
"8 [E[5]

Oracle

Before creating an Oracle data source, make sure the correct Oracle
client software is installed and the database server you want to connect
to is available on the network.

To create an Oracle data source

I Do one of the following:

¢ From the Data Source menu, select New, and then
choose Oracle.

* Right-click the Data Sources Workspace and choose New
from the context-sensitive menu that appears.

Data Source Operations

The Oracle Data Source dialog box appears:

Oracle Data Source [%]
[rata Source Mame: I

S0L Connect String: I

ke I Lancel |

2 In the Data Source Name field, type a name for the data source.
3 Type the SQL Connect string in the field provided.

With current versions of SQL*Net, this should be the name of a
database alias set up on your computer with the Oracle
EasyConfig application.

Note Witango only supports SQL*Net versions 7.1 and 7.3, and
greater.

4 Click OK.

The new data source is added to the Data Sources Workspace.

Modifying a To modify a data source

Data Source I Select the data source you want to modify.

2 Do one of the following:

* From the DataSource menu, choose Modify....
* Right-click the Data Sources Workspace, and then choose
Modify... from the context-sensitive menu that appears.

* From the View menu, choose Properties, and click Modify....
in the Data Source Properties dialog box that appears.

3 Enter the required information in this dialog box and the subsequent
dialog boxes, until you have completed the data source modification
process.

Note The data source modification process depends on which driver
and which version you have installed on your machine. See your driver
documentation for detailed instructions.

If a modified data source is already loaded, the data source is
reloaded automatically using the new settings.

Data Source Operations

For Oracle data sources, modifying a data source does N O T affect
Witango application files already using that data source, even if they are
open when the modification is made. To update a document with the new
settings, you must reassign the data source to the document by choosing
Set Data Source from the Data Source menu.

Deleting a Data To delete a data source

Source I Select the data source you want to delete.

2 Do one of the following:

* From the Data Sources menu, choose Delete.
¢ From the Edit menu, choose Delete.

ﬂ e From the main toolbar, click the Delete icon.
* On the keyboard, press Delete.

* Right-click the Data Sources Workspace, and choose Delete
from the context-sensitive menu that appears.

To suppress the A confirmation dialog box appears.

confirmation dialog box,

hold down CTRL when Editor B
deleting.

@ Are you sure pou want to remove the MydataSource data source?

3 Click Yes.

The data source is deleted.

Reloading a If the structure of your database changes while Witango Studio is open,
Data Source you need to reload the data source.
To reload a data source
I Select the data source you want to reload.
2 Do one of the following:

¢ From the Data Sources menu, choose Reload.

* Right-click the Data Sources Workspace, and then choose
Reload from the context-sensitive menu that appears.

The login information is as specified in the data source’s login properties.

Handling
Unknown Data
Sources

For more information on
the default log in settings,
see Working With Data
Source Properties on
page 135.

Data Source Operations

For Oracle data sources, actions do not rely on anything in Witango
Studio's list of data sources to connect to a data source. When
connecting, Witango Studio uses only the information stored in the data
source. For this reason, Witango Studio could connect to an action's data
source while not having a data source defined with matching parameters.
Such a data source is called an unknown data source.

When you open an action having an undefined data source in Witango
Studio, yet Witango Studio is able to connect to it, the unknown data
source is added automatically to the list in the Data Sources Workspace.
The login information for the new data source is set to the default.

This happens even if there is a data source defined with the same
parameters, but with a different data source name. That is, all of the
pieces of data source information must match in order for an existing one
to be used.

Assigning Data Sources to Actions

Assigning Data Sources to Actions

To assign a data source to an action, do one of the following:

* Drag a table or column from the Data Sources Workspace to a
database action editing window or builder window:

_Ioix
Select |Criteria| Resultsl Jains I Outputl
Select Type: INUrma\ ﬂ
Select Columns Ordler By Colurmng
El
=
=0 JoeC
=@ music
SR products
-E product_key
- - B fitle
: : T B rice
Dragging a table or column into an e o
. ags . . sale_pnce
action editing window assigns the P
data source to the action. = onsale
B ype
B catagony
The data source icon and data B supplier
source name appear next to the B artist
assigned action
Action I Adtrib Dietails I Object/ Data So I
3-8 Untitlied *
0, Search products ® music

From the Data Source menu, choose Set Data Source....

The Data Source Selection dialog box appears. Use this dialog box to
. . set the data source for the action.
For more information, see

“Setting Data Sources for . . .
Actions” on page I31. * Right-click on an action, and choose Set Data Source from the

context-sensitive menu that appears.

The Data Source Selection dialog box appears. Use this dialog box to
set the data source for the action.

The data source icon and data source name appear next to the assigned
action.

Tip You can also use the Set Data Source command to set data
sources and data source parameters for one or more actions. For more

For more information, see
“Working With Data
Source Properties” on
page 135.

Assigning Data Sources to Actions

information, see “Setting Data Sources for Actions” on page 131.

If Witango Studio has not yet connected to the data source, a login dialog
box may appear. This dialog box only appears if you have the Ask each
time option checked, which is the default, in the Development section of
the Data Source Properties dialog box.

Note Some actions (for example, Transaction actions) do not have
columns. If you drag a database action that has no columns, you are
prompted to select a data source.

If an action already has a data source assigned to it and you drag a column
into it from a different data source, you are asked if you want to cancel
the operation or to use the new data source instead.

Note If there are differences in the structures of the databases,
changing an action's data source may cause DBMS errors when the
action is executed.

If you use a new data source, Witango Studio scans the affected actions
and updates the table owner information to match the new data source.

127

Setting Up Deployment Data Sources

Setting Up Deployment Data Sources

Witango Studio allows you to specify deployment data source parameters
that are different from development data source parameters; you can use
meta tags in your application files to specify deployment data source
parameters. Using deployment data sources, you can:

* execute a Witango application file against multiple data sources
* deploy a Witango application file against a data source (ODBC, OCI,
JDBC) other than the one that you developed with.

You can specify deployment data source parameters for each Witango
action in an application file on a per-action basis; these can override the
default data source settings.

CautionDeployment data sources must point to either the same
database as the development data source or one with the same
structure and table owner names. Table owner names are stored within
the Witango application file and not within the data source, so the
development and deployment owner names cannot be different.

The following sections describe how to set the parameters of a data
source, and how to set deployment (or development) data sources for
actions using the Set Data Source command.

For more information, see Note In order to use meta tags in deployment data sources, the
TD'5%b|'Bg thg Use of Meta Witango administrator must set the Witango Server’s
ags in Mata Sources” on passThroughSwitch configuration variable to on.

page 134.

Setting You can set deployment properties for data sources in the Deployment
Deployment section of the Data Source Properties dialog box. This allows you to
Data Source specify run-time data source parameters.

Properties

To view the Deployment section of the Data Source Properties
dialog box:

I Select the data source in the Data Sources Workspace.
2 Do one of the following:

* From the View menu, choose Properties.
* TypeAlt+Enter.

Setting Up Deployment Data Sources

* Right-click on the data source and choose Properties from the
context-sensitive menu that appears.

The Data Source Properties dialog box appears.

3 Click the Deployment tab.

ce Properties

General I Development DS Deplayment DS

™ Same as development
Tupe: I.SQL j
Mame: IBIueSkyeDemo

D atabase: I

Usemame: I

Pazzword: I

If you check Same as development, the Type, Name, Database,
Username and Password fields are disabled; the default values of these
fields are transferred from the development data source to deployment
data source.

If you uncheck Same as development, specify the deployment data
source parameters.

Deployment Data Source Parameters

* Type. Specify the type of data source, or enter a meta tag that
evaluates to a data source type when the Witango application file is
executed (for example, <@VAR NAME=datasourcetypes).

The Type field must evaluate to one of the type strings shown in the
combo box drop-down menu:

* DAM (Macintosh-only)
* FileMaker (Macintosh-only)

+ JDBC
¢« ODBC
¢ Oracle

* Name. This field must evaluate to a valid specifier; dependent upon
the data source type:

* DAM: DAM host name (Macintosh-only)

* FileMaker: path to the FileMaker Pro application, or the yen
symbol “¥” to indicate “Any” (Macintosh-only)

» JDBC: data source name

Setting Up Deployment Data Sources

Meta Tags and
Deployment
Data Sources

For more information, see
“Inserting Meta Tags” on
page 135.

For more information, see
“Disabling the Use of Meta
Tags in Data Sources” on
page 134.

e ODBC.: data source name

* Oracle: connect string or database alias

The deployment data source name field for Oracle is NOT the
name you have given to a data source in Witango Studio.

You can also enter a meta tag that evaluates to a valid specifier when
the Witango application file is executed (for example, <@VAR
NAME=datasourcenames).

* Database (Macintosh-only). This field is used only for FileMaker Pro
and DAM data source types and must evaluate to a valid database
name.

You can also enter a meta tag that evaluates to a valid specifier when
the Witango application file is executed (for example, <@VAR
NAME=databasename>).

* Username and Password. These fields may contain meta tags that
are substituted when Witango Server executes the application file.
Username is not used for FileMaker Pro data sources.

All fields may contain meta tags, which are substituted when Witango
Server executes the application file. When you right-click any text field, a
context-sensitive menu appears; it contains standard editing commands
and the Insert Meta Tag... option.

Choose Insert Meta Tag... to open the Insert Meta Tag dialog box. You
can insert many of the commonly-used Witango meta tags.

Before connecting to a data source, Witango checks the data source
parameters for meta tags. If meta tags are found, and if the
passThroughSwitch configuration variable is set to on, the substitution
is performed, and the results are used to establish the connection. If no
meta tags are found, the data source parameters are passed as-is.

The following example shows a user name being obtained from the user
variable username. The user password is taken from the file whose name
corresponds to the user name, followed by the .pwd extension.

Username:<@VAR NAME="username’>

Password: <@INCLUDE FILE="<@VAR usernames>.pwd’>

Setting Data Sources for Actions

Setting Data Sources for Actions

Using the Data You can use the Set Data Source command to set development and
Source deployment data source information independently for any selected

Selection actions.
Dialog Box

more actions

To set development and/or deployment data sources for one or

I Select one or more actions by clicking on them. You can select a list
of actions by holding down the SHIFT key while selecting, or select
discontiguous actions by holding down the CTRL key while selecting.

2 Do one of the following:

¢ From the DataSource menu, choose Set Data Source.

* Right-click and choose Set Data Source from the context-

sensitive.

The Data Source Selection dialog box appears:

Data Source Selection E

¥ Set deployment data source

Development data source:

B ElusSkyeDemo
B EugSystem Data
B CDData

@ cfexamples

@ cfsnippets

3 dBASE Files

@ DEMODATA

B E-Bank

i ECommerce Data

@ Eucel Files

' Use data source default
& Specify

V' Same as development

Tvpe: |

Mame: I

[atabaze: I

Uszername: I

Password: I

Lancel

This dialog box opens with the following defaults:

* Both Set development data source and Set

deployment data source are selected, allowing you to
set both the development and deployment data sources of

the actions.

* The development data source for the first database action in
the selection is selected in the list.

132

Setting Data Sources for Actions

Using the
Action
Properties
Dialog Box

3 To set a development data source for the selected actions, make sure

the Set development data source is checked, and select a data
source from the list.

To set a deployment data source for the selected actions, make sure
Set deployment data source is checked, and select one of the
following:

* Use data source default. This option specifies that the
Deployment settings from the selected data source are applied
to all the selected database actions.

You specify the deployment settings for a data source in the
Deployment section of the properties of the data source. For
more information, see Working With Data Source Properties
on page |35.

* Specify. This option specifies that the deployment data source
settings in the text fields (Type, Name, and so on) are applied
to all the selected database actions.

If you choose Specify, you can check Same as development,
which causes the development data source to be used for
deployment, or you may enter specifications for the deployment data
source settings in the fields provided.

For more information, see “Deployment Data Source Parameters”
on page 129.

You can also use the Deployment tab of the Action Properties dialog
box to set data source parameters for actions.

To view the Deployment section of the Action Properties dialog box

I Select the action.

2 Do one of the following:

* From the View menu, choose Properties.

* TypeAlt+Enter.

* Right-click on the action and choose Properties from the
context-sensitive menu that appears.

The Action Properties dialog box appears.

Setting Data Sources for Actions

3 Click the Deployment tab.

General I Development DS Deployment DS

I~ Same as development

Tupe: | j

Mame: IBug System Data

Databaze: I

Usemame: Iasdf

Password: I""""

For more information, see 4 Use the Deployment section of the Action Properties dialog box the
Setting Deployment Data same way as the Data Source Properties dialog box.

Source Properties” on

page 128.

Disabling the Use of Meta Tags in Data Sources

Disabling the Use of Meta Tags in Data Sources

The passThroughSwitch configuration variable allows you to specify
whether meta tags are substituted in data source parameters when
Witango application files are executed on Witango Server.

Passing through meta tags in deployment data sources is enabled in
Witango by default. If you want to disable (or enable) this feature, you
can do so by changing the options in the Witango Admininstrator
Application (config.taf application file), in the Feature Switches
screen:

passThroughSwitch

Check or uncheck the check box beside the option.

Working With Data Source Properties

Working With Data Source Properties

The Data Source, Table, and Column Properties dialog boxes allow you
to view information about selected data sources, tables, and columns.

In the Data Sources Workspace, right-click on one of these items (a data
source, a table under a data source, or a column under a table) and
choose Properties from the context-sensitive menu that appears.

Source Properties

General | Development DS | Deployment DS
Mame: Activity Planner
Type: ODEC MEREEREEE

Driver: General | |

" Colurnn Properties
(... Mame: Activit
General |
—— Owner:

Tupe: TABLE Mame: eventlD

Title: IEventID
Length: 4 Type: Integer
¥ Erimary Key MNulls &llowed: True

Tip While the Properties dialog box is open, you can click on any
item in the Data Sources Workspace to display its properties. For
example, you can switch from a data source to a column, or one table

to another.
Data Source The Data Source Properties dialog box contains three sections: General,
Properties Development, and Deployment. Click a tab to display the corresponding
section.

* General. Clicking the General tab displays basic information about
the selected data source. The following example shows the General
Properties for an ODBC data source called “Activity Planner”.

Dal ce Propel
General | Development DS | Deployment DS

Mame: Activity Flanner
Type: ODEC
Driver:

Modify... |

Working With Data Source Properties

The data source name and type appear for all data sources, but the
information in the other fields depends on the type of data source.

Data Source
u Other Information

Type

JDBC [None]

ODBC [None]

Oracle Connection string

To edit the selected data source, choose Modify.

The data source editing dialog box for the data source type appears.
When you close the dialog box, new settings appear on the General
tab of the Data Source Properties dialog box.

* Development. Clicking the Development tab shows the login
information required by Witango Studio for connection to the data
source:

General Development DS | Deployment DS

Usemame: Imdanch

Password: I"

The Development tab of the Data Source Properties dialog box asks
for a user name and password for the data source.

When the Ask each time option is checked, Witango asks for
connection information whenever the data source is expanded.
When you set up a new data source, this option is checked.

* Deployment. Clicking the Deployment tab allows you to specify
different login information to be used when Witango Server executes
the action the data source is assigned to. For more information about
this dialog box, see Setting Up Deployment Data Sources on
page 128.

Table
Properties

Column
Properties

.For more information, see
“Column Options” on
page 205.

For more information, see
“Using Primary Key
Columns” on page | I5.

Working With Data Source Properties

Table Properties shows the name, owner, and type of table.

Table Properties H

MName: CUSTOMER
Owner:

Type: TABLE

The Column Properties dialog box displays the name, title, data type,
length, whether nulls are allowed or not, and whether the column is a
primary key or not.

Column Properties H
General |

Mame: Customerl D

Title: IEolumn Litle:
Length: & Type: Float

¥ PFrimary Key MHullz Allowed: True

The Column Properties dialog box allows you to edit the Title field and
select the Primary Key option. The title is used by the builders as the
default HTML display title for the column.

The Primary Key option is used by the builders to create actions affecting
a specific record (record detail display, update and delete).

137

Connecting to Data Sources

Connecting to Data Sources

Connecting to
Large Data
Sources

When you expand a data source in the Data Sources Workspace you
have not connected to, the login information specified in the Data Source
Properties Development window is used for the connection. If you
checked the Ask each time option, the Log In dialog box appears,
allowing you to type your user name and password.

When Witango Studio connects to a data source containing more than
25 tables, it displays the Select Tables dialog box, allowing you to select
which tables you want to work with.

You can also open the Select Tables dialog box by doing one of the
following:

¢ Select a data source; from the Data Source menu, choose Select
Tables.

* Right-click a data source and choose Select Tables from the
context-sensitive menu that appears.

The following is an example of the Select Tables dialog box:

Select Tables E

Awailable tables : Tables to uze :

EDHDITEM ia|l |CUSTOMER N
PRODUCT _I ORDER _I
YEMDOR USER

[=
Owner : IAII j
Lz IA" j Lancel |

Selecting Tables

The Available tables list in the Select Tables dialog box shows the
tables in the data source. Drag the tables you want to work with from
this list into the Tables to use list.

If you no longer want to use one or more tables, drag them from the
Tables to use list to the Available tables list.

Editing and
Executing Files
on Different
Computers

Connecting to Data Sources

Filtering Tables

You can use the Owner and Type drop-down menus to filter the tables
shown in the Available tables list of the Select Tables dialog box.

For example, to show only tables owned by a specific user, select that
user from the Owner drop-down menu. To show only system tables,
select SYSTEM TABLE from the Type drop-down menu. (The
contents of these drop-down menus are determined by the data source;
only owners and types existing in the database are listed.)

When connecting to a data source, Witango relies on configuration
information which may not included in the Witango application file itself.
This becomes an issue when Witango Studio and Witango Server reside
on different computers, and when editing a file created on a different
computer. Witango cannot connect to the data source unless the
computer is set up correctly.

The following sections explain which pieces of data source information
are stored in the application file, which ones are not, and how to ensure
an application file works on a computer other than the one it was created
on.

ODBC and JDBC Data Sources

Application files assigned ODBC and JDBC data sources have these
pieces of information stored in them:

» ODBC or |DBC data source name

* user name

* password.

For the data source connection to be made on another computer, a data
source with the same name pointing to the original database must exist.

The user name and password must also be valid for the server pointed to
by the data source.

Oracle Data Sources

Application files assigned Oracle data sources have these pieces of
information stored in them:

* SQL connect string or database alias name

e user name

* password.

140

Connecting to Data Sources

If you specified a SQL connect string (such as T:199.230.9.8:0RCL)
when defining the data source, your application file works on any
computer the string points to, provided that it has access to the Oracle
database server. This is because all the connection information is stored
right in the string.

CHAPTER FIVE
Using Snippets 5

Snippets Basics and Operations

Snippets are named pieces of text, such as Witango meta tags, HTML tags,
standard headers and footers, plain text, JavaScript, and SQL. Snippets are
a good way of saving text, HTML markup, or other commands that you
use frequently. You can insert snippets into most text fields and text
windows throughout Witango Studio.

Witango Studio comes with a large defined set of snippets and also lets
you create your own snippets.

This chapter discusses how to:
* use snippets
* create new snippets

* edit and organize snippets.

* search snippets.

About Snippets

About Snippets

The Snippets
Workspace

Snippets allow you to quickly access text, meta tags, and HTML that you
use often. You can insert snippets into an editing window by dragging
them or double-clicking on a snippet when you have an HTML editing
window open.

A special feature of snippets lets you surround a selection of text with
HTML tags or meta tags, in addition to putting text, HTML tags, or meta
tags at a particular place.

Your snippets are saved as XML files within theWitango folder inside your
user’s Documents and Settings folder.

C:\Documents and
Settings\<your user>\Witango\MySnippets.xml

You can edit Witango snippet files with a text editor or HTML editor, or
edit them within the Snippets Workspace.

You manipulate and manage snippets in the Snippets Workspace.

To display the Snippets Workspace
I From the View menu, choose Workspace.

2 Click the Snippets tab.

Eind|

SCDpEIAII

=-E Corfiguration VYariables
(= HTHL

=-[1 JavaScript

-1 Meta Tags
[
[
[

() MetaTags With Help
H-(8 My Snippsts
R Y

Attributes | Values

98 48]

For more information, see
“Column Snippets” on
page 152.

Snippets are grouped in six folders:

About Snippets

Folders and snippets appear alphabetically.

3 To view the contents of a folder, expand it by clicking the “+” sign.

Builder Snippets contains pre-installed snippets used by the Search
and New Record builders. These may be edited to change default
HTML used in various places in the builders.

Column Snippets contains context-sensitive column snippets, used
in the Search action, the Search Builder, and the New Record Builder.

Configuration Variables contains pre-installed snippets of the
Witango configuration variables. They are organized by category and

by variable scope.

My Snippets contains snippets you create and edit.

Standard Snippets contains pre-installed snippets, which are not

editable.

Meta Tags with Help contains a list of Witango meta tags with
context sensitive help and keyboard shortcutting. For more
information see Meta Tags with Helppage 177.

The following are examples of some of the snippet folders and snippets

available in the Snippets Workspace:

=24 e pets

-1 Mew Record

E] Form Foater

E] Farm Header

E] Mew Record Response
-0 Search

----- E] Delete Responze

----- E] Form Foater

----- E] Form Header

----- E] Mext_Previous Buttons
----- E] Mo Matches

----- E] Fecord Detail Footer
----- E] Record Detail Header
----- E] Record List Foater

----- E] Fecord List Header
----- E] Update Response

B By
@ Application
D Arrays

3 Data Fomats
[Data Sources

| Server Start/Stop

3 uRL Requests

(22 Variables

[£] alUserkey

[Z] configPasswd
defaultScope

]
E] domainS copekey
]
E

uzerkey
variableTimeout
E] varniableTimeoutT igger
B+ By Scope
723 Application

143

Working With Snippets

Working With Snippets

Inserting To insert a single snippet into an application file
Snippets

Do one of the following:

* Drag the snippet to the text field you want (for example, the Results
editing HTML window).

* Place your cursor where you want the snippet inserted, then double-
click the snippet (HTML editing windows only).

* Right-click on the snippet and choose Insert from the context-
sensitive menu that appears.

* Right-click on the snippet and choose Copy from the context-

sensitive menu that appears. Right-click in an editing window, and
choose Paste from the context-sensitive menu.

Tip The content of a snippet appears as a Windows tool tip if you
place your mouse cursor over the snippet.

To insert multiple snippets into an application file
I Select the snippets you want to drag by doing one of the following:

* Click a snippet, hold down the SHIFT key, and click the last item
you want to select. All items in order between the first and last
snippet you clicked are selected.

* Click a snippet, hold down the CTRL key, and select additional
snippets (discontiguous selection).
2 Insert the snippets by doing one of the following:

* Drag the snippets into the text field you want.

* Place your cursor where you want the snippet inserted, then
double-click the snippets to insert them.

* Right-click on the snippets, and choose Insert from the
context-sensitive menu that appears.

* Right-click on the snippets, and choose Copy from the context-
sensitive menu that appears. Right-click in an editing window and
choose Paste from the context-sensitive menu that appears.

144

Creating and
Editing
Snippets

Working With Snippets

Note The Copy command copies the content of a snippet to the
Windows clipboard. The Insert command copies the content of the
currently selected snippet.

You can create your own snippets in the My Snippets folder to
automate repeated tasks. You can also edit snippets in the Builder
Snippets folder, or copy other snippets into the My Snippets folder to
customize them to your needs.

Editable and Non-Editable Snippets

* Editable snippets can be edited, copied, inserted, deleted and
renamed. You can also show their properties. Snippets in the
Builder Snippets and My Snippets folders are editable.

* Non-editable snippets cannot be edited, deleted, nor renamed. You
can copy their contents to the clipboard, and show their properties.
Snippets in the Column Snippets, Configuration Variables, and
Standard Snippets folders are non-editable.

To create a snippet with existing text

I Drag text to a folder in the Snippets Workspace.

2 A snippet is created containing the text you dragged. The name of
the new snippet defaults to “Untitled” and is editable. Type in a new
name.

To create a snippet with new text

I Do one of the following:

* From the Edit menu, choose Snippet, then choose New.

* Right-click in the My Snippets folder of the Snippets
Workspace, and select New Snippet from the context-
sensitive menu that appears.

145

Working With Snippets

146

The New Snippet window appears:

Mame: oK I
|
Cancel

Create in thiz folder:

-1 My Snippets

2 Fill in the window as follows.
Name. Assign a name to the new snippet.

Create in this folder. The My Snippets folder is shown by default.
Select where you want to create the new snippet.

3 Click OK.

The Snippet contents window appears:

B My Snippets : My First Snippet

4 Type in the content of your snippet or insert text from elsewhere.

Working With Snippets

Using Placeholders in Snippets

When you right-click the Snippet contents window, the Insert

Placeholder command is listed in the context-sensitive menu that

appears, in addition to the standard Witango editing commands.
Unda
Feda

Cut
Copy
Paste
Delete

Select Al

Insert Meta Tag...

Insert Placeholder inserts a special symbol—the yen symbol, ¥—into
the Snippet contents window. This placeholder character allows you to
create snippets that put HTML tags or meta tags around text you select
before inserting the snippet. For example, you can create a snippet of the
following text:

<H1>¥</H1l>

To use this snippet while editing HTML, you select the text you want to
apply the <H1> format to, and then drag the snippet into the editing
window or double-click the snippet. The selected text is surrounded by
the <H1> and </H1> tags.

Editing Snippets

To edit the contents of a snippet
I Do one of the following:

* Right-click the snippet you want to edit, and choose Edit from
the context-sensitive menu that appears:

Edit

Copy
Inzert
Delete

Fiename

v Allow Docking
Hide

Froperties

* Hold down the Ctrl key and double-click the snippet.

147

Working With Snippets

The Snippet content window appears:

B My Snippets : My First Snippet

This is the text of wy first snippet.l =
=
[« 2]

2 Edit the text.

You can edit multiple snippets. Choosing Edit from the context-sensitive
menu opens the contents window for all the selected snippets.

Managing You can create new folders to organize your snippets in the My
Snippets and Snippets folder. This feature is useful if you want to categorize your
snippets by type (for example, meta tags, SQL, HTML, and text snippets).
Snippet Properties allows you to see the location and size of snippets
and snippet folders.

Snippets
Folders

Snippets Folder

To create a new folder in the My Snippets folder
I Do one of the following:

* Select the My Snippets folder. From the Edit menu, select
Snippet, and then choose New Folder.

* Right-click the My Snippets folder, and choose New Folder
from the context-sensitive menu that appears.

A folder called Untitled appears. The name is already selected
so you can change it.

2 Type in a different name.

To rename a snippet or snippet folder
I Select a snippet or snippet folder, and do one of the following:
¢ From the Edit menu, choose Rename.

* Click the snippet or snippet folder again.

* Right-click the snippet or snippet folder, and choose Rename
from the context-sensitive menu that appears.

148

Copying,
Moving, and
Deleting
Snippets

Working With Snippets

2 The name of the snippet or snippet folder becomes editable; type in
the new name

Note Snippet names must be unique inside a folder.

Snippet Properties

To see the properties of a snippet or snippet folder
I Select the snippet or snippet folder.
2 Do one of the following:

* From the View menu, choose Properties.

* TypeAlt+Enter.

* Right-click the snippet or snippet folder, and choose Properties
from the context-sensitive menu that appears.

The Snippet Properties or Snippet Folder Properties dialog box appears:

x
General |
MName: Delete Response Size 648 bytes

Location: CDocuments and SettingsySophiWitangolBuilderxml

The Snippets Folder Properties and Snippets Properties dialog boxes
displays the name and location of the snippet folder or snippet; the
Snippets Properties dialog box also displays the size and last modified
date of the snippet.

Once you have the Properties dialog box open, clicking on different
snippets or snippet folders displays the properties of that snippet or
snippet folder.

Snippets in the Standard Snippets, Configuration Variables and
Column Snippets folders are non-editable and cannot be edited within,
nor deleted from those folders. However, they can be copied into the My
Snippets folder to be edited and organized.

To copy a non-editable snippet to the My Snippets folder for editing

* Drag the snippet from the Standard Snippets, Configuration
Variables, or Column Snippets folders to the My Snippets
folder.

149

Working With Snippets

To move a snippet within the My Snippets folder

* You can move snippets to a different folder within the My Snippets
folder by dragging snippets to their new location.

To duplicate a snippet within the My Snippets folder

* Hold down the CTRL key, and drag the snippet.

To delete a snippet or snippet folder
I Select the snippet or snippet folder.
2 Do one of the following:

¢ From the Edit menu, choose Delete.
ﬂ * On the main toolbar, click the Delete icon.
* Press DELETE.
* Right-click the snippet or snippet folder, and choose Delete
from the context-sensitive menu that appears.

A dialog box appears, asking you to confirm that you want to
delete the snippet.

3 Click OK.

%

Note You can delete items from only the My Snippets and Builder
Snippets folders.

If you want to delete multiple snippets, select the snippets and choose
Delete from the context-sensitive menu.

Searching The Snippets Workspace provides the facility to search the Snippets for a

Snippets given text sting. The search conducted by the Witango Studio is a POSIX
regular expression search. For more information on the construction of
regular expressions see Finding and Replacing Textpage 25.

Search

Snippets\kin

§c0ps|AII

®-[& Builder Snippets
----- (@ Column Snippsts
=-E3 Configuration Variakles
B[, HThL

- JavaScript

-1 Meta Tags

=8 MetaTags With Help
(8 My Snippets

B HhL

Working With Snippets

The Studio will conduct a search on all snippets folders or a specific
snippet folder.
To Search for a Snippet

I Enter your regular expression in the Find field.

2 Select the scope you wish to conduct the search in.

3 Select the icon to conduct the Find From Top or Find Next.

Regular =]
Expression
P — ingldefine LI

Scope -1

Builder Snippets

Column Snippets

Configuration Variables

HTHL

Javascript

hdeta Tags ~

[E'l tetaTags With Help
#-L8 My Snippets
R Y

@
=
o

Find Next Find From Top

4 Select the icon to conduct the Find From Top or Find Next.
5 The first matching snippet will be highlighted in the snippets window.

6 If the snippet is not the one the user requires, the user can continue
the search by clicking the Find Next button until the required
shippet is located.

~[E] <@DBMS>
E] <@DEBUG»<}{@DEBUG>
2] «@DEFINE>

=
E] «@DELROWS>
E] «@DISTINCT>
E] <@Docs>
E] <@D0OM>
I TN AT ﬂ

152

Column Snippets

Column Snippets

The Column Snippets area of the Snippets Workspace becomes active
when the following are displayed:

¢ Results HTML of the Search action.

The Search action’s Select columns appear and the Columns
Snippets folder expanded, if necessary. (The Search action appears
in the actions generated by the New Record Builder and Search
Builder, as well as a separate action.)

* New Record Response HTML in the New Record Builder.

Shows all the columns from the table into which the new record is
being added.

The content of each snippet is <@COLUMN name>, where the column
name is the name from the Search action or New Record Builder you are
editing.

CHAPTER SIX

Setting Preferences

Changing Your Witango Studio Preferences

The default preferences for Witango Studio are automatically set during
installation. If you want to change the various settings required by the
application, you can do so using the Preferences dialog box.

This chapter describes each of the following preference settings:

Studio, data source, and online help dialog box options
HTML and text options

source control options

compile options

objects options.

Using the Preferences Dialog Box

Using the Preferences Dialog Box

The Preferences dialog box is where you can view and change the many
options available in Witango Studio.
To use the Preferences dialog box
I From the Edit menu, choose Preferences.
The Preferences dialog box appears. See page 155.

2 Set Witango preferences using the five tabs in this dialog box: the
first for general preferences, the second for options affecting text
editing windows, the third for source control the fourth for compile,
and the fifth for objects. Switch among preference sections by
clicking the appropriate tab to display the options available.

For more information, see “Selecting Options” on page 155

3 After setting your preferences, click OK to save your changes and
close the Preferences dialog box.

Any open editing windows are automatically updated with any new
settings.

Selecting Options

Selecting Options

General To display the General section of the Preferences dialog box, if not
already displayed, click the General tab.
General | Text I Source Eontroll Dbiectsl
— Editor option — Data zource options
[+ ‘pen text filez in projects using E ditor i | W Include system tables
¥ Save lastused page format settings in the . |25—
Builders and uze them as defaults for new Mavimum T ables:
Builders
— Help option — Dependencies
¥ Show help didlog W Show Tip of the Day V ‘wiam if unresolved

— Site Option:
™ Close file transfer progress dialog when operation completes

()8 I Cancel

* Studio options

Opening a text or HTML file in the it aaltan
Project Workspace by default opens | ¥/ Open testfiles in projects using Editor

the file in Witango's built-in editing | ¥ Salstusdrgsfome et
window. If you want to use the Bl

application defined for that file type

in the Windows Explorer instead, deselect the Open text files in

projects using Witango Studio option.

Check the Save last-used page format settings in the Builders and use
them as defaults for new Builders option to save and reuse page
formatting settings for the Search Builder and New Record Builder.
Page formatting settings are saved independently for each type of
builder.

* Data source options

Select the Include system tables Data source options
option to include a data source’s
system tables in the Data Sources Masimum Tables: |25
Workspace. This option is disabled by
default. System tables contain meta-
data; that is, information about the database itself, users, and so on.

Selecting Options

For more information, see
“Working With Project
Dependencies” on page 78

For more information
about FTP, For more
information, see “Working
With Project FTP Sites” on
page 82

Set the maximum number of tables you want to appear. The default is
25. If a data source has more than the specified number of tables, the
Select Tables dialog box appears, allowing you to work with a more
manageable subset of tables.

Help options

Select the Show help dialog option ~Hefp spiien
to show the Help Information dialog | I Shewhelpdislea I Show Tip Of Day

box, which tells you about associating
a Web browser with the HTML help system when you choose an
item from the Help menu.

Selecting this option is the only way to show the help dialog again if
you have previously selected Don’t show this dialog again in the
Help Information dialog box.

Check the Show TipWitango of the Day option to show the Tip
of the Day dialog box upon entering Witango Studio. The Tip of the
Day displays useful information about using Witango Studio more
effectively. It can be disabled by unchecking this option here or in the
Tip of the Day dialog box.

Dependencies

Check the Warn if unresolved option to show a warning about
missing data sources or objects referenced by Witango application
files and Witango class files.

Site Options

When you deploy (upload) or download a project file to a remote
site via FTP, the File Transfer Status dialog box appears. Check the
Close file transfer progress dialog when operation
completes option to automatically close the File Transfer Status
dialog box when the transfer is complete. Otherwise, you can close
it by clicking Close on the File Transfer Status dialog box. This
option is unchecked by default.

Selecting Options

Text When you click the Text tab in the Preferences dialog box, the following
text options appear:

Preferences E

General Text |Source Eontroll Dbiectsl

~Tewt——————————————— [~ Spntax Coloring

FEont: Cateqgory:

Size: 122 = Eolorrl Il Black v[

Tab Size: |3

V' Auta indent

ttribute Value

—Background—————— Comment Usze Defaults |
Cifet I L] white jv ¥ Show syntax coloring

()3 I Cancel |

Text

Select the basic text attributes for the text that ~rex

appears in the editing windows: Eont:
Size: 12 =
* Font. Select from the monospaced fonts rsim
. . . ab Size:
installed on your machine, such as Terminal,
V' Auta indent

Fixdsys, Courier, Courier New, and Lucida
Console.

* Size. Select from the point sizes available for the selected font,
suchas 9, 10, |1, 12, 14, 16.

» Tab Size. Type the number of characters you want to equal one
tab character. The default is “3”.

* Auto indent. This option, enabled by default, inserts a tab
character automatically at the start of a new line at the same
indent level as the previous line.

* Background

Color refers to the background color of the "Background

HTML editing window. Coor: [[whie =]

You can select from the colors in the drop-down
menu: Black, Maroon, Green, Olive, Navy, Purple, Teal, Gray, Silver, Red,
Lime, Yellow, Blue, Fuchsia, Aqua, and White. The default is “White”.

If you select a different color, the background of the Category menu
changes to show you the selected font, size, and color against that
background.

* Syntax Coloring

157

Selecting Options

In addition to setting a default ~ Syntax Coloring
font and size for text appearing in = taegw
the HTML editing window, you
can also add color to the selected
font for certain categories of text.

Eolorrl Bl Elack vl

ttribute Value

Coloring your text can make Coument Use Defauls |

editing of your text, HTML, and ¥ Show syntax coloring

meta tags much faster and easier,
and reduce the chances of making syntax errors. Only valid HTML
and meta tags appear in the specified color.

%

Note Meta tag attribute names are not currently checked for validity.

The default is to show the editing window text with syntax coloring
enabled. If you deselect the Show syntax coloring option, all text
in an editing window appears black on a white background.

The following table describes each category and the default color for
the text in the category:

Category Text Affected by the Setting Default Color
Text Text that is neither a meta tag nor HTML. Black
HTML Tag HTML tag names, for example, <BODY > Blue

and </BODY>

Meta Tag Meta tag names without any attributes, for ~ Green
example, <@POSTARG>

Attribute Name Meta tag attribute name, for example, Purple
NAME= in <@POSTARG NAME="Fred"s>

Attribute Meta tag attribute value, for example, Red

Values "Fred" in <@POSTARG NAME="Fred"s>

Comment Any text enclosed within the <eCOMMENT> Gray
<@/COMMENT> meta tag pair, including the
<@COMMENT>

<@/COMMENT> meta tags. This category
also includes the <@! > meta tag and HTML
comments.

To assign a different color to a category, select the category in the list,
then select a color from the Color drop-down menu. The colors
available are the same colors listed for Background on page 157.

Selecting Options

¢ Use Defaults

If you change text preferences and want to return to the defaults,
click Use Defaults.

Source Control When you click the Source Control tab in the Preferences dialog box,

For more information, see Note The Source Control tab only appears if you have a source

Using Source Control in control system installed on your machine. You must have your source

Witango on page 97. control system’s client software installed on the same machine as
Witango Studio.

Preferences E

General | Test Source Contral | Objects |

Add new projects to:

™ Prompt to add files when inserted into project
¥ Use dialog for checkout

¥ Include only selected files in dialags

Logir: I

"Swrce Code Contral Provider

| <Mot Logged In> Sdvaneed.. |
()3 I Cancel |

* Add new projects to. To add newly created Witango projects to
source control automatically, select the name of your source control
system in the drop-down menu. The default is Don’t Add New
Projects To Source Control.

* Prompt to add files when inserted into project. If you check
this option, when you add new files to a Witango project, Witango
Studio asks if you want to add the new files to source control. Click
Yes to add the files or No to cancel.

* Use dialog for checkout. Check this option if you want the Check
Out File(s) dialog box to always appear when you check out files.
Otherwise, the selected files are automatically checked out without
displaying the dialog box. A checkmark in the check box ([w]) beside
the file name in the Project Workspace indicates the file is checked
out.

* Include only selected files in dialogs. Check this option if you
want the Get Latest Version, Check Out File(s), Check In File(s), and
Undo Check Out dialog boxes to show only the files selected in the
Project Workspace for the particular operation. If unchecked, you do

Selecting Options

not see all the files the particular source control operation could
apply to.

Login. Enter the name you use to log in to your source control
system. The name you enter automatically appears in your source
control system’s login dialog box; otherwise, the user name field
remains empty.

Source Code Control Provider. This area displays the name of
your source control system. If you are not logged into your source
control system, the area is grayed out and contains the message “not
logged in”.

Advanced. Click this button to display some of the options available
for your source control system. Because the options appearing
correspond to the options for your particular source control system,
they may appear different than this example shows.

SourceSafe Options E

Generall Local Files Integration |

Connection Information
SourceSafe project: /D ocumentation/T emp/Test
SourceSafe Options E

General Local Files | Integrationl
I | Bemaye locallcopy after &dd on Ehek [k

I= | Bemayelocallcopyiater DElete
SourceSafe Options E

base:
General | Lozal Files | Integration |

I | Elways keep files checked aut
- q

I | Beuse [ast comment

Check in unchanged files: IUndo Check Out 'l] Hel
Help |
Usze wizual merge: IDnI_u if there are conflicts 'l
Double-click on a file: IASk vl

Editor far viewing files: Help |
I Browse... |

Folder for temparary files:

I\\Alderaan\\u"ader\vss\temp Browse... |
QK I Cancel | Help |

Click Help for a description of each of the available advanced
options and how to set them.

Selecting Options

Objects When you click the Objects tab in the Preferences dialog box, the
following objects options appear:
General | Text I Source Eontroll Dbiectsl
r— Editor option: — Data zource options
[+ ‘pen text files in projects using Editor i | W Include system tables
V' Save last-used page format settings in the . |25—
Builders and use them as defaults for new Marimumn T ables:
Builders
— Help option: — Dependencies
¥ Show help dizlog W Show Tip of the Day v wamn if unresolved

— Site Option

™ Close file ransfer progress dialag when operation completes

()8 I Cancel |

The Objects section allows you to view and edit search paths for
Witango class files. Because of the way Witango locates COM objects
and JavaBeans, it is not necessary to set up search paths to search for
them. This section applies only to Witango class files.

Directories

For more information, see This area displays the list of search paths that Witango uses to find
“Setting Search Paths for : : P
; s Witango class files whenever a Witango application file refers to them. If
Witango Class Files” on) .
page 434 you added Witango class files to the Object Workspace, the paths to
these Witango class files are automatically placed in this list. You can add

or delete paths in this list, using the following buttons:

i * Add. If the path you want Witango to search is not in the list, click
the Add button. A Browse for Folder dialog box appears.
x * Delete. If there is a path that you no longer need, you can delete it by

selecting it and clicking the Delete button.

When Witango searches for a Witango class file, it starts from the first
path specified in this list and continues from there. If two Witango class
files in different folders have the same name, Witango uses the Witango
class file in the first listed path.

You can change the order in which the directories are searched by
changing the relative positions of the paths on this list, using the following
buttons:

‘r {’ * Up and Down. Move the paths on the list up or down by selecting
them and then using the Up or Down buttons, so that they appear in
the order you want.

162

Selecting Options

Compile

&
n

When you click the Compile tab in the Preferences dialog box, the
following objects options appear:

x|

General | Text Build | Objectsl

¥ Show\Warnings

¥ Show Errars

— Compile

v Compile All

™ Retain Intermecdiate Files

Ol I Cancel |

The Compile section allows you to preset your defaults when running,
syntax checking reports and compiling your applications to J2EE. These
settings are only relevant to users of the Witango Studio Professional
edition.

The Report Options
* Show Information

Check this checkbox if you want the Syntax Report to show
information as to the status of the syntax check, ie, which file it
is currently working on.

¢ Show warnings

Check this checkbox if you want the Syntax Report to show
warnings, that is issues which may cause errors when a
compiled application is deployed. These warnings should be
reviewed by the user.

¢ Show Errors

Check this checkbox if you want the Syntax Report to show
errors. These errors will prevent the application being
successfuly complied for J2EE and should therefore be fixed.

Note These checkboxes will not prevent you accessing the information
once in the syntax report, they only affect what information is
immediately visible to the user.

Selecting Options

The Compile Options

The compile information settings allow the user to customise the compile
function such that.

* Compile All

Check this checkbox if you want the entire directory of source
files to be compiled. If the checkbox is not checked, then only
those files which have been modified since the last compile was
run will be compiled.

¢ Retain Intermediate Files

Once a successful syntax check is run on the source directory,
there are two steps which the compile facility undertakes to
generate the servlets. The first step is to take the .taf and
.tcft files to .java files. The second step is to take the .java
files to .class files. If the user wishes to retain the .java files,
this checkbox should be checked. The more usual approach
would be to run the compile without this option checked.

Selecting Options

SEcCTION |

Witango Building Blocks

How to Use Meta Tags and Variables

This section discusses two of the most important features of Witango
application files: Witango meta tags and Witango variables.

This section contains chapters on the following topics:

* Chapter 7, Working with Meta Tags on page 167
* Chapter 8, Working With Variables on page 181

Chapter 7 and a look through Chapter 8 are recommended for new
users of Witango. .

CHAPTER

Working with Meta Tags

SEVEN

Understanding how to work with Meta tags

Meta tags are special tags that are entered in Witango Studio and are
interpreted by Witango Server when your application files are executed.
They can do many different things in an application file, from controlling
the flow of information to performing an action on a data source to
setting or retrieving variable values.

Meta tags look like HTML tags, with a starting and ending angle bracket
(“<” and *“>”), but the character after the starting angle bracket is “@”, or
in the case of a closing meta tag, “/@”. When you are creating HTML in
Witango Studio, you insert meta tags just like HTML tags. The user’s Web
browser never sees the meta tags, as they are interpreted by Witango
Server before being sent to the Web browser.

You can find a complete and detailed list of Witango meta tags and their
attributes in the Witango Programmers Guide.

This chapter covers the following topics:

* introduction to meta tags

* how to insert meta tags in Witango application files, Witango class
files, and HTML documents created with Witango.

167

About Meta Tags

About Meta Tags

Meta tags are special commands to Witango that can do many things,
including control execution of Witango application files, return values
from a database, create variables, and return the values of variables. One
of the places these tags have their effect is in the HTML returned by
Witango Server to your Web browser; for example, Witango may return
HTML to the browser using meta tags that refer to form field values
(<@POSTARG>) and values returned from a database (<@COLUMN>).

Meta tags are interpreted by Witango Server at the application file
execution time and the resulting values, if any, are substituted where the
meta tags appear.

Most meta tags return values when interpreted by Witango Server. A few
Witango meta tags that control the flow of information or assign values
to variables do not return values. These include <@ROWS>, <@IF>,
<@IFEQUAL>, <@IFEMPTY>, and <@ASSIGN> meta tags.

Meta tags begin with the “at” symbol, “@”, to distinguish them from
HTML tags. Closing meta tags begin with “/@”. This documentation
shows meta tags in uppercase, but meta tags are case insensitive; that is,
<@if>, <@IF>, and <@iF> are all treated the same.

Meta tags often have attributes, much like HTML tags. These name/value
attribute pairs specify required and optional attributes of the meta tag.
For example:

<@ASSIGN NAME="last name" VALUE="Flintstone">
This example assigns the value “Flintstone” to the variable 1ast name.

You can leave the name of an attribute off if the attribute is required and
in its standard position; however, it is recommended that you use
attribute names to avoid ambiguity.

Where You Can Use Meta Tags

Where You Can Use Meta Tags

Most meta tags can be used in all places in Witango application files and
Witango class files where text or HTML can be inserted, including these
locations:

» attribute HTML that is attached to an action, including:

Results HTML
Error HTML
No Results HTML

* actions in a Witango application file or Witango class file, including:

parameters in Search, Update, and Delete actions

column values in Update and Insert actions

Maximum Matches and Start Match fields in Search actions
External action parameters

File action parameters

Assign actions (both name and value)

If action parameters

¢ custom and column references used in database actions

¢ SQL entered into the Direct DBMS action window

* HTML files included using the <@ INCLUDE> meta tag

* most attributes for other meta tags.

Where you can insert meta tags, the context-sensitive menu shows
Insert Meta Tag.

170

Combining Meta Tags

Combining Meta Tags

When you use meta tags in action fields or in attributes of other meta
tags, you can use multiple meta tags and mix literal values with meta tags.
For example, in a column value field parameter for an Insert action, you
could specify:

<@POSTARG NAME=prefix><@POSTARG NAME=suffix>
This indicates the concatenation of the prefix and suffix form fields.

To give a long distance code in a standard format that includes spaces and
meta tags, the parameter would look something like the following:

+1 <@POSTARG NAME=area code> <@POSTARG
NAME=phone num>

Quoting Attribute Values

Quoting Attribute Values

Only attributes that have spaces in them need to be quoted, but it is
never wrong to quote attributes. Either single or double quotes can be

used.
For more information on <@CALC EXPR=3+4 PRECISION="2">
the rules for quoting <@CALC EXPR="3+4" PRECISION="2">
attributes in meta r.ags, see
the Witango Programmers . .
Guide. Both examples are correct, as is the single quote

<@POSTARG NAME='homer's>.

Tip For new users of Witango, the best method to adopt is quoting all
attribute values.

171

Inserting Meta Tags

Inserting Meta Tags

For more information, see
“Working With Snippets”
on page [44.

Meta tags can always be entered by typing them or dragging a meta tag
snippet into your Witango application file or Witango class file. There is
also a shortcut to inserting many common meta tags: the Insert Meta Tag
dialog box. This dialog box does not contain all of the meta tags; some
must be typed in or dragged in from the Snippets Workspace.

The Insert Meta Tag command, available from the Edit menu or the
context-sensitive menu, inserts a meta tag into a Witango application file
or Witango class file. This dialog box shows common meta tags in a
category drop-down menu. This provides a quick reference for many
common meta tags.

To insert common meta tags into your Witango application file or
Witango class file
I From the Edit menu, choose Insert Meta Tag.

The Insert Meta Tag dialog box appears:

Insert Meta Tag

Category: ({0

Mame:

—Walue type

& Single valus

' fray of values

—Argument Type
& Either

" Form figld
" URL argument

= | Lancel |

2 From the Category drop-down menu, select one of the five
options:
* Form Field or URL Argument
* Variable
* Current Date or Time
* Request Parameter
* Action Result ltem

Selecting a category changes the dialog box to show the
appropriate fields for that category of meta tag.

Inserting Meta Tags

3 Select or enter the attributes necessary for the meta tag you are
inserting.

4 Click Insert.

The Insert button is enabled only when you have entered sufficient
information to construct the meta tag.

The meta tag and its attributes are placed at the insertion point in your
Witango application file or Witango class file when Insert is clicked. The
various types of meta tags you can insert are described in the following
sections.

Form Field or URL Argument

To insert a meta tag that returns the value of a form field or a URL
argument, choose Form Field or URL Argument from the Category
drop-down menu. These meta tags are <@SEARCHARG>, <@POSTARG>,
and <@ARG>. A name must be specified. (The name of an argument is
assigned in the HTML form that is set up by the creator of a Web page.)

Insert Meta Tag

or UBL

Category: |EEN Argumeit

Mame:

—Walue type

& Single valus

' fray of values

—Argument Type
& Either

" Form figld
" URL argument

= | Lancel |

Once you have specified the name, the radio buttons have the following
effects:

* Single value has no effect on the inserted meta tag.

* Array of values adds the TYPE=ARRAY parameter to the meta tag.

Use this option to get all values for form fields which may contain
multiple values (such as lists).

¢ Either inserts <@ARG>.
¢ Form field inserts <@POSTARG>.
* URL argument inserts <@SEARCHARG>.

173

Inserting Meta Tags

Variables

To insert a meta tag that returns the value of a variable (the <@VAR> tag)
with the Insert Meta Tag dialog box, choose Variable from the
Category drop-down menu.

Insert Meta Tag

LCategony: |FjSHA

Mame: I j
Scope: IDefauIt j
™ Amay Element

Blow: I

LColumr: I

= | Lancel |

The following attributes can be assigned for insertion of <@VAR> with the
Insert Meta Tag dialog box:

* Name contains an alphabetized list of variables assigned to (via
Assign actions) in the current Witango application file or Witango
class file. Select one of the variable names or type one in. This
attribute is required and inserts the NAME attribute.

* The Scope drop-down menu contains:

e Default
* Request
e User

e Cookie

* Application
¢ Domain

* System.

If the scope is other than default, the SCOPE=selectedScope
attribute is added to the meta tag.

* The Row and Column fields are enabled only when the Array
Element check box is checked. This option adds [rownumber,
columnnumber] to the variable name. If you leave either of the
Row or Column fields empty, the value defaults to “*”, which
means all rows or columns are returned.

For more information, see
“<@CURRENTDATE>,
<@CURRENTTIME>,
<@CURRENTTIME-
STAMP>" in the Witango
Programmers Guide.

Inserting Meta Tags

Current Date or Time

To insert the current date or time using a meta tag, choose Current
Date or Time from the Category drop-down menu.

Insert Meta Tag

Lategory:

Current D ate or Time

& Current date

' Current time

' Current timestamp

FEormat:

Default j

Inzert I Lancel

This action inserts <@CURRENTDATE>, <@CURRENTTIME>, or
<@CURRENTTIMESTAMP>. There are various options you can set for
Current Date or Time.

If you select a format other than Default, the FORMAT attribute is added
to the tag.

The Format list contains several common formats of the type denoted
by the Current date, Current time, or Current timestamp radio

button. When the radio button selection changes, the Format selection
reverts to Default.

175

Inserting Meta Tags

Request Parameter

To return a value pertaining to the current user request, choose
Request Parameter from the Category drop-down menu.

Insert Meta Tag

Lategory: ({21

Parameter:

Client Diomain
Client |P &ddress
Client Browser
Server Address
Server Port
Fieferer Page URL
Method

Inzert I Lancel |

The Parameter list includes items corresponding to all of the
<@CGIPARAM> tag parameters.

This action inserts <@CGIPARAM NAME=paramName>, where paramName
is the CGI parameter name corresponding to the selected item in the list.

Action Result Item

To insert a meta tag that returns values from the first row of results for
previously executed actions in the current application file execution,
choose Action Result Item from the Category drop-down menu.

Insert Meta Tag
Category: [action Result kem [~
Action: I Search j
Item Murnber: I

Only items from the first row of action results are available
with thiz meta tag. Use the resultSet variable to access items
fram ather rows.

= | Lancel |

Action result items specified here are data from the first row of results
generated by the action. A Search action, for example, may return 100
rows of data in ten columns. Specifying action result item six from that

176

Inserting Meta Tags

action (<@ACTIONRESULT searchActionName 63>) gives you the value
from row one, column six.

Meta Tags with The Snippets Workspace includes a folder known as Meta Tags With

Help Help. This folder contains a snippet for each Witango Meta Tag.
Meta Tags 7 ji
. Fin -
With Help Srope|Al |=fe it

& Builder Snippets
{8 Column Snippets
B3 Configuration Variables
{8 HTML
2 JawvaScript
1 MetaTags
= MetaTags With Help
8 My Snippets

CRE LY
Attributes Values
Meta Tag Help
Window — g
EREERRSE

Selecting a Meta Tag in this folder causes the Meta Tag Help Window to
be populated with context sensitve help for this tag.

= x|
Eind| =]
gcopllAH LI &
T [E «@ARGNAMES> Al
~[E] <@ARRAY> =
E] «@AsCl
Meta Tag Selected —— E) «@ASSIGN>
5 «@BIND>
~[E] «@BREAK>
-[E «@ralr ﬂ

Meta Tag Description

> <MDASSIGN> Assigns a value 1o a vanable.

Aftributes Values

Meta Tag Attributes

MAME
WalLE
EXPIRES
PATH
DOMAIN
SECURE

FHEENIEN

177

Inserting Meta Tags

The Meta Tag With Help workspace provides not only context sensitive
help as to the attributes available with this meta tag, but also acts as as
keyboard shortcut.

The user can enter values in the value list for each attribute and then drag
the snippets into text fields or windows within the Witango Studio.

i
Eind ~]
ECDpEIAll j &
----- [E] <@ARGNAMES> 2
----- =] <«@ARRAY> g
----- [E] <«@asCl>
— [E] <@ASEIGN
A - £ <@BIND>
----- [E] «@BREAK>
----- [E1 ctmral m ﬂ

<HDASSIGN> Assigns g value In 8 vanable.

Attributes | Yalues
SCOPE reguest
MAME sample
WALLE the walue

PATH
DOMAIN
SECLIRE

FHE=ER=N

|E Lntitled2 * : Results : HTML ;lﬁl.’

<@ABSIGN SCOPE="regquest" HNAME="sample" VALUE="the value" EXPIRES="" PATH="" DOMAIN="" SECURE=""

Results | 3] Enor

Where an attribute is limited to a specific list of values, these can be
selected from the value list which drops down as a menu.

Inserting Meta Tags

Einc|

§c0p£|.ﬂ\|l
i [E] «@ARGNAMES> -
E] «@ARRAYS i
Bl <@ASCI>
E] <@ASSIGH:
] <@EBIND>
E] «@BRE&K>
LE1 eimiral oy ﬂ
<HDASSIGN> Assigns 4 value b 4 vanable.
Attributes I Yalues |
scope | -
MAME “
VALLE request
EXPIRES user (-
cookie
PATH application ~
DORAIN
SECLURE
CHE=RR=N

To change an entry in Meta Tag With Help

Meta Tag With Help is stored as an .xml file (MetaTagsWithHelp.xml)
in the Snippets folder in your Witango Studio Program Folder. To edit
existing help or to add your own custom tags, simply edit the xml file

accordingly.

179

Inserting Meta Tags

CHAPTER

Working With Variables

EIGHT

Working with Variables in Witango

Variables are placeholders that you can assign a value to; they are created
using the <@DEFINE> meta tag assigned values using the Assign action or
the <@ASSIGN> meta tag.

Every variable belongs to a scope, which tells Witango if the variable is to
be used only for the particular application file execution, within a
Witango application, for a user, or for a particular domain being served
with Witango. Variables can also belong to special scopes within Witango
class files that apply to a method or an instance of a Witango class file.

Arrays are a special variable type that allow you to create a structured
data table with multiple values, as opposed to standard variables which
only store one value.

You can also create variables that contain XML data structures
(document instance variables) and variables that contain objects.

One important set of variables determines the behavior of certain
Witango options. These are called configuration variables.

Variables are covered in great detail in the Witango Programmers Guide,
and it is recommended that the user familiarise themselves with this
material before completing this chapter. This chapter provides a guide as
to how the Witango interface allows the user to work with variables.

182

Assigning Variables With the Assign Action

Assigning Variables With the Assign Action

To assign a variable

= * Drag the Assign action from the Actions bar into the Witango
j application file or Witango class file window.

The Assign action is inserted into the Witango application file or
Witango class file; a new variable assignment appears if it is a new
Assign action.

~ Example.taf : Assign M= E3

Scope Mame Value
Default

The following is an Assign editing window:

il = Untitled1 *; Assign ;Iglil

Walue

The Assign editing window consists of a three-column list. Each row of
the list shows the variable scope, name, and value.

You can add one or more variable assighments to each Assign action.

Editing Variable You type text in the Name and Value fields. The Scope field contains a
Assignments text field/drop-down menu that allows you to select a standard scope or
define a custom scope.

The standard scopes are Request, Cookie, User, Application,
Domain, or System. You can also choose default scope from the
Scope field. For information on how Witango assigns scope to variables
with default specified, see the Witango Programmers Guide.

Assigning Variables With the Assign Action

Context-Sensitive Menu

Using the context-sensitive menu, you can fill in names from previously-
assigned variables.

farmatting
fool

Ingert Assi £
nsert Sssignrnen oz

Delete Assignment

Froperties

The Document Variables context-sensitive submenu contains an
alphabetical list of all variables assigned (via Assign actions) in the current
Witango application file or Witango class file. Selecting an item from this
list sets both the scope and name for the variable assignment.

To add a new variable assignment to this window

Do one of the following:

¢ From the Edit menu, choose Insert.
= e On the main toolbar, click the Insert icon.

* Right-click the Assign window, and choose Insert Assignment
from the context-sensitive menu that appears.
To select a variable assignment

¢ Click the row.

To move a variable assignment

* Click an assignment and drag it to the desired position.

To delete a variable assignment
I Click the assignment you want to delete.
2 Do one of the following:

e From the Edit menu, choose Delete.
ﬂ ¢ On the main toolbar, click the Delete icon.
* Press DELETE.
* Right-click and then choose Delete Assignment from the

context-sensitive menu that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Assigning Variables With the Assign Action

Tip You can bypass the confirmation dialog box by holding down the
Ctrl key when choosing Delete.

To view Assign Properties
Do one of the following:

* From theView menu, choose Properties.

* Right-click on the row and choose Properties from the
context-sensitive menu that appears.

The Assign Properties window appears.

General | Cookie |

Mame: Ifoo

Walue:

Scope: I Cookie - l

The Assign Properties window consists of two sections:

* General. Click the General tab to edit the name, value, and scope

in the General section.

* Cookie. Click the Cookie tab to display controls for editing

attributes of cookie variables. (Each group of settings corresponds to

an element of the Set-Cookie HTTP header line.)

Note The Cookie tab to access the Cookie section appears only if the
scope for the current assignment is “Cookie”.

Assigning Variables With the Assign Action

The default values for new cookies are as shown:

General Eookiel
— Expiry Path
& Server root [/)
i therl Iminutes j “ gther:l
© Now
— Diomain
™ Bequire secure connection for client send
& Current server
i DLher:I
e Expiry

When user quits browser is the default cookie behavior as
described in the cookie specifications. When this option is chosen,
the Expires value is omitted from Set-Cookie line in the cookie
header.

After __ [time units]. The drop-down menu for time units has
minutes, hours, days, and years options. The text entry field holds up
to 31 characters; a meta tag can be specified there.

¢ Domain

Current server omits the Domain value from the Set-Cookie
line, causing the cookie to be valid for the current server.

Other allows specification of any domain string up to 3| characters.
“.example.com”, for example, would cause the cookie to be sent
back to www.example.com, demo.example.com,
sales.example.com, and so on.

¢ Path

Server root (/) specifies that the cookie be sent for all paths within
the specified domain.

Other allows specification of a path string up to 31 characters. For
example, /Witango/ would cause the cookie to be sent back only
for URLs below the Witango folder.

* Require secure connection for client send

True (enabled) or False (disabled). This option sets the Secure
value of the Set-Cookie line. If the value is set to true, then the
cookie is sent back by the Web browser only if a secure connection
is being made.

Shortcuts to Configuration Variable Assignments: Snippets

Shortcuts to Configuration Variable Assignments: Snippets

For more information, see
“Using Snippets” on
page 141.

For more information, see
“Using Snippets” on
page 141.

The Workspace contains configuration variable snippets which create
assignments for configuration variables. The configuration variable
snippets are organized alphabetically by category (Arrays, Data Format,
Debugging, and so on) and by Scope (Application, Domain, Local, System,
and User). This provides you with a quick way of creating assignments to
configuration variables by dragging these snippets into an Assign action
window or an HTML editing field.

To use the configuration variable assignment snippets

I Open the Snippets Workspace by showing the Workspace and
clicking the Snippets tab.

2 Expand the Configuration Variables folder.

= - By Categor:
D Application

1 Data Sources
@ Debugging

@ Server Start/Stop
[URL Requests
-0 Varisbles

] allserkey

[Z] configPasswd
[£] defaultScope
E] domainS copek.ey
2] userkey

[£] varisbleTimeout

I'_—'ID By Scope
E-C0 Application |

A tooltip appears if you place your cursor over the snippet,
giving the content of the snippet.

3 Choose the configuration variable to which you want an assignment
created, and drag it into the HTML or Assign action window.

Dragging a configuration variable snippet into the HTML window creates
an assignment using meta tags, for example, <@ASSIGN
NAME="currencyChar" SCOPE="Local" Value="¥">. Witango puts
your cursor at the special ¥ symbol, so you can just start typing the value
of the configuration variable.

Shortcuts to Configuration Variable Assignments: Snippets

When you drag a snippet into an Assign action window, the configuration
variable assignment is automatically created for you.

The Value field becomes active, ready for you to type a value in:

~ Example.taf : Assign M= E3
E] currencyCha Scope Marne Walue
@ dat?fFD t Damain dateFaormat b, d, Em, By
2] decim(\bar
@ staticl Default Fred <@ARG POSTARG MAME=Bamey TY...
[Z] thousan 1 Default counter 1
@ EITEE‘D_\TEL NLocal currencyChar ;I
iaE]
I H

If you choose a snippet without a defined scope (that is, from the
category section of the configuration variable snippet), the scope is set to

Default.

187

Shortcuts to Configuration Variable Assignments: Snippets

188

SECTION

Witango Builders

How to Use Witango Builders

This section contains a chapter on how to use Builders in general, and
two chapters giving details on the Search Builder and New Record
Builder.

This section contains chapters on the following topics:

* Chapter 9, Building Actions Using Witango Builders on page 191
* Chapter 10, Configuring the Search Builder on page 197
* Chapter |1, Configuring the New Record Builder on page 237.

This section is recommended for new users of Witango.

CHAPTER NINE

Building Actions Using
Witango Builders

How Witango Builders Work in Application Files

Witango builders help you create and generate a sequence of actions to
perform specific tasks. Builders are added to an application file in exactly
the same way you add any other action.

Once you add a builder and configure it, the actions the builder generates
are inserted automatically into the application file. Builder information is
saved in the application file format, making it cross-platform capable. This
means you can use any application file containing a builder across all
platforms.

Witango Studio provides two builders.

* The Search Builder builds the actions required to perform a search of
database records and to update and delete them.

For details about how to configure the Search Builder, See “About
the Search Builder” on page 198.

* The New Record Builder builds the actions required to add a new
record to a database.

For details about how to configure the New Record Builder, See
“About the New Record Builder” on page 238.

The topics covered in this chapter include:

* adding a builder to an application file
* generating builder actions

* details about the actions generated by the builders.

Adding a Builder to an Application File

Adding a Builder to an Application File

With a new or existing application file open, you add a builder in the same
way you add an action; that is, you drag the builder icon from the Actions

bar into the application file window.

When you drag either of the builder icons into an application file window,
the corresponding builder window opens. For example, if you drag the

Search Builder icon from the Actions bar into an open application file, the
Search Builder window opens so you can immediately set Search Builder

options.

o = [

RO oAYGEEAENS B & 4

PRk PEDRES AL

Dragging a builder from the
Actions bar adds the builder
to the application file, and
the builder’s options
window automatically
opens.

. Example.taf : Search_Builder

] untitled *

{ [Awioues
=8 Untitledt

7 Search_Builder

B|8|Z|=| B|512] 2] suidactons

Search I Record List] Record Detail]

The builder represents a
group, but the group is
empty until its actions are
built.

i [=1 3

Comments

Details Object/ Data

Search Columns: — Column Options

Fielditler |

[Iperatarn I j
) User enters value. €1 Fizedlvalie

Eield Tupe: I j

I= | nelivde it eriteriaif v alue s enmpt

General £ Joins £

In the application file window, the corresponding builder icon appears
with a default name, just like with actions. The default name for the

192

For more information, see
“General Forms of
Conditional Actions” on
page 306.

Page Format
Table Settings

Adding a Builder to an Application File

Search Builder is “Search_Builder” and for the New Record Builder,
“Record_Builder”.

Note Witango Studio can properly process one Search Builder and
one New Record Builder in the same application file. If you want to use
multiple builders of the same type in a single file, you must handle them
using If actions and additional request arguments.

If you add a builder to an application file that already contains the same
builder using the default name, Witango adds a number to the default
name and increments it by one for each subsequent addition, for
example, “Search_Builder1”, “Search_Builder2”, and so on.

Note The title of the builder window is in the same form as an action
window, <File name> : <Builder names>.

Within the application file, a builder behaves exactly like an action group.
That is, it contains actions that can appear in expanded or collapsed form.
In the preceding diagram, the Search Builder icon represents a group, but
the group is empty until its actions are built. Witango Server ignores
unbuilt builders.

Witango Studio by default saves your Witango builder page formats and
uses these settings for new tables you create in the builders, allowing you
to develop a consistent appearance for Web sites and Witango
applications quickly.

Unique page formats set in the New Record Builder and in each of the
Search, Record List, and Record Detail tabs in the Search Builder are
saved and used as defaults for new tables.

To change whether page format are saved

I From the Edit menu, choose Preferences.

Adding a Builder to an Application File

The Preferences dialog box appears:

Save page
format
settings
check box General | Text I Source Control I Objects I
— Editor option — Data zource options
\ [+ ‘pen text filez in projects using E ditor i | W Include system tables
¥ Save lastused page format settings in the .) |25—
Builders and uze them as defaults for new Mavimum T ables:
Builders
— Help option — Dependencies

¥ Show help didlog W Show Tip of the Day V ‘wiam if unresolved

— Site Option:
™ Close file transfer progress dialog when operation completes

()8 I Cancel

2 Click the General tab.

3 Under Studio options, check or uncheck Save last-used page
format settings in the Builders and use them as defaults for new
Builders.

Building the Actions

Building the Actions

Once you have entered all the relevant information in the builder

window, you can generate the actions.

To build Search or New Record actions in an application file
I Open a builder window (if it is not already open).

The following is an example of a builder window:

. Example.taf : Search_Builder

BlB|2|=| Bls|s] Build Actions |

Search I Record List] Record Detail]

Search Columns: — Column Options
H(NFEEERTE|
[Iperatarn I j
) User enters value. €1 Fizedlvalie
Eield Tupe: I j

I= | nelivde it eriteriaif v alue s enmpt

General £ Joins £

2 Enter the required information.

* For information on using the Search Builder, see Chapter 11.

* For information on using the New Record Builder, see
Chapter 12.

3 Click Build Actions.

The builder checks to see if you have entered all the information
required to build the actions.

* If you have not, an error message appears and the build process
stops.

* If you have, it builds the actions required to perform the task.

Building the Actions

For information on
generating actions in the
Search Builder, See
“Actions Built by the
Search Builder” on page
233. For information on
generating actions for the
New Record Builder, See
“Actions Built by the New
Record Builder” on page
248.

On completion, the actions appear in the builder group. The following
figure shows an application file window after successfully building actions
using the Search Builder:

NEET
Action Aftributes | Details | Object/Data .. | Comm... |
8 music
('<@ARG _function>'='sform’)
&]
(*@ARG _function>'='list)
i O Recordlist BIR products ® music
5 |2 ElselDetail [<@ARG _function>'='detail’}
¢ .0, RecordDetail F] products @ music
EF |22 ElselfDelete [<@ARG _function>'='delete’)
W Delete products 8 music
: DeleteResp. [
Er 1% ElseEror
i InvalidFunctio E]
LS Retun
Actions ji Browser /

You can view the hierarchy of a builder in an application file. Click either
the plus sign (+) or minus sign (-) to expand or collapse the builder group
accordingly.

When building actions, the builder replaces any existing actions in the

group:

* If the builder group is empty, the actions are inserted into the builder
group.

* If the builder group only contains the actions that were generated by

the builder and those actions have not been modified, the new
actions replace the old actions within the builder group.

* If there are actions in the builder group that the builder did not
generate, or the actions in the builder group have been modified, a
message box appears.

Editor B

The actions in the buillder group have been modified. Are pou sure vou want to replace the
actions in the builder group and loze your changes?

* To replace all actions in the builder group with the new actions,
click Yes.

* To stop the build action, click No.

CHAPTER TEN

Configuring the Search I O
Builder

Witango Search Builder Options and Setup

The Search Builder builds a series of actions that allows you to create Web
pages for users to search a database, view the results of the search, and
view, update, and delete individual records.

The topics covered in this chapter include:

» setting search, record list, and record detail options

* formatting the search form, and record list and record detail Web
pages

* customizing your Web forms and pages, and creating response
messages

* tips on modifying how the Search Builder builds actions

* defining joins.

197

About the Search Builder

About the Search Builder

What Users
See in Their
Web Browser

Using the Search Builder, you can quickly and easily build the actions
necessary to:

» display a search form allowing users to specify search criteria

» display a list of matching records

* allow viewing of detailed information on a single record

» allow editing and deleting of the records found.

When searching the database, users generally encounter three types of
Web pages: search form, record list Web page, and record detail Web

page.
This section describes what users experience when they visit your VWeb
site. The next section, How You Create These Web Pagespage 200,

gives you a brief idea as to how you can easily create this user experience
using the Search Builder.

Search Form

Based on the settings in each of the option groups and the actions
generated, the following is an example of a search form users see in their
Web browser. :

Search - Hetscape
File Edit Miew Go ‘Wwindow Help

| v

Prodl¥ame:

|
ProdType: |
Product Description: |

Price: I—

Find | FesetValues |

| Documert: Do ER=E N

On the search form, the user enters the criteria for the records to
return.

By default, a Begins with search is performed on text columns and an =
(equals) search on all others. If you want, you can instead let users select
each search operator from a drop-down menu.

To initiate the search, the user clicks Find.

About the Search Builder

Record List Web Page

Witango Server searches the data source for records matching the user’s
criteria and displays them on the record list Web page.

The following is an example of the record list VWeb page:

s Matching Records - Netscape

File Edit “iew Go ‘window Help

|»

There are 9 matching records. Displaving matches 1 through 5

ProdName ,m ,m
Oregen Coast Poster ,_,?

o0 o
Ghost Town Poster W,3—
Dieer Poster ,F ,T
Mew York Sleyline Poster 7.25 [165

MNext 4 Matches | =

| Document Done [EE B S

Broo s Coast Poster |9

L

%

Note Character data from data sources is by default stripped of trailing
spaces. You can disable this feature by using the configuration variable
stripChars: assign the variable the value false in local scope for a
particular application file, or; if you want to set the variable for all data
sources, use the Witango Administration Manager (the config.taf
application file) to change the variable’s value to false in system
scope.

If you want, you can set up the record list Web page to display Next and
Previous buttons, so users can browse through large result sets.

To view detailed information for a record, the user clicks the name of the
record in the list, which is hot linked to the record detail.

Record Detail Web Page

The record detail Web page displays more information on the selected
record and—if you allow it—lets the user edit or delete it.

About the Search Builder

The following is an example of the record detail Veb page:

b4 Detail - Netscape
File Edit Y“iew Go ‘Window Help

Product ID: 250

ProdName: IBrDoklngs Coast Poster

Vendor ID: |5 0

ProdType: Lirnited Edition Poster

Product |Bruuklngs Coast Poster by lan Johnson. Limited
Description:

Cost: Ig_u

Price: 16.0

Save | ResetValues |
=]

=
|Document: Dane [5 Rt o ah Se | g

How You When you open the Search Builder window you see three tabs: Search,

Create These Record List, and Record Detail. These tabs correspond to the three main

Web Pages groups of options you can specify. Each option group is represented by a
page in the Search Builder window:

To switch among these three pages, click the appropriate tab in the
Search Builder window.

About the Search Builder

For more information on Unless you are working with joins, make sure you select the General tab

’F;';:Zsés; 5\?}2%{?”5 °" at the bottom of the Search Builder window.
Database Tables on
page 357. % Untitled : Search_Builder

BB 2|=| 252 Build Actions |

Search] Record List Record Detail I

Dizplay [. Untitled1 : Search_Builder

B8 2] 2|52 Build Actions |

Search Record List I Record Detail]

Dizplay Columns: |— Column O ptions |

% Untitled1 : Search_Builder
B|B|Z|=| B|51|2] =] suidactons

Search I Record List] Record Detail]

Search Columns: — Column Options
| Field Tive: |
Operator: I j
Order By: € User enters value € Figed value
General [[Field Tupe: | |

General A Joi

™ Include in criteria if value is empty

General £ Joirs £

Search Page

The Search page allows you to specify the columns you want users to
search. It also defines the format of the search form you want users to
see in their Web browsers.

Record List Page

The Record List page allows you to specify the columns you want to
display in the record list that is returned to the user after a search. It also
defines the format of the record list Web page.

Record Detail Page

The Record Detail page allows you to specify the columns you want to
include on the single-record display Web page, which appears after a user
clicks a specific record in the record list. It also defines the format of the

202

About the Search Builder

Main Steps to
Use the Search
Builder

record detail VWeb page. In addition, you can set up the record detail Web
page to allow users to delete the record and/or edit specified columns.

Determining What is Displayed in the Web Browser

What you specify on the three pages of the Search Builder window
determines what the users see and are able to do in their Web browsers.
The follow table is a summary of the basic relationship:

Search Builder window Web browser

Search page search form
Record List page record list Web page
Record Detail page record detail Web page

The standard way to use the Search Builder is to fill out the contents of
the three pages of the Search Builder window, in the following sequence:

Search page
For more information, see “Setting Search Options” on page 204.
Record List page

For more information, see “Setting Record List Options” on
page 215.

Record Detail page

For more information, see “Setting Record Detail Options” on
page 223.

Then, format the pages for display in the Web browser and customize the
response messages related to these pages:

search form

For more information, see “Formatting the Search Form” on
page 212 and Customizing Your Search Form and Response Messages
on page 213.

record list Web page

For more information, see “Formatting the Record List Web Page”
on page 22| and Customizing Your Record List Web Page on
page 222.

record detail Web page

About the Search Builder

For more information, see “Formatting the Record Detail Web Page”
on page 227 and Customizing Your Record Detail VWeb Page and
Response Messages on page 228.

In some cases, you can simplify the process by skipping some steps. For
more information, see “Simplified Steps to Use the Search Builder” on
page 231.

Setting Search Options

Setting Search Options

2|

Search Builder

Search
Columns List

When you drag the Search Builder icon from the Actions bar into an

application file, the Search Builder window opens, displaying the Search
page:

. Untitled1 : Search_Builder

BB 2|=| B2 Build Actions |

Search I Record List] Record Detail]

Search Columns: — Column Options
| Field Tive: |
Operator: I j
" User enters value ¢ Fized value
Field Type: I j

™ Include in criteria if value iz empty

General £ Joirs £

You use the search options on this page to define how the search form
appears to the user, which columns the user can search on, and how the
values entered by the user are used to search the database. You can also
define fixed criteria in addition to the ones the user enters.

Tip You can save your Witango builder page formats to use for new
tables you create in the builders. For more information, see “Page
Format Table Settings” on page 193.

Drag columns from the Data Sources Workspace to this list to use them
in defining the search. Columns in the Search Columns list appear in
the format table_name.column_name. The order of the columns in the
Search Columns list determines the order of the fields on the resulting
search form.

Setting Search Options

The following table describes the operations you can perform on

columns:

To ... Do This ...

Reorder columns Select the columns and drag them to a different location in
the list.

Delete columns Select the columns. Choose Delete from the Edit menu,
press DELETE on the keyboard, select the Delete icon on
the main toolbar, or right-click and choose Delete from
the context-sensitive menu that appears.

Delete columns without Hold down the CTRL key while using the Delete

confirmation command.

Column Use the Column Options portion of the Search page to configure each
Options search column. You can specify how each column’s entry field appears on

the search form and how the value entered by the user is used to search
the database.

This title for this
column appears on the
search form.

r— Column Options

How the column value Field Tite: IF'ric:e
searches the database.

Operator: |= j
Lets the user enter the ——————{% User enters valus Fixed value
search value on the search it T |T91/ =l
form.

The type of value entry fie
to appear on the search
form.

Specify the value yourself and
prevent this column from

appearing on the search I Include in criteria if value is empty
page.

Includes the column, even
when no value is specified
by the user.

Field Title

In Field Title, set the title of the value entry field for the column as you
want it to appear on the search form.

Setting Search Options

Field Properties

Operator

Use this option to set the search operator for the column. For example,
if the operator is set to Begins with, Witango searches the database for
records that begin with the column’s search value. If you select User
Enters, the search form displays a drop-down menu of the operators
available, and the user can select which operator to use.

User Enters Value

Select this option if you want the user to enter a value in an entry field on
the search form. The available field types are: Text, Drop-down List, List
Box, Check Box, and Radio Buttons.

Field Type

To select a value entry field type for a column, select the column in the
Search Columns list and then an item from the Field Type drop-down
menu.

A Field Properties dialog box appears allowing you to specify values for
the field.

You can edit a field’s values at any time by clicking the Field Properties
button in the Search Builder window or by choosing Field Properties
from the Attributes menu.

The following describes each of the options in the Field Properties dialog
box for each field type:

* Text. Use the Text field type to provide single- or multi-line entry of

values.
Field Properties [%]
Drefault 4 alue: I
Text bo: Earee] |
I aximum Length: |4U— characters Password
“width: |4U— characters | Field check
Height: I‘I— lines / bOX
I Seroling Field I'm

Default Value is the default value you want to appear on the new
record entry form.

Maximum Length is the maximum number of characters the user
can enter in the field. This option is not available when Scrolling
Field is selected because HTML does not support it.

Setting Search Options

Width is the width of the field in characters.

Height is the number of lines of text displayed in the field without
scrolling. This field is available only when you select Scrolling Field.
Scrolling Field. The height of a non-scrolling field is always “1”.
Password Field. Selecting this option generate form input elements
with the attribute TYPE=PASSWORD, which conceals the characters
that the user enters into the text field (for example, often asterisks
or bullets are shown).

* Drop-down List, List Box, and Radio Buttons. Each of these
field types lets the user select the search value from a predefined list.

Drop-down List

List Box

Radio Buttons Color: @ Red () Green () Blme (O Oramge () Pugle () Pink|

For example:

Use the Field Properties dialog box for these field types to specify
the values and choose the default. The same dialog box appears for
all three field types.

To add an item to the values list

I From the Field Type drop-down menu, select Drop-down List, List
Box, or Radio Buttons; then do one of the following:

* In the Search Builder window, click the Field Properties
Field Properties icon.

* From the Attributes menu, choose Field Properties.
The Field Properties dialog box for the selected column appears:

Field Properties E

Mame: Walue:

I I I=| Selented

= ot
_ Coneel |

Lancel

Hew

LI Welete |

207

Setting Search Options

2 Choose New.
An “Untitled” entry appears:

Field Properties E

Walue:

IUntitIed " Selected

Untitled Untitled

Lancel

bkl

LI Delete

3 Type a name in the Name field.

4 Press TAB to copy the name into the Value field, or enter a value for
the item if you want it to be different from the name.

5 Click New to continue adding items to the values list.
6 When you have added all of your items to the values list, click OK.

The Name determines what the user sees for this item. The Value
determines what is used as the search value. If your database column
uses abbreviations or codes for values, you can enter a more user-
friendly value into the Name field and the actual value in the Value
field. For example, if you are creating a field to search a “state”
database column containing abbreviations such as “CA”, “NY”, and
“GA”, you can use these values in the list items’ Value fields, and the
full state names (“California”, “New York”, and “Georgia”) in the
Name fields.

The following table lists the other operations you can perform on
the values list:

To ... Do This ...
Set which item will be Select an item in the list and choose the Selected
initially selected option. The item then appears in bold in the list. If

you do not specify an item as Selected, the user’s
Web browser determines which item is initially
selected. Most Web browsers choose the first
item, but some do not select any in this case.

Delete an item Select it in the list, and click Delete. To delete
without displaying a confirmation dialog box, hold
down the CTRL key while deleting.

Fixed Value

For more information, see
“Field Type” on page 206.

Setting Search Options

To ... Do This ...

Create an item that causes Leave the Value field for that item empty and
the column to be omitted make sure the Include criteria if value is
from the search criteria empty option is not selected.

when chosen

* Check Box. The Check Box field type lets the user select between
an empty search value (unchecked) and a value you specify (checked).

Field Properties E

Checked Yalue: |2H =1 M=4

™ Initially Checked

Ok I Lancel |

Checked Value is the value to be used for the search if the check
box is selected by the user. If the check box is not selected, an empty
value is used.

Initially Checked specifies whether the check box should be
checked by default.

When this option is selected, the search value is hard-coded and no entry
field appears on the search form. The value you specify is used for every
search.

Using the Value drop-down menu, select one of the following options
for a fixed value:

* Value Entered. Use the text box provided to enter the search
value for the column.

* SQL Expression. The value returned by the SQL expression text
entered is used as the search value. The text entered is evaluated by
the database, and the result is used as the search value.

Note For ODBC data sources, you can enter ODBC scalar functions
here.

¢ SQL Statement. The SQL statement entered is executed, the
results retrieved, and the first data item of the results is used as the
search value. For example, if you enter:

SELECT MAX (cust num) FROM customer

the largest customer number is used as the search value.

Setting Search Options

Summary:

Options

Current Timestamp. The current timestamp (date and time
combined) on the Witango Server computer is used as the search
value.

Current Date. The current date on the Witango Server computer
is used as the search value.

Current Time. The current time on the Witango Server computer
is used as the search value.

CGI Parameters. The rest of the fixed value options are referred
to collectively as CGI parameters. They include Client Name,
Client Domain, Client IP Address, Client Browser, Server
Address, Server Port, Referer Page URL, and Method. They
are passed by either the user’s Web browser or the Web server with
each request to Witango. When you specify one of these parameters

as the search value, the parameter value used is the one passed in
when the user clicks Find.

The following table describes the settings you can make in the Column
Setting Column Options portion of the Search page:

To ...

Do This ...

Let the user specify the
search value for a column

Select the column in the Search Columns list. Select
the User enters value radio button. This option
defines the column as a user-searchable field, and a value
entry field will appear on the search form.

Specify the title to appear
for a column’s search form
value entry field

Select the column in the Search Columns list. The
column’s name appears in the Field Title field. Replace
the name with the desired field title. Witango
remembers the entered title and uses it as the default
the next time you use the column.

Specify the type of value
entry field to be displayed
for a column

Select the column in the Search Columns list. Make
sure the User enters value option is selected. From
the Field Type drop-down menu, select the type of
field you want displayed. A Value dialog box appears,
allowing you to specify the field attributes.

Include a column in the
search even if the user
leaves its value entry field
empty

Select the column in the Search Columns list. Select
the Include criteria if value is empty option. If the
user leaves this column’s value empty and clicks Find,
only records that have an empty value in the column are
returned. If the option is not selected (the default), the
column is omitted from the search when the user does
not enter a value.

Setting Search Options

To ...

Do This ...

Specify the operator
Witango uses when
comparing the database
column values with the
search value

Select the column in the Search Columns list. From
the Operator drop-down menu, select the operator
that specifies how you would like the column searched.
For example, Begins with searches for values that begin
with the entered value.

Let the user select the
search operator for a
column

Select the column in the Search Columns list. Select

User Enters from the Operator drop-down menu. A
drop-down menu of available operators appears beside

the column’s value entry field on the search form.

Hard-code the search value
for a column

Select the column in the Search Columns list. Select
the Fixed value option. From the Value drop-down
menu, select a search value. You can use one of the
preset values, such as current date or time, select Value
Entered to enter a value yourself, select one of the SQL
options to get a search value from the data source, or
select a CGl parameter. Columns specified as Fixed
value do not appear on the search form.

2]2

Formatting the Search Form

Formatting the Search Form

El

Page Format

You can set up format options to define how the search fields and their
titles appear to users on their Web browsers.

To change the format of the search form

Do one of the following:

In the Search Builder window, click the Page Format icon.

From the Attributes menu, choose Page Format.

The Page Format dialog box appears:

Table Settings

Border width: Inone j

Lancel |
Border color: Idefault - l

Background color: Idefault VI
Cell zpacing: Idefault - l
Cell padding: Idefault - l

Specify the table attributes as follows:

Border width. The width of the table border in pixels. Select none,
or from numbers | to 8.

Border color. The color of the table border. Select default or a
color from the list.

Note For Border color, Background color, Cell spacing, and Cell
padding, selecting default instead of a value omits that attribute from
the HTML and causes the Web browser’s default setting to be used
instead.

Background color. The background of the table. Select default or
a color from the list.

Cell spacing. The amount of space, in pixels, inserted between
individual cells in the table. Select none, or from numbers | to 8.

Cell padding. The amount of space, in pixels, between the border
of a cell and the contents of the cell. Select none, or from numbers
| to 8.

Customizing Your Search Form and Response Messages

Customizing Your Search Form and Response Messages

Header, Footer, Use Header HTML and Footer HTML to customize the search form by
and No Results specifying HTML to appear above and below the search form.

HTML No Results HTML lets you specify the HTML to return when no records
match the search criteria specified by the user.

To enter Header HTML, Footer HTML, or No Results HTML
I Do one of the following:

¢ In the Search window, click the Header HTML, Footer

Header Footer .
HTML HTML HTML, or No Results HTML icon.

¢ From the Attributes menu, choose Header HTML, Footer

HTML, or No Results HTML.
No Resules HTML The corresponding HTML editing window appears:
E Example.taf : Search_Builder : Search : HTML [_ (O] %]

k' DOCTYPE HTHML PUBLIC - FAWICH ADTD HTHML 3.2/ /EN™>

L

<HTML> =] B3

<HEAD .

<TITLE>=Search< /TITLE>

< /HEAD> =] B3

<BODT> ,-"EN">—
<P
nCelrument:

Header | Footerl 7] Ma Hesultsl

I
Header Footer |Tﬂ Mo Hesultsl

m] 2
Headerl Foater 9] Mo Hesultsl

You can switch between the HTML editing windows by clicking
on the Header, Footer, and No Results tabs at the bottom of
the HTML window.

2 Enter the HTML you want.

3 Close the editing window.

Customizing Your Search Form and Response Messages

Changing The search form contains two buttons below your search fields:

Button Titles ¢ The Find button initiates the search.

* The Reset Values button resets the entry fields to their default
values.
To change button titles
I Do one of the following:

ﬂ ¢ Click the Button Titles icon.

¢ From the Attributes menu, choose Button Titles.
Button

The Button Titles dialog box appears:

Button Titles E

Find: IFind

Beset Yalues: IHeset Walues

Lancel |

2 Enter new titles in the corresponding fields.

3 Click OK.

Setting Record List Options

Setting Record List Options

Display
Columns

Order By

The record list Web page consists of the results returned to the Web
browser after Witango has performed the search. The Record List page
of the Search Builder is used to define the appearance and functionality of
the record list Web page.

. Example.taf : Search_Builder

BB 2| | 2|51&] =] sudactons

Search Record List I Record Detail]

Dizplay Columns: — Column Options
HNFEENTEAN |

[rizplamse: I j
Image Fathn I
Farmiat fs: I j
[ecimals: I

= | EddHTL life breaks

[rder B — b aximurn b atche:

& Limit to: I‘]UU Mo Maximum

™ Show Multiple Pages If Limit Exceeded

General £ Joins £

Among other things, you can specify:

* which columns from each matching record are displayed
* the ordering of result records
* the maximum number of records to be returned

* whether you want Next and Previous buttons to appear, allowing
paging through large result sets

* which column or columns appear as links to the record detail Web
page.

Drag columns from the Data Sources Workspace to this list to have them
retrieved from the database and displayed on the record list Web page.
The order in which columns appear in the Display Columns list
determines their order on the Web page.

Records from the database are sorted on the record list Web page
according to the order specified in the Order By list. You can drag any

Setting Record List Options

Column
Options

number of columns into this list; however, each of the columns must also
appear in the Display Columns list.

The records are sorted by the first column listed. Then, records having
the same values in that column are ordered by the second column, and so
on. The default sort order is ascending, meaning records with lower
values in the sort column appear first in the list. You can toggle between

ascending and descending by clicking the = and = icons.

. Order By:
Ascend:jng = CUSTOMER. Customer D
sort order = CUSTOMER OrgMame
Descending
sort order

Use the Column Options section to set up options for each column in
the Display Columns list.

The title you assign appears
as the column title.
Specify how you want the

.

columns to display in the Web ™. [~ Column Options
browser after the search. *. | Field Title: IF'ric:e
Dizplay As: I Mormal Texst j

To display an image file residing—— Image Path: |
on your Web server, specify the Fomats: [No Farmaing |

image path.
Decimals: I
Lets you change how the vatie is | [AddHTHL line %alﬁs

formatted by adding a formatting
attribute to the <@COLUMN>

g The number of decimal
Automatically add line breaks to ~ Places you want to display
the HTML generated for the for number and currency
specified column. values.

Field Title

In the Field Title field, enter the text you want to appear as the column
title.

Display As

You can specify how you want the columns to display in the Web browser
after the search. From the drop-down menu, select from the following
options:

For more information, see
“Encoding Attribute” on
page 10 of the Meta Tags
and Configuration Variables
manual.

Setting Record List Options

Normal Text adds the following to the HTML generated for the
specified column:

[columntag]

If the Add HTML line breaks option is selected for the specified
column, the HTML becomes:

[columntag ENCODING=MULTILINE]

Link to Detail. Select this option to cause the selected column to
appear as a hyperlink to the record detail Web page; that is, the user
can click a value from this column and the detail for that record is
displayed. You can specify more than one column as a link to the
record detail.

If you specify no column as a link to the record detail VWeb page, the
first column is automatically chosen for you when actions are built.

Link to URL Stored in Column. If you have a URL stored in your
database column, select this option to automatically generate a hot
link. This option adds the following to the HTML generated for the
specified column:

 [columnvalue]

Link to E-mail Address Stored in Column. If you have an
e-mail address specified in your database column, select this option
to automatically generate a mailto link. This option adds the
following to the HTML generated for the specified column:

 [columnvalue]

Image: File Name Stored in Column. Select this option to
display an image file residing on your Web server.

When you select this option, the Image path field is enabled in
which you enter the path to the image.

This option adds the following to the HTML generated for the
specified column:

Image: URL Stored in Column. Select this option to display an
image file residing on the Internet; that is, your database stores a
URL pointing to the image. This option adds the following to the
HTML generated for the specified column:

217

Setting Record List Options

For more information, see
“Encoding Attribute” on
page 10 of the Meta Tags
and Configuration Variables
manual.

* HTML. Use this option if your database column contains HTML that
you would like to display. This option adds the following to the
HTML generated for the specified column:

[columnvalue ENCODING=NONE]

If the Add HTML line breaks option is selected for the specified
column, the HTML becomes:

[columnvalue ENCODING=MULTILINE]

Format As

The Format As field is enabled only when you select either the
Normal Text or Link to Detail option from the Display As drop-

down menu.

Each of the following options in the drop-down menu (except No
Formatting) adds a FORMAT="formatstring" attribute to the
<@COLUMN> tag in the HTML generated for the column in the Record List

action’s Results HTML.

The following table lists the options and the corresponding format string:

Option

Format String

No Formatting

None

Date datetime:@@dateFormat
Time datetime:@@timeformat
Timestamp datetime:@@timeStampFormat

Number with Commas

num:3-

*'@@thousandsChar',

'@@decimalChar',,,'-',

Number with No Commas

,,decimals,'@@decimalChar,,,'-',

Currency with Commas

num:3-*'@@thousandsChar',decimals,
'@@decimalChar','@@currencyChar',,
'@@currencyChar(',)

Setting Record List Options

Option Format String

Currency with No Commas ,,decimals,'@@decimalChar',
'@@currencyChar','@@currencyChar(',)

Decimals

Specify the number of decimal places you want to display for number and
currency values. The Decimals field is available only when you select one
of the number or currency options from the Format As drop-down
menu. The default is 0 for number options and 2 for currency options. An
empty or non-numeric value is evaluated as 0.

Add HTML line breaks

This option is available only when you select Normal Text or HTML
from the Display As drop-down menu and No Formatting is selected
from the Format As drop-down menu. Otherwise, this option is

disabled.
Maximum Use the options in this section to restrict the number of matches
Matches displayed on the record list VWeb page.

Display all records matching
the search criteria.

r— Maximum M atche:
Limit the number of ————* Limit ta: I‘]UU (’/ﬂo M awirmLim

records appearing on [Show Mutiple Pages If Limit Excesded
the Web page.

Include Next and Previous
buttons for displaying multiple
record list Web pages.

Limit To

Select this option to limit the number of records returned by the search
to the number specified. For example, to show only the first 10 records
matching the search criteria, select this option and enter “10” in the
Limit To field.

No Maximum

If you select the No Maximum option, all records matching the search
criteria are retrieved and displayed on the record list Web page.

Setting Record List Options

Show Multiple Pages If Limit Exceeded

If you specify a maximum number of matches in the Limit To field, this
option is available. If selected, a Next button appears on the record list
Web page (if the number of matching records exceeds the limit entered),
along with an indication of the total number of records matching and
which records are being displayed. When the user clicks the Next
button, the next group of matching records appears. A Previous button
appears on record list Web pages beyond the first, which allows the user
to go backwards in the list of matching records.

Choosing the Show Multiple Pages If Limit Exceeded
option causes result set information and a Next button to
appear on the results list VWeb page.

Thete are $ matching records. Displaying matches 1 throngh 4

| ProdMame | ProdType ‘ ProdDesc Price | Vendor Name
Horva Scotis Seascape |Signed Seene of wawves crashing upon the shore at Cape Sahle 250.0 |ACKIE
Original Island, Hova Scotia. Acoessories
FPortrait of Crirl Signed Watetcolor portrait of a young peasant girl leaning out of & |699.0 | Morris
Original window. Clorporation
Fruit Pasket Still Life |Poster Fruit basket still life in oil. Bananas, pears, red apples ina |49.95 |PrintCo
pevwterbowl.

Hew York Skyline Foster

Poster

Next 4 Matches |

West End Corp

Hew York City skyline at dusk. 16.5

Clicking the Next button takes the user to the next page of
results and displays a Previous button.

There are § matching records. Displaying matches 5 through 8

| ProdMame ‘ ProdType ‘ FProdDesc Price | YVendor Name

Cregon Coast Limited Edition | Oregon coast photograph by [an Johnson, Liraited 125 |Worldwide Posters

Poster Poster edition Tnlimited

Brookings Coast | Limited Edition | Brookings Coast Poster by Ian Johnson. Lirited 180 |'Worldwide Posters

Poster Poster edition Tnlimited

Ghost Town Limited Edition | Ghost town in winter. Limited edition photography (330 | Worldwide Posters

Poster Poster by Lo Iathews. TUnlimited

Dicer Poster Limited Edition | Deex peeking out behind a tree trank. Lirited edition 120 | 'Worldwide Posters
Poster photograph by Tan Johnson, TUnlimited

Previous 4 Matches

Formatting the Record List Web Page

Formatting the Record List Web Page

|

Page Format

Use the format options to define how the record list is displayed.

Witango displays results records in a table with one row for each record.

First Name Last Name Department
Carolynn | Peterson Zales

Dave Heartzdale | Accounting
Linda Stewart Adminstration
Aaron Erruth Arccounting
Peter Batlen Engineering
Linda Jennings Engineering
Peter Jacobson |Sales

Richard Frankin Sales

Jenna Srrith Adminstration
Erica Ilanley Zales

To change the format of the record list Web page
Do one of the following:

* In the Record List window, click the Page Format icon.

* From the Attributes menu, choose Page Format.

The Page Format dialog box appears. This dialog box is identical to the
one for the search Web page. See page 212 for details.

222

Customizing Your Record List Web Page

Customizing Your Record List Web Page

Header and
Footer HTML

Header Footer
HTML HTML

You use Header HTML and Footer HTML to customize the record list
Web page by specifying HTML to appear above and below the record list.
To enter Header HTML and Footer HTML

I Do one of the following:

¢ In the Record List window, click the Header HTML or Footer
HTML icon.

¢ From the Attributes menu, choose Header HTML or
Footer HTML.

The corresponding HTML editing window appears:

E Example.taf : Search_Builder : Record List : HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

E Example.taf [l Sy iins

» <HEAD>
r/BODT= «TITLE=Matching Records</TITLE>
</HTHL> < /HEAD>

<BODY>

<P

<[IF "<ETOTALROWS: = -17>
There are <Ex<ENUMROWSE:< /B> matching records.
<BELZEIF "<@TOTALROWS: '= 17
There are <ETOTALROWS>< /B> matching recorda.
<BIF "<EMAXNROWS: > 17
<P:Displaying matches
<Br<@STARTROW:< /B>
through
<ECALC "<@ITARTROW: + <ENUMROWS: - 17=.
</BIF>
<BEL3E>
There is <E>=1 matching record.
</HBIF>
<SP

Header | Footerl

Header Footerl

You can switch between the HTML editing windows by clicking
on the Header and Footer tabs at the bottom of the HTML
window.

2 Enter the HTML you want.

3 Close the editing window.

Setting Record Detail Options

Setting Record Detail Options

Display
Columns

Use the options in the Record Detail window of the Search Builder to
define the appearance and functionality of the Web page returned when a
user clicks on a record on the record list VWeb page. This VWeb page
displays a single record and supports user editing and deletion, if you
choose to allow it.

. Example.taf : Search_Builder

B|B| || 2|51|2] =] suidactons

Search] Record List Record Detail I

Dizplay Columns: — Column Options
Field itler |

I= | Allaw Wedste: 7| Beguired
Eield Tupe: I

E
E

[rizplamse: I

Image Fathn I
Eormatise: I j
[ecimals: I

= | EddHTL life breaks

— Record Dptions
= | el D elete of Bleeord o

| =

General £ Joins £

The columns appearing in this list are displayed on the record detail Web
page. To add a column to the list, drag it from the Data Sources
Workspace. The order in which columns appear in the Display
Columns list is the order they appear on the record detail Web page.

Setting Record Detail Options

Column Use the Column Options section of the Record Detail window to
Options configure each detail column. This section describes each of the column
options.

Other than the Allow Update and Required options, the Column Options
section for the Record Detail window is the same as the Column Options
section for the Record List window. See Setting Record List Options on

page 215.
— Column Options

Field Title: [KeyDesc
Allows the user to — ¥ Allowlpdate: I Regquied ————— Forces the user
change the value of Field Tupe: [Tent =l to enter
the column on the gt | & information into

. ()= X

record detail Web Ly the selected field
page and save the Iz it | before the
changes to the et | = record can be
database. : successfully

Vecimals: I updated.

= | EddHTL it breaks

Field Title

In the Field Title field, enter the title to appear for this column’s value
on the record detail Web page.

Allow Update

Select this option to allow the user to change the value of the column on
the record detail VWeb page and save the changes to the database.

Required

If you allow users to update a database record by enabling Allow
Update, you can also select the Required check box to force the user
to enter information into the selected field before the record can be
successfully updated.

If the user tries to update the record without entering a value in a
required field, a message appears, telling the user that an entry into the
field is required, and the form is displayed again.

_| Field Type

If you select the Allow Update option for a column, the Field Type
drop-down menu and Field Properties icon are enabled, allowing you
to select the type of value editing field you want to appear for the column
on the record detail Web page.

Field Properties

For more information, see
“Field Type” on page 206.

Record
Maintenance
Options

Setting Record Detail Options

As with the search form, you can select from the available field types:
Text, Drop-down List, List Box, Check Box, and Radio Buttons.

You specify the field type and its options the same way you do in the
Search window of the Search Builder.

The selected column’s Field Properties dialog box for each field type is
the same in the Record Detail window as it is in the Search window,
except you cannot specify a default value (text field type) or a selected
item (drop-down list, list box, check box, and radio buttons). This is
because the value of the column in the detail record determines the field’s
initial value.

When creating value lists for drop-down list, list box, and radio button
field types in the Record Detail window, make sure you enter the item
values exactly as they appear in the database, and include all possible
values. If Witango cannot find the column’s value in the list when it is
constructing the record detail Web page for a record, no item is selected
by default. Depending on the user’s Web browser, the first item may be
selected or no item may be selected. Either way, if the user saves the
record—even if no changes are made to that particular field—a new value
(an empty value or the first value in the list) is saved in it.

For similar reasons, make sure check box fields are used only for columns
that can contain either an empty value or the value you specify as its
checked value.

Setting Column Options: Display As, Image Path, Format
As, Decimals, and Add HTML line breaks

Setting these options is identical to setting the column options for the
record list Web page, except as follows:

* When you select the Allow Update option, these options are
disabled.

* The Display As drop-down menu excludes the Link to Detail
option.

If you select the Allow Delete of Record From option, a Delete button is
added to the record detail Web page, giving the user the ability to delete
the current detail record.

Fiecord Options
[Allow Delete of Becord From:

| i

Setting Record Detail Options

Deleting records from multiple tables simultaneously is not supported by
the Search Builder, so if you have included columns from more than one
table in the Display Columns list, use the drop-down menu to select
the table whose record you want to delete.

Formatting the Record Detail Web Page

Formatting the Record Detail Web Page

Use the format options to define how the detail column values and their
titles are displayed.

name: IAccent L

manufacturer: IHyu ndai

classification: |cgmpad

price: IQBQE.DDDD

Sawe | Feset%alues |

To change the format of the record detail Web page
Do one of the following:

El * In the Record Detail window, click the Page Format icon.

* From the Attributes menu, choose Page Format.
Page Format
The Page Format dialog box appears. This dialog box is identical to the

one for the search Web page. See page 212 for details.

227

Customizing Your Record Detail Web Page and Response Messages

Customizing Your Record Detail Web Page and Response
Messages

Header, Footer, You use Header HTML, Footer HTML, Update Response HTML, and

Update Delete Response HTML to customize the record detail Web page.
Response, and Using Header HTML and Footer HTML, you can edit the HTML that you
Delete want to appear above and below the record data.

Response Using Update Response HTML and Delete Response HTML, you create
HTML messages in response to record updates and deletions.

To enter Header HTML, Footer HTML, Update Response HTML, or
Delete Response HTML

I Do one of the following:

* In the Record Detail window, click the Header HTML,
Footer HTML, Update Response HTML, or Delete
Response HTML icon.

¢ From the Attributes menu, choose Header HTML, Footer
@ 3} HTML, Update Response HTML, or Delete Response

Update Delete HTML.

Response Response
HTML HTML

Header Footer
HTML HTML

Customizing Your Record Detail Web Page and Response Messages

The corresponding HTML editing window appears.

E Example.taf : Search_Builder : Record Detail : HTML [_ O]]
I',-C!DDCTYPE HTML PUBLIC "-//W3iC//DTD HTML 3.2//EN">
<HEAD
<Peh 1 <TITLE=Fecord Detail«</TITLE>
</mEAD>
— | </BODY:
I',-C!DDC' < /HTML: | <BODY>
o <HEAD
ol <T.
<HTH | < /HEM
<HE&]
< | <BODT:
< /HE. <H
<P
<BOLY e
< </BOD
<] <sHTH
<
< /B0l
< /HT]
Header Footerl é! Update Hesponsel
4 | 2]
Header Footer @ Update Hesponsel
JK1] 2]
Headerl Foater 5! Delete Responze @ Update Hesponsel
L]]

4
Headerl Footer 51 Update Hesponsel

You can switch between the HTML editing windows by clicking
on the Header, Footer, Delete Response, and Update
Response tabs at the bottom of the HTML window.

2 Enter the HTML you want.

3 Close the editing window.

Button Titles When you make a field updatable, or when you allow users to delete
records from the record detail Web page, buttons for these actions are
added to the record detail Web page.

The record detail Web page contains three buttons below your record
detail fields: Save, Reset Values, and Delete.
To change button titles

I Do one of the following:

¢ |n the Record Detail window, click the Button Titles icon.

¢ From the Attributes menu, choose Button Titles.

Button Titles

Customizing Your Record Detail Web Page and Response Messages

The Button Titles dialog box appears:

Button Titles E

Save: ISave

Beset Yalues: IHeset Walues

Delete: IDeIete

Lancel |

2 Enter new titles in the corresponding fields.

3 Click OK.

Simplified Steps to Use the Search Builder

Simplified Steps to Use the Search Builder

In general, you use the Search Builder by following the standard sequence
described in Main Steps to Use the Search Builder on page 202. In some
cases, you can simplify the process by skipping some steps. The following
information may be useful to you:

* Using only fixed values in the Search options. If you configure
all of the Search columns to search for fixed values, the built actions
on execution take the user directly to the record list and display the
records matching the criteria you specify.

* Specifying no Search columns. If you do not specify Search
columns, the built actions on execution take the user directly to the
record list and display all the records in the database table.

* Specifying no Record Detail columns. If you do not specify
Record Detail columns, the built actions do not contain detail
functionality and no links appear in the record list.

* Specifying no Record List columns. If you do not specify Record
List columns, the built actions on execution take the user straight to
the record detail Web page for the first record matching the Search
criteria.

232

Defining Joins

Defining Joins

For complete details on
what joins are and how to
define them using Witango
Studio, see Joining Database
Tables on page 357.

You can include columns from more than one table in a search, if you
define joins for the tables.

If you select columns from more than one table in a search, a dialog box
appears telling you to define a join.
Editor E3

There iz no join defined far the table "PRODLUCTS"
*r'ou will need to define one before the query will work
properly.

Lancel | Later |

Either choose Define to go directly to the Joins section or Later if you
want to define the join at a later time.

When you define the join, it adds the columns to a search. You must,
however, define the join before you build the actions for the search or
you save the application file.

Note You must define separate joins for the initial search (the one that
displays the record list) and for the detail search.

Actions Built by the Search Builder

Actions Built by the Search Builder

For more information, see
“Building the Actions” on
page 195.

The actions built by the Search Builder appear in the application file as
follows:

=]

G'\ RecordDetail
[j |?? ElseliUpdate

- UpdateResponse
= |"" ElzeliDelete

------ B DeleteResponse
= |_* ElseEror

------ B InvalidFunction
..... = Return

The following table describes the actions resulting from the Search
Builder process and the conditions under which actions are built:

[

|2

IfForm

<@ARG _function> = sform or <@ARG _function> is empty

This section appears only if one or more user-enterable search
columns are specified.

Form

ElselfList

<@ARG _function> = list

This section appears only if record list columns are specified. If no
Form is present, this is an If action named IfList.

D\ RecordList

If you selected SQL Statement for any column value, a Direct
DBMS action (one for each) appears immediately before the
RecordList action.

Actions Built by the Search Builder

|2

|2

|+

ElselfDetail

<@ARG _function> = detail

This section appears only if detail columns are specified. If no
RecordList or Form section exists, this is an If action named IfDetail.

D\ RecordDetail

ElselfUpdate
<@ARG _function> = update

This section appears only if updatable detail columns are specified.

&7 Update

UpdateResponse
For information about the update response, See “Header,
Footer, Update Response, and Delete Response HTML” on
page 228.
ElselfDelete
<@ARG _function> = delete

This section appears only if the Delete option is specified for the
record detail Web page.

ﬂ Delete

DeleteResponse

For information about the delete response, See “Header,
Footer, Update Response, and Delete Response HTML” on
page 228.

ElseError

Invalid Function
The HTML for this action displays the following message:

Error: Invalid Function

An unknown function was specified.

Return

Actions Built by the Search Builder

This action ends execution of the application file and returns the
accumulated Results HTML to the Web browser.

HTML Snippets The Snippets Workspace contains a snippets folder named Builder
Snippets, and a subfolder named Search. The Search folder contains
snippets for the Form Header, Form Footer, Record List Header, Next/
Previous Buttons, Record List Footer, No Matches, Record Detail
Header, Record Detail Footer, Update Response, and Delete Response.

The Search Builder uses these snippets in the designated places as default
values for the named attributes. To change the default values, you can edit
these snippets.

236

Actions Built by the Search Builder

CHAPTER ELEVEN

Configuring the New I I
Record Builder

Witango New Record Builder Options and Setup

The New Record Builder builds a series of actions that allows users to add
a record to a database, on the new record entry form in their Web
browser. For the new record, you specify the database columns the user
can add data to and the response message to return after the record is
added. Witango does the rest.

The topics covered in this chapter include:

* setting new record column options
» formatting the new record entry form
* customizing your form and creating response messages

* asummary of how to set column options.

237

About the New Record Builder

About the New Record Builder

You use the New Record Builder to build actions that, when Witango
Server executes them, display a form allowing users to enter data for a
new record and return a response message after the record is added to
the database.

The following is an example of a new record entry form, which appears in
the users Web browser:

ew Record - Netscape
File Edit Miew Go ‘Wwindow Help

| v

Product ID: I

Prodiame: |

Wendor I

ProdTvpe:

Product
Deseription:

[
|
|
InStock: ——
OnOrder ——
ReOrderLut ——
Cost: l—
Price: ——

Discontd: C true © False!

Sawve | FesetValues |

| Documert: Do [SR 52 |

The user enters the values for the columns in the new record, and clicks
Save to save the record. Witango Server saves the record to the data

About the New Record Builder

source and returns the HTML response you specified in the New Record
Response HTML.

s Record Added - Netscape

File Edit Miew Go ‘Wwindow Help

The record was added successfully.

Name: Wary Pratt Eitchen 2tll Life
Descrption: Fish in tin fod — In this example, the
Price: 35000 response message has
been customized to
include values from the
newly added record.

| Documert: Dore |

Main Steps to To use the New Record Builder, fill out the contents of the New Record
Use the New Builder window. For more information, see “Setting New Record

Record Builder ©ptions” on page 240.

Then, format the new record entry form for display in the VWeb browser
and customize the response messages related to this form. For more
information, see “Formatting the New Record Entry Form” on page 245
and Customizing Your Form and Response Messages on page 246.

Setting New Record Options

Setting New Record Options

When you drag the New Record Builder icon from the Actions bar into
@ an application file, the New Record Builder window appears:

New Record Buildei

% Untitled? taf : New_Record_Builder

=l EEE Buid Actions |
Lolumns: — Colurmn O ption
S || =2 |
) [User Etiters Walue) Fized Walue
Eield Tpe: I j
C
I
I= | Beauired

All the options necessary for configuring the New Record Builder appear
in its options window.

Tip You can save your Witango builder page formats to use for new
tables you create in the builders. For more information, see “Page
Format Table Settings” on page 193.

Columns The columns you include in this list are the columns the user assigns
values to in the new record. To add columns to the list, drag them from
the Data Sources Workspace. Columns appear in the format
TABLE_NAME.COLUMN _NAME .Youcan
only add columns from one table. The order in which the columns appear
in the Columns list determines their order on the resulting new record
entry form.

The following table describes the operations you can perform on

columns:
To... Do This...
Reorder columns Select the columns and drag them to a different location in

the list.

Columns
Options

Setting New Record Options

To... Do This...

Delete columns Select the columns. Choose Delete from the Edit menu,
press the DELETE key on the keyboard, select the Delete
icon on the main toolbar, or right-click and choose Delete
from the context-sensitive menu that appears.

Delete columns without ~ Hold down the CTRL key while using the Delete command.
confirmation

Use the Column Options area to configure each column appearing in
the Columns list. You can specify how each column’s entry field appears
on the new record entry form and whether a value is required for it or
not.

This title appears for this
column on the new
record entry Web form.

Lets the user enter the - Column Option
value for the new record. Field Title: [Price

\5 User Enters Walue ¢ Fized Yalus
The type of value entry ——————— Field Tupe: [Text

field to appear on the new
record entry form.

Ll

Prevents the user from ——————1 Requied
adding the new record
without specifying a value
for this column. Specify the value yourself
and prevent this column
from appearing on the
new record entry form.

Field Title

In this field, set the title of the value entry field for the column as you
want it to appear on the new record entry form.

User Enters Value

Select this option if you want the user to enter a value in an entry field on
the new record entry form.

241

242

Setting New Record Options

Field Properties

For details on the different
types of field that can
appear here (text, drop-
down list, list box, check
box, or radio buttons), see
Field Type on page 206.

Field Type

To select a value entry field type for a column, select the column in the
Columns list and select an item from the Field Type drop-down menu
(Text, Drop-down List, List Box, Check Box, or Radio Buttons).

A Field Properties dialog box appears, allowing you to specify properties
for the field.

You can edit a field’s properties at any time by clicking the Field
Properties icon in the New Record Builder window or by choosing
Field Properties from the Attributes menu.

The Field Properties dialog box for the specified type of field appears. For
example, in the case of a text field:

Field Properties [%]

Drefault 4 alue: I

Text bo:

I aximum Length: |3U characters

Lancel |

width: |3U characters
Height: |1 lines
™ Scroling Field [Password Field

Fixed Value

If you select this option, no entry field appears on the new record entry
form. The value you specify is used for every new record.

Using the Value drop-down menu, select one of the following options
for a fixed value:

* Value Entered. Use the text box provided to enter the value for
the Field Title.

* SQL Expression. The value returned by the SQL expression text
entered is used as the value. The text entered is evaluated by the
database, and the result is used as the column value in the new
record.

Note For ODBC data sources, you can enter ODBC scalar functions
here.

¢ SQL Statement. The SQL statement entered is executed, the
results are retrieved, and the first data item of the results is used as
the column value in the new record. For example, if you enter:

Setting New Record Options

SELECT (MAX (cust num)+1l) FROM customer

the largest customer number plus one is used as the value for the
column in the new record.

* Current Timestamp. The current timestamp (date and time
combined) on the Witango Server computer is used as the value.

* Current Date. The current date on the Witango Server computer
is used as the value.

* Current Time. The current time on the Witango Server computer
is used as the value.

* CGI Parameters. The rest of the fixed value options are referred
to collectively as CGI parameters. They include Client Name,
Client Domain, Client IP Address, Client Browser, Server
Address, Server Port, Referer Page URL, and Method. When
you specify one of these parameters as the column value, the
parameter value passed in when the user clicks the Save button is
used.

Required

Select this column option to prevent a record from being added, unless
the user enters a value. If the user tries to leave the value field empty, an
error message like the following is returned.

Missing Values
The following field(s) require values before the record can be added:

* MName
* Date

Please go back and enter the value(s) before saving agam.

If you select Fixed Value for the column, the Required option is not
available. It is also not available for columns configured to use the Check
Box field type. This is because a check box can have only two values:
empty and the one you specify in the Field Properties dialog box. Making
it required would mean the record could not be added unless the user
checks the checkbox, in which case you could use the Fixed Value
option for the column and have it not appear on the new record entry
form.

243

244

Setting New Record Options

Summary: The following table summarizes how to set column options for the New

Setting Column Record Builder:
Options

To ...

Do This ...

Let the user specify the value
for a column

Select the column in the Columns list. Select the
User Enters Value option. This option defines the
column as a user-enterable field, and a value entry field
appears on the new record entry form.

Specify the title to appear for
a column’s new record form
value entry field

Select the column in the Columns list. The column’s
name appears in the Field Title field. Replace the text
with the desired field title. Witango remembers the
entered title and uses it as the default the next time
you choose it.

Specify the type of value
entry field you want to
display for a column

Select the column in the Columns list. Make sure the
User Enters Value option is selected. From the
Field Type drop-down menu, select the type of field
you want to display. A dialog box appears, allowing
you to specify the field properties.

Prevent the user from
omitting a column value

Select the column in the Columns list. Make sure the
User Enters Value is selected. Select the Required
option. If the user leaves the field empty and tries to
save the record, an error message appears, explaining
the problem.

Hard-code the value for a
column

Select the column in the Columns list. Select the
Fixed Value option. From the Value drop-down
menu, select a value to use for the new record. You
can use one of the preset values, such as Current
Date or Current Time, or select Value Entered
to enter a value yourself. Select one of the SQL
options to get a value from the data source. Columns
specified as Fixed Value do not appear on the new
record entry form.

Formatting the New Record Entry Form

Formatting the New Record Entry Form

|

Page Format

Use the format options to determine the layout of the entry fields and
their titles in the Web browser.
To change the page format options of the new record entry form

Do one of the following:

* In the New Record Builder window, click the Page Format icon.

* From the Attributes menu, choose Page Format.

The Page Format dialog box appears. This dialog box is identical to the
one for the Search page of the Search Builder. See page 212 for details.

245

Customizing Your Form and Response Messages

Customizing Your Form and Response Messages

Header, Footer,
and New
Record
Response
HTML

Header Footer
HTML HTML

7

New Record
Response HTML

246

The Snippets Workspace includes the default builder HTML snippets
described in this section. They include snippets for Form Header, Form
Footer, and New Record Response.

You use Header HTML and Footer HTML to customize the new record
entry form by specifying HTML that is placed above and below the entry
form.

The New Record Response HTML is returned after the user saves the
new record.

The Column Snippets folder in the Snippets Workspace contains the
names of all the columns in the table being inserted into. Dragging a
column name to the HTML editing field causes an <@COLUMN> tag to be
added to the HTML. When the application file is executed, the column’s
value in the new record is included at that location in the response.

To display values from the new record, Witango must be able to get those
values from one of three places: the new record form submitted by the
user, a fixed value you have specified, or from the database. If you include
a column in the result message that does not appear in the Columns list
of the New Record Builder window, Witango must do a search of the
database to retrieve the new record after it is added.

To do so, Witango must have the value of the record’s primary key
column(s). This means the primary key column(s) must appear in the
Columnns list of the builder. Without this information, Witango Studio
does not permit you to build the New Record actions.

To enter Header HTML, Footer HTML, or New Record Response
HTML

I Do one of the following:

* In the New Record Builder window, click the Header HTML,
Footer HTML or New Record Response HTML icon.

¢ From the Attributes menu, choose Header HTML, Footer
HTML, or New Record Response HTML.

Customizing Your Form and Response Messages

The corresponding HTML editing window appears:

E Example.taf : New_Record Builder : HTML [_ (O] %]
k!DUCTYPF HTMI. PITRLTEC -/ AWAC A DT HTMTL 3.2/ SN |
<HTHML> E Example.taf : New_Record Builder : HTML [_ O]] |
<HEAD |
<TITL] | </BODY=
< /HEAD < /HTML> E Example.taf : New_Record Builder : HTML [_ O]]
<BODY> o - -
F!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD
<TITLE:Fecord Addeds/TITLE>
< /HELD>
<BODT>
<He»Record Added</HZ»
<F=
The record was added successfully.
<P
<F=

<4 HREF="<[CGI»<@APPFILE: <@TserReferencedrmments:"=add

<P
</BODYT>
< /HTHML>
Header
1 Header =
KN | I

Headerl Footer 1 Mew Record Hesponsel

2 If you want to include HTML other than the default snippets, enter it.

3 Close the editing window.

Changing The new record entry form contains two buttons at the bottom of your
Button Titles form:

¢ The Save button saves the record.

* The Reset Values button resets the entry fields to their default
values.

To change button titles

I Do one of the following:

¢ In the New Record Builder window, click the Button Titles

icon.

Button Titles ¢ From the Attributes menu, choose Button Titles.

247

248

Customizing Your Form and Response Messages

Actions Built by
the New
Record Builder

For more information, see
“Building the Actions” on
page 195

The Button Titles dialog box appears:

Button Titles E

Save: ISave

Beset Yalues: IHeset Walues

Lancel |

2 Enter new titles in the corresponding fields.

3 Click OK.

The actions built by the New Record Builder appear in the application file
window as follows:

=@ Untitled2
-3 Mew Pecord_Builder
=-T2 Fom
- Farm
5-]2? Elselfinsern
=-I2 liMissingReguiredField
. MissingFieldshes...
=13 ElseDolnser
..... F Inzer
- InserFesponse
=113 ElseErrar
b InvalidFunction

gl

The following shows the actions resulting from the New Record Builder
process and the conditions under which the actions are built:

[? ifForm
<@ARG _function> = nrform

This section appears only if one or more user-enterable fields exist.
Form

[*? Eiselfinsert
<@ARG _function> = insert

If no form is present, this is an If action named Iflnsert.

[IfMissingRequiredFields

Customizing Your Form and Response Messages

This action contains one criterion for each required field, to
check if <@ARG fieldName> is empty. All the criteria are
connected with OR operators.

If there are no required fields, this If/Else condition does not
exist.
MissingFieldsMessage

If the user leaves out values for required fields, the HTML for
this action displays the following message:

Error: Missing Required Fields

The record could not be added because the
following required fields were left empty:

Please go back and enter values for these
fields.

¥ EiseDolnsert

ff Insert

If you selected SQL Statement for any column value, a
Direct DBMS action (one for each) appears immediately before
the Insert action.

InsertResponse

For information about the new record entry response, See
“Header, Footer, and New Record Response HTML” on page
246.

¥ ElseError

Invalid Function
The HTML for this action displays the following message:

Error: Invalid Function

An unknown function was specified.

= Return

This action ends execution of the application file and returns the
accumulated Results HTML to the Web browser.

249

Customizing Your Form and Response Messages

HTML Snippets The Snippets Workspace contains a snippets folder named Builder
Snippets, and a subfolder named New Record. The New Record folder
contains snippets for the Form Header, Form Footer, and New Record
Response.

The New Record Builder uses these snippets in the designated places as
default values for the named attributes.

SECTION |V

Witango Actions

How to Use Witango Actions

This section gives details on many of the actions that can be used in
Witango. Actions not discussed in this chapter are discussed in the
Section V, “Witango Objects.”

This section contains chapters on the following topics:

Chapter 12, Working With Actions on page 257

Chapter 13, Grouping Actions on page 273

Chapter 14, Using Basic Database Actions on page 279
Chapter 15, Using Control Actions on page 299

Chapter 16, Extending Witango Functionality on page 323
Chapter 17, Sending Electronic Mail From Witango on page 333
Chapter 18, Reading, Writing, and Deleting Files on page 341
Chapter 19, Using Advanced Database Actions on page 347.

Chapter 12, which gives a general overview of Witango actions, is
recommended for new users of Witango. Whenever you need to know
about another action type, you can read the relevant chapter at that time.

Previous users of Witango may wish to read about the Presentation
action, in Chapter 12, and about revisions to the Mail functionality in
Chapter 17.

CHAPTER TWELVE

Using Actions

The Basics of Using Witango Actions

A Witango application file is made up of a series of one or more actions.
Each action performs a specific type of function and can have results,
usually in the form of HTMLI, associated with it. The applications you
create may be used to input data to information systems, compose and
display information from data sources, and many more interactions.

When an application file is called, the actions in it are executed by
Witango Server. When execution is complete, the HTML results are
returned to the user’s Web browser. These results can be from the user
or from interaction with other servers, normally DBMSs.

Several actions allow you to search, add, update, and delete database
records. There are also actions for executing manually-entered database
statements and controlling the flow of execution within an application file.
You can also automatically create a sequence of actions using the builders.

This chapter covers the following topics:

* the Actions bar

» working with actions

* assigning attributes to actions
* the Results action

¢ the Presentation action.

I Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible.

253

About Actions

About Actions

The Actions bar shows all the available action types. It appears whenever
an application file is active, or you choose Actions Bar from the View
menu.

Actions _________H
RO 2APFT I EMO B &4
w2 [PP hoEE~&os

Tip You can drag the Actions bar to anywhere on your desktop and
resize it.

You add all Witango actions to an application file from the Actions bar.

The following table lists each action, its function, and where in this User’s
Guide you can find more information:

User’s Guide

Icon Action Function
Reference
k Select Selects actions in the This chapter.
application file window.
Search Retrieves records from a Searching a
D\ database. Database on
page 280
Insert Adds records to a database. Adding Records to
f? a Database on
page 293
Update Changes records in a database. Modifying a
&7 Database Record
on page 295
Delete Removes records from a Removing a
ﬂ database. Database Record
on page 297
Direct DBMS Executes SQL statements. Using SQL Directly
@ on page 352
= g Begin Begins a transaction and ends a Using Database
RS Transaction, transaction with a rollback or Transactions on
End commit. page 348

Transaction

About Actions

Icon

Action

Function

User’s Guide
Reference

m

Results

Performs no special functions
of its own, but it lets you
append HTML to the results.

Results HTML on
page 265

[y

Presentation

Allows you to reference
presentation pages (external
files) in your Witango
application file.

Presentation Action
on page 271

Mail Sends out electronic mail. Sending Electronic
bd Mail From Witango
on page 333
File Reads, writes, and deletes files Reading, Writing,
= on the Witango Server and Deleting Files
machine. on page 341
Script Allows you to specify server- Executing JavaScript
@ side JavaScript code to execute. on page 324
External Calls an external code module Using an External
5 to perform a function and Action on
return results. page 326
Create Creates object instances from Adding a Create
"ﬁ Object COM, JavaBean, and Witango Object Instance
Instance class file objects. Action on
page 396
Call Method Calls methods on the object Adding a Call
== instances that are created. Method Action on
page 402
o Assign Makes specified value Assigning Variables
j assignments. With the Assign
Action on
page 182
Group Groups related actions. Grouping Actions
[on page 273
ol 3 If, Else If, Else Executes an expression and, General Forms of
r? I) I- based on the result of the Conditional Actions
expression, affects the control on page 306
flow in the application file.
» While Loop, Repeats a set of contained Repeating a Set of
[I:I I:” For Loop actions until an expression Actions (Loop

evaluates to true or for a
specified number of times.

Actions) on
page 314

Objects Loop

Loops over collection objects.

Using the Objects
Loop Action on
page 410

About Actions

User’s Guide

Icon Action Function
Reference
[Break Terminates processing in a Exiting a Loop
L loop. (Break Action) on
page 320
Branch Causes a jump to another Jumping to a
ﬂ | action or action group. Designated Action
(Branch Action) on
page 300
Return Ends execution of the Ending File
&l o -
application file and returns the Processing (Return
accumulated Results HTML to Action) on
the Web browser. page 321

As well as actions, the Actions bar includes icons for the Search Builder
and the New Record Builder. You add the builders to an application file in
exactly the same way you add actions.

Icon Builder

Function

User’s Guide
Reference

Search Builder

2|

Builds the actions required to
perform a search.

Configuring the
Search Builder on
page 197

New Record
Builder

%

Builds the actions required to
add a new record.

Configuring the
New Record
Builder on
page 237

Working With Actions

Working With Actions

Adding an
Action

The application file window shows the actions that you want Witango
Server to execute. Generally speaking, Witango Server executes actions
sequentially, from top to bottom, until it encounters a control action.
Control actions make decisions and cause execution to jump to another

action or

action group.

The following is an example of the application file window:

=

M-I
el

1

Unique action

name.

Altributes

/ Data Source

Actions and action
groups.

Comments

] f
Site_ly@ation

[List_Recording

----- @, Search_Recording

----- @, Search_Track

----- Display_Wariables

----- = Retum
Dizplay_Musicians
Count_Access

[Dizplay_Last_10
= End_Access_Count

§4C0 Data
§4C0 Data

§4C0 Data
§4C0 Data
§4C0 Data
\ [I

Searches for the recording
Listz the tracks on the recording

Listz musicians on the recording

Dizplay the last ten users

Optional attributes
assigned to action.

Data source or
object for action.

Any additional
comments about
the action.

An action icon in the Action column indicates the type of action. Each
action must have a name that is unique in the application file.

An action can have attributes. Action attribute icons in the Attributes

column indicate which attributes are associated with the action on that

row.

Some actions require database operations. The Object/Data Source
column indicates which data source an action is associated with.

To add an action to an application file

Do one of the following:

257

Working With Actions

* Drag an action icon from the Actions bar into the application file
window (the cursor changes to include crosshairs and the action icon
you are adding), and drop it where you want to add the action.

S [=1p]

| Object/D... [Cam

Aftributes Details

ho DataSourcelll

* Click an action icon, move the cursor into the application file
window (the cursor changes to crosshairs), and click where you want
to add the action.

_lolx

Actioh Atribute s Details | Ohbject/D... | Can
= Untitled3*
(el ~ccrch

h

No DataSourcelll

In either method, a gray line indicates where the new action is to be
placed.

If the action has an editing window, it opens automatically.

Tip To prevent the action’s editing window from being opened
automatically, hold down the CTRL key while dragging the new action
into the document window.

Naming an Each action in an application file must have a unique name. Witango
Action Studio gives actions a unique name automatically.

The default name for an action is its action type. When you add an action
that already exists in the application file with its default name, Witango
appends the default name with a numeric starting at “I”; for example,
“Search!”.

Tip To make your application files more readable, you should always
replace default action names with more meaningful ones.

To rename an action in an application file

I Select the action you want to rename.

Working With Actions

2 Do one of the following:

* Click the name of the action.

¢ From the Edit menu, choose Rename.

* Right-click the selected action and choose Rename from the
context-sensitive menu that appears.

3 Type the new name.

Note Action names can contain only letters, numbers, and
underscores. No spaces, punctuation, or other characters are allowed.
Adding spaces automatically adds underscores.

When you rename an action, Witango automatically updates any Branch
actions in the same application file referring to the action. If you rename
an action that is the destination for branches from other application files,
the Branch actions in other application files are not updated.

Witango does N O T automatically update action results references for
renamed actions.

Deleting an To delete an action from an application file

Action I Select the action you want to delete.

2 Do one of the following:
¢ From the Edit menu, choose Delete.
ﬂ ¢ On the main toolbar, click the Delete icon.

e Press DELETE.

* Right-click and choose Delete from the context-sensitive menu
that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Tip You can bypass the confirmation dialog box by holding down the
Ctrl key when choosing Delete.

Editing an All of the actions—except Return, Group, and Break actions—have
Action associated attributes and parameters. You can set these parameters in the
action’s editing window.

Working With Actions

To edit an action in an application file
* Double-click the action icon in the application file window.
The action’s editing window opens.

If the action is associated with a data source, the Data Sources
Workspace opens, listing the tables and columns for the data source. If
Witango Studio has not loaded the data source yet, it is loaded first.

Moving an Witango executes the actions in an application file sequentially, from top
Action to bottom; however, you can use control actions to modify this sequence.

If you want the actions to be performed in a different order, you can
rearrange them. Move them to another location in the application file by
dragging them to the position you want.

To move an action to a new location

Do one of the following:

* Select the action you want to move, and drag the action to its new
position.
* Select the action, and cut and paste it using the edit commands.

Actions are pasted after the currently selected action, or at the end
of the file if no action is selected.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

When you move an action, Branch actions referring to it continue to
branch to the action, even though its position has changed.

Copying an You may want to create an action that performs a task similar to one

Action performed by an existing action in another application file. Instead of
having to recreate the action and specify all its parameters again, Witango
Studio allows you to duplicate an action.

To copy an action in the same application file

Do one of the following:

* Select the action you want to copy, hold down the Cctrl key, and
drag the action to where you want the new action to appear.
* Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

Working With Actions

The copied action is given a new, unique name, which you should change
to a more descriptive name.

To copy an action into another application file

Do one of the following:

* Select the action you want to copy, and drag the action into another
application file.

D Example A_taf = M =]E3
Action Attributes Object / Data Source | Comments

..... . Branchl

..... mp Branch2

..... & Branch3

----- w Branchd
----- InvalidFunction [Ackion Attributes | Object / Data Source | Comments
..... ‘= Retum [=]. 5% Zwample B.taf *

..... Form Eranch

..... ‘= Retumnl Irvealid_Function

..... O\ Search_for_it b Branchl

..... ‘= Retumn?2 Retum

..... Q Detall

Results

* Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

Be careful when copying database actions. For an action to work
correctly in the new application file, the data source must be the same as
in the original one.

Alternatively, you may assign another data source to the action in the new
application file.

Working With Actions

Context-
Sensitive
Action Menu

For more information on
using these commands, see
Setting Data Sources for
Actions on page |31,
Assigning Attributes to
Actions on page 264,
Debugging Files on

page 63, The SQL Query
Window on page 18,
Grouping Actions on
page 273, and Action
Properties on page 262.

Action
Properties

When you right-click an action icon in the application file window, or
anywhere in the file window with an action selected, a context-sensitive
menu of action commands appears:

Open

Cut
Copy
Paste
Delete

Fename
Set Data Source

Fiesultz HTML
Mo Results HTML
Ermor HTML

Push

[rebua Application File
SOL Query

Group
Wharoup

Froperties

* Open opens the action editing window for the selected action.

* Cut, Copy, Paste and Delete perform the standard window editing
functions.

* Rename allows you to edit the current name of the action.

* Set Data Source allows you to set the data source for one or more
actions.

* Results HTML, No Results HTML, Error HTML, and Push are
attributes you can assign to actions which support them.

* Debug File is an attribute of the entire application file or Witango
class file.

* SQL Query opens the SQL Query window so you can perform
SQL queries from within Witango.

* Group and Ungroup allows you to group related actions and also
to ungroup them.

* Properties displays the action properties window.

When you select an action and choose Properties from either the View
menu or the context-sensitive menu, the Action Properties window for
that action appears.

Working With Actions

This window displays current information about the selected action and
the assigned data source.

General | Development DS I Deployment DS I

Mame: Search_for_it
Type: Search

LComments:

Search for widget type

For more information, see Using this window, you can change some of the action’s properties.
“Properties Window” on
page 6.

Assigning Attributes to Actions

Assigning Attributes to Actions

In addition to the parameters specific to each action type, which are
edited using the action’s editing window, actions can also have the
following attributes:

Results HTML applies to all actions, except control actions (other
than Branch). After the action is executed, this HTML is added to the
results returned.

No Results HTML applies only to Search, Direct DBMS, Script,
File, and External actions. When the action does not return data, this
HTML is returned instead of the Results HTML.

Error HTML applies to most action types except certain control
actions (including Return and Break). In the event of an error in the
action’s execution, this HTML is returned immediately.

Push causes the Results HTML accumulated so far to be sent back
to the Web browser when the action to which it is assigned finishes
executing. Execution then continues normally.

Debug File lets you see useful information about your application
file or Witango class file execution in your Web browser application.
This attribute applies to the entire application file, not a particular
action. For more information, see Debugging Files on page 63.

To assign Results HTML, No Results HTML, Error HTML, or Push

Do one of the following:

Select the action in the application file window, then select an
attribute from the Attributes menu or from the Attributes bar.

Right-click the action in the application file window and choose the
attribute that applies to the selected action from the context-
sensitive menu that appears.

[} &
Besults HTHL.. Crl+F J
Mo Results HTML... Chrl+ll
A check mark Enor HTML... ChlE
appears beside Push Fush
and Debug File ~—] —— —
when they are e fH

selected. The HTML action attributes in the Attributes

menu have a corresponding button on the
Attributes bar.

For more information, see
“HTML Editing Window”
on page 6.

Results HTML
|

For more information, see

“Working with Meta Tags”

on page 167.

Assigning Attributes to Actions

Action attribute icons appear beside the action name in the Attributes
column of the application file window. See the example on page 257.

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.

Many actions in an application file can have HTML associated with them.
This HTML is stored in the Results HTML attribute. If Results HTML
contains any text, the Results HTML icon appears in the attributes
column of the application file window; otherwise, it does not.

As Witango Server executes the actions in a file, the Results HTML
associated with each is accumulated. When execution of the file is
complete, the HTML is returned.

Results HTML can also contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is interpreted by the
user’s Web browser and returned as is (via the Web server), Witango
Server first substitutes meta tags with other values.

The <@COLUMN> meta tag causes a database value to be placed in the
HTML. There are many others, including tags for referencing form field
and search argument values, and conditional tags for displaying HTML
only if the result of a given comparison is true.

To create or edit the Results HTML for an action
I Select the action in the application file window.

2 Do one of the following:

¢ From the Attributes menu, choose Results HTML.
¢ Click the Results HTML icon on the Attributes bar.

* Right-click the action and choose Results HTML from the
context-sensitive menu that appears.

Assigning Attributes to Actions

For more information, see
“Working With Snippets”
on page 44.

The Results HTML editing window appears:

[E CDData.taf : RecordList : HTML [_ O[]

LrC!DDCTYPE HTML PUBLIC "-//W3iC//DTD HTML 3.2//EN"> =l
<HTML>
<HEAD

<TITLE>Matching Fecords</TITLE>
< /HELD>

<BODT>

<F=
<[IF "<ETOTALROWS: = -17>
There are <Ex<ENUMROWSE:< /B> matching records.
<BELZEIF "<@TOTALROWS: '= 17
There are <ETOTALROWS>< /B> matching recorda.
<BIF "<EMAXNROWS: > 17
<P:Displaying matches
<Br<@STARTROW:< /B>
through
<ECALC "<@ITARTROW: + <ENUMROWS: - 17=.
</BIF>
<BEL3E>
There is <E>=1 matching record. _ILI
3

| |
Results |Tﬂ Mo Hesultsl 3 Enorl

3 Type the Results HTML into the HTML text area. The text can
include any valid HTMLI or Witango meta tags.

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.

You can add column values (for Search actions only) and any HTML
snippets you have defined to the Results HTML editing window from the
Snippets Workspace. As well, you can add from the list of standard
Witango snippets that allow for easy entry of many of the meta tags.

To include any of these items in your Results HTML, select the snippet
and either drag it, or copy and paste it into the desired location in your
text.

For HTML snippets that have placeholders for the current selection,
select the text and drag the snippet over the selected text. The snippet is
wrapped around the selection. For example, “Tit1le” becomes
“<H1>Title</H1>".

You can also easily add many of the common Witango meta tags.

I Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible. If you use other content types, you are responsible for setting the
HTTP header appropriately.

No Results

HTML

@

Assigning Attributes to Actions

To add a meta tag
I Click the editing area where you want to add a meta tag.
2 Do one of the following:

* From the Edit menu, choose Insert Meta Tag.

* Right-click, and choose Insert Meta Tag from the context-
sensitive menu that appears.

The Insert Meta Tag dialog box appears.

You can associate No Results HTML text with Search, Direct DBMS,
Script, and External actions. If the action execution does not return any
data, this text is added to the application file’s accumulated HTML instead
of the Results HTML. This is useful when you want to display a special
message to users when their queries do not return data.

Note If both Results HTML and No Results HTML appear as
attributes, Witango accumulates one or the other, but never both.

After Witango Server processes the No Results HTML, execution of the
application file continues normally to the next action.

No Results HTML can contain any of the Witango meta tags used in
Results HTML, except for those related to displaying result data items,
such as <@ROWS>, <@COLUMN>, and <@COL>.

To create or edit the No Results HTML for an action

I Select the appropriate action in the application file window (Search,
Direct DBMS, Script, and External actions).

2 Do one of the following:

¢ From the Attributes menu, select No Results HTML.
¢ Click the No Results HTML icon on the Attributes bar.

* Right-click the action and choose No Results HTML from the
context-sensitive menu that appears.

The No Results HTML editing window appears.

3 Type the No Results HTML into the HTML text area. The text can
include any valid HTML or Witango meta tags.

267

Assigning Attributes to Actions

Error HTML

&

Error HTML allows you to specify your own error messages in HTML
format, instead of having Witango Server produce them. The other
alternative is to modify the Error . htx file; see To specify your own
custom default error messagepage 269on this page.

You can associate Error HTML with most actions. If an action fails for any
reason, execution ends and the Error HTML for the action is returned
immediately to the user.

Error HTML can contain all the Witango meta tags used in Results HTML,
except for those related to displaying result data items.

There are also special Witango meta tags for displaying error information.

If no Error HTML has been assigned to an action and an error occurs in
that action, Witango returns a default error message using the following
HTML:

<h3>Error</h3>

An error occurred while processing your request:<p>
<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1>

<@ifequal <@ERROR PART=NUMBER2> 0>
<@else>
Secondary Error Number: <@ERROR
PART=NUMBER2 >

</@ifequal><p>
<i>
<@ERROR PART=MESSAGEl>

<@ifequal @ERROR PART=MESSAGE2> "'">
<@else>
@ERROR PART=MESSAGE2>

</@ifequal><p>
</i>
</@ERRORS >

To create or edit the Error HTML for an action
I Select the action in the application file window.

2 Do one of the following:

¢ From the Attributes menu, select Error HTML.
¢ Click the Error HTML icon on the Attributes bar.

* Right-click the action and choose Error HTML from
thecontext-sensitive menu that appears.

The Error HTML editing window appears.

Assigning Attributes to Actions

3 Type the Error HTML into the HTML text area. The text can include
any valid HTML or Witango meta tags.

To specify your own custom default error message
I Create a text file containing the desired HTML and meta tags.
2 Name the file error.htx.

3 Save or copy it to the following directory
WITANGO PATH\MiscFiles.

If Witango Server finds this file, it processes and returns it instead of the
built-in default Error HTML. Error HTML assigned to an action is used if
it exists.

The name and location of this file is determined by the
defaultErrorFile configuration variable, which can be modified using
the Witango Administration Application. The values when Witango is
first started are given above. If you modify the path or name of the error
file, place the file in the directory you specified instead.

Push The Push attribute causes the Results HTML accumulated so far to be
sent back to the Web browser, when the action to which the Push
attribute is assigned finishes executing. Execution then continues.

Normally, Witango waits until all execution is finished before returning
the results at one time. If you want the user to see some of the results
while Witango continues with the rest of the execution, set the Push
attribute of the action.

Note Some Web browsers may not display table HTML immediately if
you use the Push attribute to return an unclosed table.

Debug File For more information, see Debugging Files on page 63.

270

Adding HTML (Results Action)

Adding HTML (Results Action)

The Results action adds HTML to an application file’s results.

Results Action

When you drag the Results action icon from the Actions bar into an
application file, a blank HTML editing window appears.

[E Example_taf : Results : HTML =] E3

Results | 3 E”U'I

Results HTML can contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is returned as is to
your Web browser (via the Web server), any meta tags are first
substituted with other values by Witango Server. You can also associate
Error HTML with the Results action.

Presentation Action

Presentation Action

Uses of the The main benefit of using the Presentation action is to facilitate the
Presentation separation of the business logic from the presentation logic when you
Action develop your Witango application.

Business logic involves the use of Witango actions and meta tags to access
the appropriate Web pages and data sources. Presentation logic involves
the use of HTML to display the Web pages.

Because developing the business logic and the presentation logic generally
require different skill sets, setting up independent teams to work on these
two areas can improve the effectiveness and efficiency of the project.
Furthermore, changing the business logic—for example, accessing a
different data source—often does not affect the presentation logic, or
vice versa. Keeping the two areas separate simplifies the maintenance of
your project.

A Presentation action in your application file points to an HTML page. It is
the link between the business logic and the presentation logic of your

project.
How the The Presentation action allows you to include individual presentation pages
Presentation in your Witango application file. The presentation page—the file the

Action Works Presentation action points to—can contain HTML, Witango meta tags, or
any other sort of document markup. When Witango Server executes
your application file and arrives at a Presentation action, it processes the
presentation page associated with the Presentation action.

The Presentation action performs an operation similar to that of including
an HTML or other file in a Witango application file using the
<@INCLUDE> meta tag.

For more information, see The file referenced by the Presentation action is part of the current

;\:Z?gmfi::i;gges” on project, and can be opened and edited by double-clicking on the file icon
page 80. within the Presentation Pages folder in the Project section of the
Workspace.

You can also designate files in your project as presentation pages, and
manage files within the Presentation Pages folder.

272

Presentation Action

Setting Up a
Presentation
Action

When you drag the Presentation action from the Actions bar into an
application file, the Presentation dialog box appears:

&= Example.taf : Presentation M= 3

FPresentation Page:

Iindex.html j Browse. .. |

Fath to target page on server

& Same as source page

' Other: I

Do one of the following:

* In the Presentation Page field, enter the name of the presentation
page, or if you have previously specified a presentation page in the
current Project, choose a file name from the drop-down menu.

* Click Browse to navigate to the location of the presentation page.

If the file is not in your current project, you are prompted to add it to the
project, where it appears in the Presentation Pages folder and in the
Files folder of the Project tab of the Workspace.

In the Path to target page on server area, select Same as source page
if the presentation page is located in the same folder as the current
application file, or select Other.

If you choose Other, you specify the path to the presentation page. This
value is a slash-separated path from the Web server document root, and
may include literal text, meta tags, or both. To insert a meta tag in this
field, right-click in the text field and choose Insert Meta Tag... from the
context-sensitive menu that appears.

For example, you could enter the following into the text field:
Witango/MyDirectory/

This example includes the specified file residing in the MyDirectory
folder within the Witango folder in the Web server document root
folder.

<@APPFILEPATH>

This example includes the specified file residing in the same folder as the
currently-executing application file.

CHAPTER THIRTEEN

Grouping Actions I 3

Organizing Related Actions

The Group action allows you to organize actions within the file by
grouping related actions and naming the group.

The topics in this chapter cover:

* working with action groups

* executing grouped actions.

273

274

About Grouped Actions

About Grouped Actions

For more information, see
“Application File Window”
on page 60.

In large Witango application files, it is common to place a number of
related actions together; however, when viewing an application file, it can
be difficult to locate the related actions. To allow you to better organize
actions within the file, you can group related actions and name the group.
They also provide a destination for branching.

The following shows a typical application file containing action groups:

E}-- E =ample.taf
Site_Information
=L List_Recording

----- q Search_Recording

----- q Search_Track — Expanded action

----- Display_Wariables group

----- = End_List
[Display_Muscians ——————— Collapsedaction
=L Count_fccess group

----- O Get_Access

----- £7 Update_Access Count

[}-L Display_Last 10 ——— An action group

L. Stop_Access_Count within an action

----- Copyright_lnfarmation group

You can view grouped actions in a collapsed or expanded state. Groups
added to an application file are in the expanded state by default. The
collapsed or expanded state of an action group is saved in the application
file. When the file is next opened, the last state is restored.

You can also include an action group within another action group.

You cannot associate action attributes with an action group. When you
select a group, Results HTML, No Results HTML, Error HTML, and Push
attributes are disabled.

Working With Action Groups

Working With Action Groups

Adding an
Action Group

l

Group

For more information, see
“Naming an Action” on
page 258.

Adding an
Action to a
Group

Removing an
Action From a
Group

To add an action group to an application file

* From the Actions bar, drag the Group icon to the location you want
in the application file.

Follow the instructions in “Adding an Action to a Group” on this
page to add actions.
To automatically group selected actions

* Select the actions you want to group together, and choose Group
from the Edit menu or the context-sensitive menu.

A new action group containing all selected actions is created and
positioned where the top-most selected action was.

Once added, the action group appears with a default name, just like other
actions. You rename action groups in the same way you rename other
actions. Just like action names, the action group name must be unique
within the application file.

To add an action to a group

Do one of the following:

* Drag an action between two actions that are already in the group.
The action is added to the group at that location.

* Drag an action onto the group icon.
The action is added to the bottom of the group.

* Use the Copy and Paste commands from the Edit menu, main
toolbar, or context-sensitive menu to copy and paste an action into a

group.

Note You can select discontiguous actions in the application file and
drag, or copy and paste them into a group; the actions do not need to
be together already.

To remove an action from a group
Do one of the following:

* Drag the action you want to remove outside the group.

275

276

Working With Action Groups

Ungrouping
Actions

Deleting an
Action Group

Effects of
Editing an
Action Group

Branching to an
Action Group

If you drag the action above or below the group, the action appears
immediately before or after the group, respectively.

Use the Copy and Paste commands from the Edit menu, main
toolbar, or context-sensitive menu to copy and paste an action
outside of a group.

Note Removing actions from a group does not delete the group, even
if all actions are removed from the group.

To ungroup all actions with a group

I Select the Group action.

2 Do one of the following:

* From the Edit menu, choose Ungroup.

* Right-click the Group action and choose Ungroup from the
context-sensitive menu that appears.

This deletes the group action but keeps the actions that were within the
group.

You can also drag actions out of the action group, but that does not
delete the Group action itself.

You delete an action group and all actions within it the same way you
delete any action. Deleting a group also deletes all the actions within it.

For more information, see Deleting an Action on page 259.

Editing an action group affects the actions within it:

Moving an action group automatically moves all actions within the
group.
Copying an action group copies all actions within the group as well.

Deleting an action group deletes the action group and all actions
within the group.

You can specify an action group as the destination of a Branch action.

For more information, see “Jumping to a Designated Action (Branch
Action)” on page 300.

Executing Grouped Actions

Executing Grouped Actions

When Witango Server encounters an action group during file execution,
no operation is performed on the action group itself, only on the actions
within the group.

For more information, see Even though an action group has no effect on the execution of an

“Exiting a Loop (Break " . i

Action)"” on page 320. appllcatlon file, Wltangq §erver supports the abl|ltf)’ to branch to an
action group and the ability to break out of an action group. If a Break
action is encountered within a group, the next statement to be executed
is the first statement outside of the group.

277

278

Executing Grouped Actions

CHAPTER FOURTEEN

Using Basic Database I 4
Actions

Search, Insert, Update, and Delete Actions

Witango includes several fundamental database actions that allow you to
search (Search action), add (Insert action), modify (Update action), and
delete (Delete action) database records. You do not need any knowledge
of SQL to use any of these actions.

The topics covered in this chapter include setting up and executing
Search, Insert, Update, and Delete actions.

279

Searching a Database

Searching a Database

Setting Up a
Search Action

N

Search Action

Search actions retrieve database records matching a given criteria.

You use the Search action editing window to define what columns are
selected, the order of the data retrieved, and the criteria that determine
which rows (records) are found.

Tip The SQL Query window gives you a convenient way to look at
your database values. Choose SQL Query from the Windows menu
or from the context-sensitive menu that appears when you right-click
the Search action editing window. For more information, see “The SQL
Query Window” on page 20.

You use the action’s Results HTML to format the results of the search.

When you drag the Search action icon from the Actions bar into an
application file, the Search action editing window appears. The window
consists of four sections, which you can access by clicking the respective
tabs. The Select, Criteria, and Results sections are covered in this chapter.
The Joins section is covered in Working With Joinspage 358on page
358.

Select Section

You use the Select section to select the type of search to perform, the
columns to retrieve, and the ordering of the records returned.

You can perform three types of search with a Search action: Normal,
Summaries of Groups, and Summary of All Rows.

Select which type of search you want to perform from the Select Type
drop-down menu.

I Mormal

Smmaries of Groups |
Sumnmary of &l Rows

* Normal returns rows matching specified criteria.

* Summaries of Groups returns summaries of rows whose values in
given columns (the grouping columns) are the same.

* Summary of All Rows returns a single row summarizing all rows
matching your criteria. This kind of search lets you get information

Searching a Database

such as the maximum or average value of a particular column in a
database table.

Normal Search

The Normal type of search returns rows matching specified criteria.
This is the most common type of search.

When you select Normal from the Select Type drop-down menu, the
Select section appears as follows:

@ Untitled1 : Search [_ (O] x|
Gelect | Eriterial Hesultsl Jainz I
Select Type: [¥EME] -
Select Columns: Order By Columins:

FPRODUCT.Prodi ame
FRODUCT.ProdDesc
PRODUCT.Cost
PRODUCT Price

Specify values for the parameters in the Select section:

* Select Columns. Drag into this list from the Data Sources
Workspace the columns whose data is to be retrieved from the
database.

For more information, see You can include columns from multiple tables; if you do, you must

‘F’Ja"gigi%?atabase Tables™ on define joins to describe how the tables are related.

* Order By Columns. Drag into this list the columns that are used
to sort the results returned to the user. Ordering by columns is
optional.

The order of the columns in the list determines the ordering
hierarchy. For example, if the first order column is “state or
province” and the second “customer name”, the results are first
ordered by state or province; customers in the same state or
province are then ordered by name.

The triangle to the left of the column name determines whether the
ordering is ascending (=) or descending (=). To change the order
direction for a column, click the triangle.

282

Searching a Database

Summaries of Groups

The Summaries of Groups search type returns summaries for groups
of rows with the same values in specified columns. For example, it allows
you to find out the total sales for each sales region in an invoices table by
selecting the sum of invoice amounts and grouping by sales region.

When you select Summaries of Groups, the Select section appears as

follows:

@ Untitled1 : Search =] E3

Gelect | Eriterial Hesultsl Jaing I

Select Type: ISummaries of Groups j

Select Columns: Order By Columins:
Function | Column - = MAXPRODUCT.Cost) ;I
NONE | PRODUCT.ProdName_ || | = Max(PRODUCT Price)

e FRODUCT.ProdDesc

kA AN ooOneT ek
i —— e
Show Group Criteria »» | _I
v

| Group By Columns:

* Select Columns. Drag into this list the columns you want to select.
Select columns for this select type have an associated function. This
function is performed on the column for all the rows in a particular
group, as determined by the Group By Columns list. For example,
if you selected the MAX function for a “price” column and group by
the “classification” column, you would receive one row for each
unique classification. Each row would contain the maximum value of
the “price” column for the classification being summarized.

The following table lists the available functions:

Function Description

MAX The maximum value of column in the group.

MIN The minimum value of column in the group.

AVG The average value of column in the group. Valid only for
numeric columns.

SUM The sum of all column values in the group. Valid only for
numeric columns

COUNT The number of non-null values in the column for the group.

None Perform no function; return the value of the column for each

group. Columns with this option must appear in the Group
By Columns list, because only group columns are sure to
have the same value within a group.

Searching a Database

To choose the function for a column, click the Function column and
select the function from the drop-down menu.

Order By Columns. As with the normal select type, you specify in
this list the ordering of results. You can drag columns from the Data
Sources Workspace or from the Select Columns list. You can
order only by columns appearing in the Select Columns list.

Group By Columns. The columns in this list determine how rows
are grouped before being summarized. Groups consist of all the rows
that have the same values in the columns specified. For example, if
you group by the “cust_state” and “cust_rep” columns in a customer
table, you get one summary row for each group of rows with the
same values in the “cust_state” and “cust_rep” columns.

Show Group Criteria. Normally, all the summary rows are
returned for records matching the user’s criteria. You can eliminate
summary rows by specifying group criteria. The group criteria have a
different function from the regular criteria in that the regular criteria
specify which rows are eligible for grouping, while the group criteria
specify which summary rows are returned.

Note The group criteria section is equivalent to the HAVING clause in
a SQL SELECT statement.

For example, if you are grouping by classification and selecting the
maximum order amount, you can use group criteria to limit the
returned rows to those customers whose maximum order amount is
greater than $5,000.

To specify group criteria, click Show Group Criteria.

Searching a Database

The Select section expands to show the area for entering group
criteria.

@ Untitled1 : Search =] E3

Gelect | Eriterial Hesultsl Jaing I

Select Type: ISummaries of Groups j

Select Columns: Order By Columins:
Function | Column - = MAXPRODUCT.Cost) ;I
NONE | PRODUCT.ProdName_ || | = Max(PRODUCT Price)

e FRODUCT.ProdDesc
| Group By Columns:

kA AN ooOneT ek _I—I
Lf—f k PRODUCT ProdName
Hide Group Criteria << | _I

| Func. | Colurnn | Oper. | Walue | Incl. E@t}ll Guote Yalue I

Drag columns from either the Data Sources Workspace or the
Select Columns list.

Note You can specify O N L Y columns that appear in the Select
Columns list.

For more information, see Except for the function option, you specify group criteria just like
Criteria Section” on normal criteria.
page 285.

Summary of All Rows

To get a summary of all rows matching a specified criteria, use the
Summary of All Rows search type. Only one summary row is

Searching a Database

returned. For example, you could use this search type to find the average
amount of all orders in an orders table.

@ Untitled1 : Search =] E3

Gelect | Eriterial Hesultsl Jaing I

Select Type: [EINE

Select Columns:

Function | Colurnn
e FRODUCT.Prodi ame

e FRODUCT.ProdDesc
b PRODUCT.Cost
b PRODUCT Price

|l

As with the Summaries of Groups search type, each select column has
an associated function that determines how that column is summarized.
All the column values in the rows matching the criteria are aggregated
using the specified function.

Criteria Section

The Search action criteria determine which rows from the database are
returned by the action. If no criteria are specified, all rows are returned;
otherwise, each row in the database is compared to your criteria and
only those meeting them are returned.

@ Untitled1 : Search =] E3

Select Criteria | Hesultsl Jainz I

Fieturn rows matching these criteria:
Colurnn Oper. | Yalue | Incl EM
Cost = false falze
and | ProductlD | = false false
and | VendorlD | = false false
4] 3|

To specify the criteria, drag columns from the Data Sources Workspace
to the Criteria list. For each column, you must specify:

* Logical Operator

* Column

* Operator

¢ Value

Searching a Database

For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 172.

* Include Empty
¢ Quote Value.

Column

In the Column field, specify the column whose value you want to
compare. Drag the column from the Data Sources Workspace.

Logical Operator

The first field in the criteria list is the logical operator, which is either and
or or. To specify the operator, do one of the following:

* Click the row, then click the field to display a drop-down menu and
choose an operator.

* Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

Note You must specify at least two columns before the logical
operators are available.

The logical operator determines whether the current and previous
criteria must be true for a record to be included in the result or whether
a match on either the current or previous criterion causes a record to be
included in the result. For example, if your criteria are:

cust_num = 5100
and cust name Begins with A

only records matching both criteria are returned. If the logical operator is
changed to or, records matching either one of the criteria are returned.

There is an implied order of operation for logical operators. Criteria
joined with the and logical operator are evaluated before those joined
with the or logical operator.

For example, in the following criteria:

cust_num = 5100
or cust_name Begins with A
and cust_state = NY

a match is made if both the second and third criteria are true or the first
criterion is true.

You can also use the Insert Meta Tag command to enter in the Criteria
window entry fields many of the commonly used meta tags.

For more information, see
“Criteria Separators” on
page 290.

Searching a Database

To insert a meta tag, either click the field and choose Insert Meta Tag
from the Edit menu, or right-click the field and choose Insert Meta Tag
from the context-sensitive menu that appears.

You can use criteria separators to control the order of criteria evaluation,
regardless of this default logical operator hierarchy.

Operator

In the operator field (Oper.), specify the operator to use when
comparing the field by doing one of the following:

* Click the row, then click the field to display a drop-down menu to
choose an operator from.

* Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

Possible operators include:

Operator Meaning

= is equal to

= is not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Contains field contains these character(s)

Begins with field begins with these character(s)

Ends with field ends with these character(s)

Is In matches one of a list of values (see page 288)
Is Null matches an empty field

Is Not Null matches a non-empty field

Text columns permit the use of any operator; for other columns, the
Contains, Begins with, and Ends with operators are disabled.

You can either specify a static operator or insert a meta tag to get the
value at execution time. Using a variable operator allows you, for
example, to put a drop-down menu on your Web page to let users
choose the comparison operator.

287

Searching a Database

When using a variable to specify the criterion operator, Witango requires
you to use special values to represent each of the operators. The
following table lists these special values:

To Specify This Operator Use This Value

= iseq
1= isnt
> gthn
< Ithn
>= gteq
<= Iteq
Contains cont
Begins with swth
Ends with ewth
Is In isin
Is Null inul
Is Not Null nnul

For example, to create an operator drop-down menu in an HTML form
whose value you want to use as the operator in a search criterion, you
could use HTML similar to the following:

<SELECT NAME="cust name_ op" SIZE=1>

<OPTION VALUE = "iseqg" SELECTED>=
<OPTION VALUE = "isnt'">!=

<OPTION VALUE = "gthn"s>
<OPTION VALUE = "lthn"s><
<OPTION VALUE = "gteqg">>=
<OPTION VALUE = "lteqg"><=
<OPTION VALUE = "swth">Begins With
<OPTION VALUE = "ewth">Ends With
<OPTION VALUE = "cont">Contains
</SELECT>

and set the operator in the Search action to
<@ARG cust_name_op>

The Is In operator needs some additional explanation. It matches
records where a column value is in a list of values.

For example, the following criteria:

cust _num Is in 200, 300, 400

288

Searching a Database

matches records in which the cust_num field has a value of 200, 300, or
400. The Is in operator can be thought of as a shortcut for a series of
OR equals criteria:

cust_num = 200
or cust_num = 300
or cust_num = 400

The value specified can be a single-column or single-row array (as would
be returned by the <@ARG> tag with a type attribute of ARRAY, for
example) or a comma-separated list of values.

Value

In the Value field, enter the value to use in the comparison.

For more information The value can also contain any value-returning Witango meta tags, which
about inserting meta tagsin 5.0 g hstituted when the application file is executed. Use the Insert
entry fields, see Inserting

Meta Tags on page 172. Meta Tag command to enter many of the commonly used meta tags.

Include Empty

In the Incl. Empty field, specify whether the criterion is included, even if
the comparison value is empty, by doing one of the following:

* Click the row, then click the field to display a drop-down menu to
choose a value from.

* Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

The values appear as false and true.

false omits the criterion if the value (after meta tag substitution) is
empty; true includes the criterion regardless of the value’s contents.

This option is used mainly for columns whose search value is taken from a
search form on a Web page. For example, you may have a search form
that allows you to enter search values for several columns, but you want
the search done only on the columns you enter values for. To do this, set
the Incl. Empty option for each of the corresponding Search action
criteria to false.

There are cases where you do want a criterion included, even if the value
is empty. For example, suppose you have a Web page that asks for a user
name and password, and a corresponding Search action that finds the
user in a users’ database. In the Search action, you probably want to set
the Incl. Empty option for each of the values to true. If you do not, and
the user leaves both fields empty, the Search action omits both criteria
and returns all user records.

Searching a Database

For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 172.

For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 172.

You can right-click the Incl. Empty field, and choose Insert Meta Tag
from the context-sensitive menu that appears to enter many of the
commonly used meta tags.

Quote Value

In the Quote Value field, specify whether Witango puts quotation mark
characters around the value in the SQL it generates for this criterion by
doing one of the following:

* Click the row, then click the field to display a drop-down menu to
choose a value from.

* Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

The values appear as false and true.

For text, date, time, and timestamp columns, you should set this option
to true. For date, time, and timestamp columns, this option has special
meaning. true converts the specified value from the default Witango
format to the format required by the database server; false passes the
value specified as is to the database server.

If you want to use an expression that the database server evaluates
(instead of a literal Witango-supplied value), set the Quote Value option
to false and enter the expression in the Value field.

For numeric and Boolean types, you should set the Quote Value option
to false.

You can right-click the Quote Value field, and choose Insert Meta Tag
from the context-sensitive menu that appears to enter many of the
commonly used meta tags.

Criteria Separators

To group criteria, select the position between the criteria you want to
group and do one of the following:
* From the Edit menu, choose Insert Criteria Separator.

* Right-click and choose Insert Criteria Separator from the
context-sensitive menu that appears.

Searching a Database

Only the logical operator cell can be edited for separator items.

|EOIumn |Dper. |Value |Inc:|. Ermnpty |Qu0te Walue |
ITEMCOST = false false =
CATEGORY_ID = falze falze

and YENDORID = false false

Upon execution, the criteria before the separator are combined with the
criteria after the separator using the logical operator specified in the
separator line in the criteria list.

Results Section

In the Results section, you specify the maximum number of records to
retrieve from the data source, at which result record number retrieval
begins, and whether Witango gets the count of matching records.

@ Untitled1 : Search =] E3

Selectl Criteria Fesults |J0ins I

Mumber of rows to retrieve
{ imury € Linit To: |

Stark retrieval at row number: |1

™ Retrieve distinct rows only

™ Get total number of matching rows

Number of rows to retrieve
To return all matching records, select No Maximum.

To limit how many records you want the search to return, select Limit
To and enter the maximum number of records to retrieve.

The following options are only available for the Normal search type.

Start retrieval at row number

Select this option if you want to skip some of the matching records.
Specify the row number you want the Search action to start retrieval at.
The default is “1”. When the value is other than “|”, the Search action
returns records starting at that number, skipping any records before it.

This option is most useful when you use a variable (such as
<@SEARCHARG starts>) for the starting record number.

292

Searching a Database

For more information, see
“Show Multiple Pages If
Limit Exceeded” on

page 219.

Executing a

Search Action

For an example of how to use this option to provide results paging for
large result sets, look at the Search action in a Search Builder-generated
file created with the Show Multiple Pages If Limit Exceeded option
selected.

Retrieve distinct rows only

If you select this option, Witango Server adds the DISTINCT keyword
after the SELECT keyword in the generated SQL. The DISTINCT
keyword specifies whether duplicate rows are to be eliminated from the
result set. For example,

SELECT cl.cust state, cl.cust zip
FROM customer cl;

becomes
SELECT DISTINCT cl.cust_state, cl.cust_ zip
FROM customer cl;

Get total number of matching rows

You use this option to retrieve the number of records matching the
search criteria, irrespective of how many records are actually retrieved.

Using this option, you can access the value in the Search action’s Results
HTML by using the <@TOTALROWS> meta tag.

Note Selecting this option involves an extra database operation, so
unless you require the information it provides, do not select it.

When Witango Server executes a Search action, the search is performed
against the associated data source. The result rowset is automatically
stored as an array in the local variable resultSet. The Results HTML
for the Search action is then processed.

The HTML in the <@ROWS><@/ROWS> block, if any, is processed once for
each record in the results. Use <@eCOLUMN> or <@COL> meta tags to
include field values.

If the Search action generates no results, and you have specified No
Results HTML for the action, that HTML is processed instead of the
Results HTML.

Adding Records to a Database

Adding Records to a Database

The Insert action adds a record (row) to a table in a database.

Setting Up an When you drag the Insert action icon from the Actions bar into an
Insert Action application file, the Insert action editing window appears:

{? F Example.taf : Inzert M= 3

Inzert the following rows inta the table:

Insert Action
Colurnn | Walue | Guote Yalue |

To set up an Insert action

I From the Data Sources Workspace, drag into the Column list the
columns whose values you want to set in the new record.

Note You can select columns from only one table.

If you do not add all of the table’s columns to the Insert action,
the omitted columns are given the default values defined when
the database was created.

2 In the Value field for each column, enter the value for that column in
the new record. The value can contain any of the value-returning
Witango meta tags, which are substituted upon execution of the
application file.

For more information To insert a meta tag, either click the field and choose Insert

about inserting meta tags in Meta Tag from the Edit menu, or right-click the field and

entry fields, see Inserting T

Meta Tags on page 172. choose Insert Meta Tag from the context-sensitive menu that
appears.

For more information, see The Quote Value option operates the same as it does in

“Quote Value” on

page 290. search criteria.

Adding Records to a Database

Executing an When Witango Server executes an Insert action, a record is added to the
Insert Action database with the column values specified. The Insert action returns no
results.

Modifying a Database Record

Modifying a Database Record

The Update action modifies database records matching specified criteria.

Setting Up an When you drag the Update action icon from the Actions bar into an
Update Action application file, the Update action editing window appears.

Specify the criteria for the

P Update action in this list.

Update Action # Example._taf : Update

Update the table:

Select rows matching these criteria:

| Colurnn ,I/ﬁper. | Walue | Incl. Ernply | Guote Yalue |

Update them with theze values:

Colurnn | Walue | Guote Yalue |

Records in the database matching the criteria are
updated with the values specified in this list.

To set up an Update action

I In the criteria list at the top of the action’s editing window, specify
which records you want to update.

For more information, see You edit the criteria list the same way you edit the Search

“Criteria Section” on action’s criteria list.

page 285.
CautionFor an Update action,be E X T R E M E L Y careful
when setting the Incl. Empty option to false. You may end up affecting
more rows than you intend, possibly even updating all the records from
your database table. Just like leaving Incl. Empty set to false in a Search
action returns all the records, leaving it set to false in an Update action
updates all records.

Modifying a Database Record

For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 172.

For more information, see
“Quote Value” on
page 290.

Executing an
Update Action

2 From the Data Sources Workspace, drag the columns whose values
you want to update into the update columns list at the bottom of the
action’s editing window.

Note You can specify columns from only one table. If you want to
update multiple tables, use an Update action for each table. In this case,
consider using a Transaction action to make sure all or none of the
updates are processed. Only the values in the columns you specify are
modified when the action is executed.

3 Under Value for each column, enter the new value for that column.

The value can contain any of the value-returning Witango meta tags,
which are substituted upon execution of the application file.

To insert a meta tag, either click the field and choose Insert Meta
Tag from the Edit menu, or right-click the field and choose Insert
Meta Tag from the context-sensitive menu that appears.

If you always want to update a column with a fixed value, simply
enter that value.

The Quote Value option operates in the same way it does in search
criteria.

When Witango Server executes an Update action, Witango searches for
records matching the specified criteria and updates them with the
specified column values.

The Update action returns no results.

Removing a Database Record

Removing a Database Record

For more information, see
“Criteria Section” on
page 285.

Setting Up a
Delete Action

al

Delete Action

Executing a
Delete Action

The Delete action removes database records that match the specified
criteria. You edit the criteria list the same way you edit the Search
action’s criteria list.

To set up a Delete action

I Drag the Delete action icon from the Actions bar into an application
file.

The Delete action editing window appears:

ﬁ Untitled1 : Delete [_ (O] %]

Delete rows matching these criteria from table:

| Colurnn | Oper. | WValue | Incl. E@t}ll Guote Valﬁl

2 In the criteria list of the Delete action’s editing window, specify which
records you want to delete.

Note You can specify columns from only one table. If you want to
delete multiple tables, use a Delete action for each table. In this case,
consider using a Transaction action to make sure all or none of the
deletes are processed.

You must specify at least one criterion for the Delete action to be
valid.

CautionFor a Delete action,be E X TR EM E L Y careful
when setting the Incl. Empty option to false. You may end up affecting
more rows than you intend, possibly even deleting all the records from
your database table. Just like leaving Incl. Empty set to false in a Search
action returns all the records, leaving it set to false in a Delete action
deletes all records.

When Witango Server executes a Delete action, records matching the
specified criteria are deleted.

The Delete action returns no results.

297

Adding Custom Columns to Database Actions

Adding Custom Columns to Database Actions

A custom column entry lets you enter any text as the column reference.
You can use custom columns wherever Witango accepts columns dragged
from the Data Sources Workspace.

Make sure the text entered makes sense in the database action. For
example, in a Search action, you could enter the following calculation as a
Select column:

orders.order_amt + 20

To add a custom column to a database action
I Do one of the following:

¢ From the Edit menu, choose Insert Custom Column.

* Right-click any database action editing window where you can
add columns, and choose Insert Custom Column from the
context-sensitive menu that appears.

The Custom Column Entry dialog box appears:

Custom Column Entry [%]

Custom Column Text:

ke | Lancel

2 Enter the text to use as the column reference.
You can insert meta tags here.
3 Click OK.

Custom columns can be edited later by double-clicking the column
reference in the list.

CHAPTER FIFTEEN

Using Control Actions

Branch, Conditional, Loop, Break, and Return Actions

Normally, actions in a Witango application file are executed sequentially,
from top to bottom. However, you can use control actions in an
application file to redirect the flow or repeat a sequence, depending on
various conditions. The control actions in Witango include Branch action,
conditional actions, loop actions, Break action, and Return action.

This chapter covers the setup and operation of the following actions:

The Branch action causes a jump to a designated action or group.

Conditional actions evaluate an expression, and based on the result of
that expression, affects the control flow of the file.

Loop actions repeat a set of contained actions a given number of
times or while an expression evaluates to true.

The Break action terminates processing in the loop.

The Return action ends execution of the application file and returns
any accumulated Results HTML to the Web browser. It can also
return to another application file.

299

Jumping to a Designated Action (Branch Action)

Jumping to a Designated Action (Branch Action)

For more information, see
“Branching to Other
Application Files” on page
348.

Branch Action
Destination
Rules

The Branch action causes a jump to a designated action or to an action
group.

You can set the Branch action to jump to an action in the same
application file, or to an action in another application file. If the Branch
action jumps to an action in another application file, you can choose
whether to return to the previous application file when a Return action is
encountered.

There are rules governing where a Branch action can jump to. If the rules
are violated, Witango Server returns an error. The rules are dependent
on what kind of file you use and whether you are branching to a different
file.

Branching within the Same Application File

When branching within the same application file, a Branch action can
branch to:

* any action at the outermost level.

* any action at the same level in the same block of Witango actions.

* any action that is an ancestor (for example, a parent or a parent’s
parent).

* any action that is a first-level child of an ancestor.
A Branch action cannot branch to:

e Else If or Else actions.

* any action that is its descendent (for example, a child or a child’s
child).

* any action that is a descendent of an action at the same level as this
Branch action.

Branching to a Different Application File

When branching to a different application file, a Branch action can only
branch to an action at the outermost level.

Witango Class File

When using a Witango class file, the rules for Branch actions are similar
to those for branching within the same application file. There is an

Jumping to a Designated Action (Branch Action)

additional rule: Branch actions in a Witango class file cannot branch
outside the current method.

Examples

Consider the following partial application file:

= 5o

A oa Actionl

B

C

D

E - mp Bachiond
F : ActionS

- 153

G : e ActionB
H

Examples of valid branches:
¢ BranchActionC can branch to BranchActionF.

Reason: The actions are in the same action block and at the same
level.

* BranchActionC can branch to BranchActionH.

Reason: BranchActionH is at the outermost level.
* BranchActionD can branch to 120 and If21.

Reason: If20 and If2| are both ancestors of BranchActionD.
* BranchActionD can branch to BranchActionC.

Reason: BranchActionC is the first-level child of an ancestor (If20) of
BranchActionD.

Examples of invalid branches:
¢ BranchActionB cannot branch to BranchActionE.

Reason: Incorrect relationship. BranchActionE is a descendent of
Elself22, which is at the same level as BranchActionB.

¢ BranchActionC cannot branch to BranchActionG.

Reason: Incorrect relationship. BranchActionG is a descendent of
If23, which is at the same level as BranchActionC.

¢ BranchActionC cannot branch to Elself22.

302

Jumping to a Designated Action (Branch Action)

Executing a
Branch Action

For more information, see
“Setting Up a Branch
Action” on page 303.

For more information, see
“Branching to a Different
Application File” on

page 302.

Branch and
Return

Reason: Even though Elself22 is the first-level child of an ancestor
(If20) of BranchActionC, this branch is not allowed because
branching to an Else If action is invalid.

When Witango Server executes a Branch action, it jumps to the
designated action. Later, when Witango Server encounters a Return
action, one of the following happens:

* If you did not select the Return to next action after branch
option when setting up the Branch action, Witango Server ends
execution.

* If you selected the Return to next action after branch option
when setting up the Branch action, Witango returns to the action

Note This may not happen if the Branch action branches to a different
application file.

You can branch to the same application file or a different application file.
In both cases, you can select the Return to next action after branch
option when setting up a Branch action.

Branching within the Same Application File

When a Branch action in an application file branches to the same
application file with the Return to next action after branch option
selected, Witango Server returns to the action following the Branch
action when it encounters a Return action.

Branching to a Different Application File

When a Branch action in one application file branches to another
application file with the Return to next action after branch option
selected, Witango Server returns to the action following the Branch
action (in the previous application file) when it encounters a Return
action. However, there are certain circumstances under which the Branch
action never returns, even when the Return option is selected.

If a Branch action with the Return option selected branches to another
application file, and then encounters another Branch action with the
Return option not selected, the first Branch action never returns to the
first application file, even though Witango Server encounters a Return
action. That is, the lack of a Return option in the second Branch action
takes precedence.

Setting Up a
Branch Action

[

Branch Action

Jumping to a Designated Action (Branch Action)

When you drag the Branch action icon from the Actions bar into an
application file, the Branch action editing window appears:

Example.taf : Branch M= E3

Action:

f |
Site_Information J

§ Begin_Updating_Account

; {? Inzert_Joumal_Entry
-T2 IF Amount OF, =l
Application File:

I Sample.taf j Browse. .. |

— Path to target TAF on Server
" Same az source TAF

& Other: I

[~ Betum to nest action after branch

To set up a Branch action

%

Note If you are using the Branch action in a Witango class file method,
skip to step 4.

Only branches within the method are allowed; the Application File field
and the “Path to target application file on Server” section are disabled.

From the Application File drop-down menu, select the file you
want the Branch action to jump to, by doing one of the following:

* Accept the default (that is, select the current file); go to step 3.

* If the current file is part of a project, the drop-down menu also
shows the other files in the project; select the file you want.

* If you want to select an application file elsewhere from your hard
drive, click Browse from the drop-down menu.

A standard file selection dialog box appears; select an application
file.

If you select an application file that is not the current file, the Action
list changes to show the actions in the selected file. The Path to
target TAF on Server section is also enabled to allow you to
specify the path to the application file.

Do one of the following:

* Select the Same as source TAF option (the default) to cause
Witango Server to always look in the current file’s folder.

» Specify in the Other field the path to the folder you want, which
causes Witango Server to look for the application file in that

Jumping to a Designated Action (Branch Action)

For more information, see

“Executing a Branch
Action” on page 302.

i

Branch Action
(with Return)

(Y

Branch
Action

Branch Action
Destination
Navigation

location. This path is specified relative to the Web Server’s
document root directory.

3 For the Return to next action after branch option, do one of
the following:

* Select the option if you want execution to continue with the
action following the Branch action when a Return action is
encountered in the destination.

* Do not select this option if you want execution to end when a
Return action is encountered in the destination.

The Branch icon in the Action list of the Witango application file
changes to reflect the change in the action’s behavior.

4 In the Action list, select the action you want the Branch action to
jump to.

5 Close the Branch action editing window.

The destination action for a Branch must be valid according to the rules
on page 300; otherwise, Witango Server returns an error.

You can navigate from a Branch action to its destination action with the
Go To Destination context-sensitive menu command.

When you have selected a destination for a Branch action, right-clicking
the Branch action allows you to select the Go To Destination
command from the context-sensitive menu that appears. The name of the
target action appears beside Go To Destination; the path to the file
also appears if the action is in a different application file than the Branch
action.

To navigate to a Branch action destination

I Do one of the following:

* Right-click anywhere in the Branch action editing window.

* Right-click the Branch action icon in the application file window.

The Go To Destination command appears in the context-
sensitive menu, along with the name of the destination action:

2 Choose Go To Destination from the context-sensitive menu that
appears.

Witango Studio automatically selects the designated action if it is in
the same application file. If the designated action is in a different
application file, Witango opens the application file and selects the
target action.

Jumping to a Designated Action (Branch Action)

The Go To Destination context-sensitive menu item is available only
when you right-click either the Branch action or the Branch action editing
window. A destination action must be designated, or Go To
Destination is disabled.

Deciding Course of Actions (Conditional Actions)

Deciding Course of Actions (Conditional Actions)

Example:
Sports Fan Web
Site

General Forms
of Conditional
Actions

Conditional actions consist of three closely related actions: If action, Else
If action, and Else action.

The If action is associated with an expression. During execution, Witango
Server evaluates whether the conditions stated in the expression are met.
If the conditions are met (true), Witango Server proceeds with a
sequence of actions in the application file; if the conditions are not met
(false), Witango Server proceeds with a different sequence of actions in
the application file.

Consider a Witango application file executing on a Web site for sports
fans. If the user chooses to display information on hockey, the variable
sport is set with the value hockey. Then, an If action evaluates the
sport variable, and, if the variable has the correct value (in this case,
hockey), Witango Server searches for and displays hockey information. If
the user chooses to display information on football (the variable sport is
set with the value football), an Elself action evaluates the sport
variable, and, if the variable has the correct value (in this case,
football), Witango Server searches for and displays football statistics.
Witango Server also displays general sports news when this application is
executed. The following is taken from an application file designed for our
sports fan Web site:

Example. taf
Sitelnformation

212 IfserwantslistOfRecards
(. q SearchRecording

q SearchTrack

Dizplay ariables

?? Elselflserw/antsRecordCount
: q Getdcoess

£7 UpdateficoessCount

[DizplayLast10
Copyrightinfarmation

If action combined
with an Else If action

We see that with the use of If and Elself actions (conditional actions),
different sets of actions can be executed during the execution of an
application file.

The If action has two related actions: Else If and Else. These conditional
actions are often used together: an If action followed by one or more Else
If actions and an Else action. However, an If action can exist without Else
If actions; it can also exist without an Else action.

Deciding Course of Actions (Conditional Actions)

The general forms of conditional actions are as follows:

¢ If Action

m If action (expression)

ActionA group of actions to execute if
ActionB expression evaluates to true
ActionC

ActionD remaining actions in file

¢ If and Else Actions

m If action (expression)

ActionA group of actions to execute if
ActionB expression evaluates to true

applies only if expression evaluates to
I*| Else action ——————————— false
ActionC . .

group of actions to execute if
ActionD expression evaluates to false
ActionE 7
ActionF remaining actions in file

¢ |f, Else If, and Else Actions

[2| If action (expression|)

ActionA group of actions to execute if
ActionB expression| evaluates to true

- applies only if expression |

I??| Else If action (expression2) =~ ———— evaluates to false
ActionC . .

group of actions to execute if
ActionD expression2 evaluates to true
I} | Else action group of actions to execute if neither
ActionE expression| nor expression2 evaluates
i to true

ActionF -

ActionG remaining actions in file

ActionH

307

Deciding Course of Actions (Conditional Actions)

Nested Conditional actions may be nested; that is, the indented actions under an
Conditional If, Else If, or Else action may contain other If, Else If or Else actions. You
Actions can have multiple levels of nesting.

The following is an example of nested conditional actions:

2| If action (expression|) 7

I2| If action (expression2)]
ActionA

[2| Else If action (expression3)
ActionB
ActionC

ActionD

2| If (expression4) -
ActionE
ActionF

ActionG

|| Else action
ActionH
2| If action (expression5)
Action]]
ActionK
ActionL -
ActionM

level 2

level |

level 2

level 2

i orking with conditional actions is similar to working with groupe
Performin Working with cond | | king with grouped
Operations on actions. Each If, Else If, or Else action—together with the indented actions
Conditional under it—acts like a group.

Actions For information on the operations you can perform on groups, see
Working With Action Groups on page 275.

Deciding Course of Actions (Conditional Actions)

Setting Up When you drag the If or Else If action icon from the Actions bar into an
Conditional application file, the If action editing window appears:
ACtlons |— Example.taf - If [_ (O] %]

MM ﬂ Action: [IF =

1F the following evaluate to tue. ..

If, Else If, and Else Value Dper. Walue
Actions _

2l 3|

Advanced »> |

By default, the If action editing window appears in basic view, which
allows you to create expressions quickly. An empty parameter row
appears in the dialog box, ready for you to edit.

Note Dragging the Else action icon into an application file does not

I+ open any action editing window. However, if you double-click an Else
action in an application file, the action editing window opens so you can
Else Action change the Else action to an If or Else If action.

For more information, see An advanced view is also available that gives you more flexibility than the

Advanced View” on basic view when specifying evaluation expressions.
page 311.

You change the type of conditional action by selecting If, Else If, or Else
from the Action drop-down menu.

The If and Else If action editing windows are basically the same, and you
enter evaluation expressions the same way for both of them. When you
select Else, however, only the Action drop-down menu is active. This
allows you to change to another type of conditional action.

Note If you change back to an If or Else If action type from an Else
action type before closing the action editing window, any If or Else If
expressions you specified previously are retained.

Basic View
The basic view consists of a parameter list, which works as follows:

* Each row in this list contains a parameters; it allows two values to be
compared, using an operator.

* All the parameters in this list are connected together, using logical

operators.

Deciding Course of Actions (Conditional Actions)

For more information, see
“Logical Operator” on
page 286.

For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 172.

For more information, see
“Operator” on page 287.

All the parameters together constitute a single expression that
Witango Server evaluates.

uln

If the expression evaluates to or “true”, it is considered true;

otherwise, it is considered false.

To specify values for the basic view parameters

Specify values as follows:

Logical Operator. The first field in the parameter list is the logical
operator. There are two logical operators: and and or.

Click the parameter row, then click the field to display a drop-down
menu to choose a logical operator. The logical operator is used when
the expression includes more than one row; it specifies the
relationship between the two rows.

Value. Enter the values to use in the parameter. Do not add
quotation marks around the values.

* If you are using the =, !=, >, <, >=, or <= operator (see the
description of Oper. on page 310), enter the two values you
want to compare in the two Value columns respectively.

* Ifyou are using the Is Empty or Is Not Empty operator (see
the description of Oper. on page 310), enter the single value
that you want to compare in the left Value column.

The values can contain any value-returning Witango meta tags, which
are substituted when Witango Server executes the action.

You can also use the Insert Meta Tag command to enter many of
the commonly-used meta tags.

To insert a meta tag, either click the field and choose Insert Meta
Tag from the Edit menu, or right-click the field and choose Insert
Meta Tag from the context-sensitive menu that appears.

Oper. Specify the operator to use to compare the two values
specified on the same row.

Click the parameter row, then click the field to display a drop-down
menu to choose an operator.

Possible operators include:

Operator Meaning

= is equal to

= is not equal to

> greater than

=

Insert icon

Deciding Course of Actions (Conditional Actions)

Operator Meaning

< less than

>= greater than or equal to
<= less than or equal to

Is Empty matches an empty field

Is Not Empty matches a non-empty field

To add a new parameter row

I Open the If action editing window (if it is not already open).

2 Do one of the following:

From the Edit menu, choose Insert.
On the main toolbar, click the Insert icon.

Right-click the list area, and choose Insert from the context-
sensitive menu that appears.

Press Insert.

To delete a parameter row

I Open the If action editing window, if it is not open already.

2 Do one of the following:

Select the row you want to delete; from the Edit menu, choose
Clear.

Right-click the row you want to delete and choose Clear
Criterion from the context-sensitive menu that appears.

Select the row you want to delete; press Delete.

Advanced View

When you click Advanced in the basic view, the following happens:

The window expands to show a text area where you can enter text-
based expressions.

The Advanced button changes to Basic.

The parameter list in the basic view is disabled (appears grayed).

Deciding Course of Actions (Conditional Actions)

* The parameters in the basic list are automatically converted to an
equivalent text expression in the advanced text area.

[Example.taf : If =] 3

Agtion: |M 'l

1F the following evaluate to tue. ..

Value Oper. Value

Basic << |

If the following expreszion evaluates to tue...

=1 =

" o

There are some important differences between basic view and advanced
view:

* For simple situations, basic view is easier to use.

* Advanced view presents a free-form text area to give you more
flexibility than the basic view when specifying evaluation expressions.
For example, if you want to use parentheses to control the
evaluation order, you can enter the expression in this area.

The expression entered here takes the same form as expressions
specified for the <@CALC> meta tag.

* If the expression in the advanced text area evaluates to “|” or
“true”, the expression is considered true; otherwise, it is considered

false.

* Any editing you do in the advanced text area supersedes the
parameters in the basic view list area.

* If you return to the basic view from the advanced view, any editing
you do in the advanced text area is lost.

Witango can take the parameters appearing in the basic view and
regenerate the equivalent text-based expression in the advanced view.
To regenerate the parameters from the basic view

I Do one of the following:

* Toinsert the text-based expression in the advanced text area,
right-click where you want the expression.

Deciding Course of Actions (Conditional Actions)

* To replace selected text with the text-based expression in the
advanced text area, select the text and right-click.

2 From the context-sensitive menu that appears, choose Insert
Expression As Above.

The text-based expression appears in the advanced text area.

Tip You can also drag snippets from the Snippets Workspace to this
text area.

To return to the basic view

¢ Click Basic.

Cautionlf you changed the expression in the advanced view, your
changes are lost when you return to the basic view. An alert box asks if
you want to continue.

Repeating a Set of Actions (Loop Actions)

Repeating a Set of Actions (Loop Actions)

Example: Music
Store

General
Forms of
Loop Actions

A loop action repeats the execution of a set of actions for a given number
of times or while an expression evaluates to true. In an application file,
the actions to be repeated in the loop are indented under the loop
action.

Consider an online music store. It allows customers to search for their
favorite recordings and artists. As an additional service, this store also
searches other sites for recordings and artists that it does not have in
stock. A loop action can be set up such that Witango Server goes
through the sites that this store has an agreement with. For each of these
sites, Witango Server searches for recordings and artists, and then
updates the results and displays them to the customer. This process
continues until Witango Server comes to the end of the sites. The loop
ends at this point, and Witango Server proceeds to the next action
outside the loop, which is to present the order information.

The following is taken from an application file designed for our music
store:

Sitelnformation

[=}-[0 RepeatFarE achSite
(. q SearchRecording
q SearchTrack
Dizplay ariables
q Getdcoess

£7 UpdateficoessCount
[DizplayLast10

------ Copyrightlnfa

Loop action
containing a series of
other actions.

There are three kinds of loop actions:

* While Loops. See the following sections for details.
* For Loops. See the following sections for details.

* Objects Loops. See Using the Objects Loop Action on page 410 for
details.

Repeating a Set of Actions (Loop Actions)

While Loop

The While Loop takes the following general form:

EWhiIe Loop action (expression)

ActionA group of actions to execute and
ActionB repeat if expression evaluates to true
ActionC

ActionD remaining actions in file

A While Loop is associated with an expression. If this expression
evaluates to true, Witango Server executes the indented actions listed
under the While Loop action. (In this example, these indented actions
include ActionA and ActionB.) When all the indented actions are
executed, the expression is evaluated again. Witango Server repeats the
indented actions as long as the expression evaluates to true. When the
expression evaluates to false, Witango Server proceeds to the next
action at the same level as the While Loop action. (In this example, it is

ActionC.)
For Loop
A For Loop action takes the following general form:
EFor Loop action
ActionA group of actions to execute and
ActionB repeat for a specified number of
times
ActionC b
ActionD remaining actions in file

A For Loop specifies that a group of indented actions listed under the For
Loop is to be executed and repeated a number of times. (In this example,
these indented actions include ActionA and ActionB.) After repeating so
many times, Witango Server proceeds to the next action at the same
level as the For Loop action. (In this example, it is ActionC.)

For more information, see Witango also includes a Break action you can use to exit a loop action

:AEXi.ti"g,,a Loop (Break before the loop conditions for termination are met.
ction)” on page 320.

Repeating a Set of Actions (Loop Actions)

Nested Loop Loop actions may be nested; that is, the indented actions under a While
Actions Loop or For Loop action may contain other While Loop or For Loop
actions. You can have multiple levels of nesting.

The following is an example of nested loop actions:

E While Loop action (expression)]
EFor Loop action 7
ActionA
ActionB
ActionC
[@ While Loop action (expression2) 7
ActionD
ActionE -

level 2

level |

level 2

ActionF
ActionG
ActionH

u For Loop action
Action)

[_°|Whi|e Loop action (expression3)
ActionK
ActionL
ActionM
ActionN

level 2
level |

Setting Up While Loop

Loop Actions A While Loop action executes and repeats the actions in the loop (shown

as indented actions) while an expression evaluates to true.

E When you drag the While Loop action icon from the Actions bar into an
application file, the While Loop action editing window appears in its basic

While Loop Action view, allowing you to create evaluation expressions quickly.

[Example.taf : While_Loop [_ (O] %]
Bepeat the contained actions while the following iz true:
Value Oper. Value
<BARG @Y. | < 193999

Advanced »> |

In order for the While Loop to work properly, you must avoid the
following pitfalls:

For more information, see
“Basic View” on page 309.

For more information, see
“Advanced View” on
page 311.

[k

For Loop Action

Repeating a Set of Actions (Loop Actions)

* Never entering the loop. If the expression you specify does not
evaluate to true when Witango first executes the While Loop action,
the indented actions under it are never executed.

* Infinite looping. Make sure that at least one value being compared
in the expression is being changed inside the loop. If this is not the
case, a “true” evaluation causes Witango to execute the enclosed
actions forever.

Be careful when constructing a While Loop expression. You want to
ensure that it eventually evaluates to false.

The basic view for a While Loop action is similar to the basic view for If
and Else If actions.

The While Loop action editing window also has an advanced view for
more flexibility when constructing evaluation expressions. For example,
you can use parentheses to control the evaluation order.

[Example.taf : While_Loop M= E3

Bepeat the contained actions while the following iz true:

Value Oper. Value

Fiepeat the contained actions while the following ezpression is true:
['«@ARG EVAR gPrice>'<'1999.99 ;I

" o

This view is similar to the advanced view for If and Else If actions.

For Loop

A For Loop action executes and repeats the actions in the loop (shown as
indented actions) for a given number of times.

317

Repeating a Set of Actions (Loop Actions)

Executing Loop
Actions

When you drag the For Loop action icon from the Actions bar into an
application file, the For Loop action editing window appears:

[Example.taf : For_Loop

Fepeat the contained actions for

Counter Yariable [local): IgEunentEounter

Start Value: |1
LCount: lm
To: [100
Increment By: |1

Set the parameters in a For Loop action as follows:

Counter Variable (local). The name of a local variable to use to
access the current value of the counter.

Note This parameter is optional. It is not required to use the action.

Start Value. The starting value for the loop counter. The default is
l.

Count. The direction of the counting from the starting value to the
ending value. You must specify this parameter so Witango can
increment or decrement the counter properly. Choose Up or
Down from the drop-down menu to set the counter to increment
or decrement, respectively. The default is Up. When Down is
selected, the Increment By field name becomes Decrement By.

To. The ending value for the loop counter.

Increment/Decrement By. The value the counter increments or
decrements by on each loop.

Tip All For Loop action fields, except for the Count field, support
Witango meta tags.

The General Forms of Loop Actionspage 314section on page 314
explains the basics of how Witango Server executes the While Loop and
the For Loop. This section provides some additional information.

While Loop

If Witango Server finds the expression invalid, it returns a runtime
error.

Repeating a Set of Actions (Loop Actions)

* Witango Server evaluates any meta tags in the expression on each
pass through the loop.

For Loop

* If Start Value is a meta tag, Witango Server evaluates it prior to the
first pass through the loop.

* If the To and Increment/Decrement By fields contain meta tags,
Witango Server evaluates them on each pass through the loop.

Performing Working with loop actions is similar to working with grouped actions.

Operatlor.Is on For information on the operations you can perform on grouped actions,
Loop Actions see Working With Action Groups on page 275.

Exiting a Loop (Break Action)

Exiting a Loop (Break Action)

The Break action prematurely terminates processing in a loop or group
action. On termination, processing continues at the next action after the
loop or group.

Drag the Break action icon from the Actions bar into a loop or Group
action at the point you want the loop or group to terminate.

Break Acti L . .
reak Action The following is an example of an application file showing how loop and

Break actions appear:

Break action

q SearchRecording included in the

q SearchTrack

. loop.
Loop‘ac.tlon Drizplayt ari P
Coqta|n|?g ah [? CheckFaadsSie

ser}es or other .T=" DoneProcessingSites
actions.

q Getdcoess

£7 UpdateficoessCount
[DizplayLast10

----- Copyrightlnfa

On execution, the Break action terminates the loop, and processing
continues at the next action after the loop.

Note If you include a Break action outside a loop or group, Witango
Server generates a runtime error on execution.

Ending File Processing (Return Action)

Ending File Processing (Return Action)

= The Return action ends application file processing and returns any
accumulated Results HTML to the Web browser.
Return Action

For more information, see The exception to this is if the current execution flow is the result of a
“Jumping to a Designated ; : ;

' St Branch that had its Return to next action after branch option set. In
Action (Branch Action)” on)) i]
page 300. this case, the execution returns to the action following the Branch when

a Return action is encountered.

322

Ending File Processing (Return Action)

CHAPTER SIXTEEN

Extending Witango I 6
Functionality

Script and External Actions

The Script action provides an interface within Witango for executing
JavaScript code at the server. The script executed can return to Witango
a value you can access using Results HTML.

The External action calls an executable invoked using a command line, a
Dynamic Link Library (DLL), or a Java class file to perform processing
and, if desired, return results.

Witango may also be extended through COM, JavaBean, and Witango
class file objects. For more information, see Witango and Objects on
page 10.

This chapter covers the following topics:

» setting up and executing a Script action
* configuring a DLL call or a Java action

* using a command line

* assigning variables to action parameters
* assigning action attributes

* deleting action parameters

* executing an External action.

323

Executing JavaScript

Executing JavaScript

The Script action provides an interface for executing core JavaScript code
at the server. The script executed can return a value to Witango, which is
accessible using Results HTML.

Witango is JavaScript |.4 compatible, meaning it includes the official
JavaScript Reference implementation from Netscape, and conforms to
version |.4 of the language.

Note Witango supports the general purpose core of the language. The
objects representing the Web browser and its contents are not
supported, because the scripts are executed at the server where these
objects do not exist. For your convenience, a JavaScript HTML
reference is provided with the Witango HTML help.

Setting Up a When you drag the Script action icon from the Actions bar into an
Script Action application file, the Script action editing window appears:

|E Example.taf : Script [_ (O] %]
JavaScript object and variable scope: IDefauIt 'l

SCI‘ipt Action JavaScript script:
El

" o

The JavaScript object and variable scope parameter defines the
lifetime of the objects and functions declared in the script. This is a
concept similar to the scope of variables in Witango.

The drop-down menu/text box has several choices, or you can enter a
custom scope:

* Default specifies Witango’s default scope, which is set by the
defaultScope configuration variable. .

* Immediate specifies that the objects and functions go away
immediately after the action is executed.

* Method specifies that anything defined in the script can be referenced
within the current method of a Witango class file.

For information on using
the script text area, see
HTML Editing Window on
page 9, and The SQL
Query Window on

page 20.

Executing a
Script Action

%

Executing JavaScript

Instance specifies that anything defined in the script can be
referenced within the current instance of a Witango class file.

Note Method and Instance appear only if the Script action is within a
Witango class file.

Request specifies that anything defined in the script can be
referenced in another script in the same application file execution.

User specifies that anything defined in the script can be referenced
in another script run by the same user.

Application specifies that anything defined in the script can be
referenced in another script in an application file in the current
Witango application.

Domain specifies that anything defined in the script can be
referenced in another script in an application file in the Witango
domain.

You enter the text script to be executed in the JavaScript script text
area. The script may contain meta tags. All meta tags in the script are
substituted before the script is executed.

Tip You could use an <@ INCLUDE > meta tag to reference an external
JavaScript file.

Tip The script text area functions the same as HTML text editing
windows.

When you right-click the script text area, the same context-sensitive
menu for the SQL text area of a Direct DBMS action appears.

Witango Server executes the Script action in a similar way it executes the
<@SCRIPT> meta tag.

Any value returned by a script is accessible in the Results HTML by using
<@COL 1> inside a <@ROWS> block. The action’s result set (a | by | array)
is also stored automatically in a local variable, resultsSet.

Using an External Action

Using an External Action

Setting Up an
External Action

|

External Action

Configuring a
DLL Call

When you drag the External action icon from the Actions bar into a file,
the External action editing window automatically opens.

The standard External action type is based on the current platform, in
this case, DLL. You can also specify Java, command line execution.

From the Type drop-down menu, select the type of action you want to
execute.

|OLL pwindows) |

Command Line [Wwindows and LIMI)
Java

Note If you specify parameters for one type and then change to
another type, Witango attempts to transfer the current parameters to
the new type.

This User’s Guide gives a description of each type of External action. The
DLL, Command Line and Java externals are available if you plan to
deploy your application file on Windows. Command Line and Java are
available for Linux, OS X and Solaris versions of Witango Server.

To configure a DLL call

I From the Type drop-down menu, select DLL, if it is not already
selected.

The External action editing window for the DLL type appears:

2 Example.taf : External =1 E3

Type: |DLL [wfindows) =

DLL: ||

Parameters:

Hum Walue
1

Using a
Command Line

Using an External Action

2 In the DLL field, type the fully qualified path to the DLL you want to

call, for example:

C:\Program Files\Witango\externals\Test.dll.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

This path may contain meta tags.

Note The DLL called by the External action must be written to
conform to the API described in Appendix B.

3 Insert a new parameter row by doing one of the following:

¢ From the Edit menu, choose Insert.

¢ On the main toolbar, click the Insert icon.

* Right-click thein the Parameters area, and choose Insert from
the context-sensitive menu that appears.

A new parameter row appears. The parameters are numbered
for easy identification.

Tip You may re-order parameters by dragging them within the list.

4 In the Value field, type a parameter value.

All parameters are passed to the corresponding APIs by pointers of
type (char *).Parameter values may include any value-returning
Witango meta tags, which are substituted when the action is
executed.

External actions allow you to run any executable file (for example, batch
file, shell or Perl script, C application) and, if desired, retrieve results.
Values are passed from Witango to the executable by means of
environment variables. Results are retrieved by Witango from text that
the External action has written to the standard output stream (stdout).
Rows and columns are delimited with tabs and returns, respectively.

To configure a command line External action

I From the Type drop-down menu, select Command Line.

327

Using an External Action

The External action editing window for the Command Line type
appears:

2 Example.taf : External =1 E3

Tupe: IEommand Line [windows and UNIX:j

LCommand: ||

Environment % ariables:

Mame Walue

2 In the Command field, specify the executable file name.

The value of this field (after meta tag substitutions) must be a
valid file path (for example, c:\temp\dir.bat). Command line
parameters are not allowed here.

Note The path specified in the Path field is appended to the value of
the absolutePathPrefix configuration variable. If this
configuration variable has a value (in either application or system
scope), this field should contain a path relative to that location

You may include command line switches here (Linux only).

Note A command line containing a DOS-like command (for example,
dir) does not work because ‘dir’ is not a file. Commands calling other
command processors (shell) also do not work. If you want to execute
an operating system command, you should create a batch file or shell
script.

On Unix, shell scripts must have read/execute permission for the user
running the Witango daemon. In order to be properly executed under
the appropriate shell, the shell script must have a shell execution
directive such as #! /bin/sh as its first line.

3 Insert a new environment variable row by doing one of the following:

¢ From the Edit menu, choose Insert.
e ¢ On the main toolbar, click the Insert icon.

* Right-click the environment variables area, and choose Insert
from the context-sensitive menu that appears.

For more information, see
“Assigning Attributes” on
page 330.

Configuring a
Java Action

Using an External Action

A new environment variable row appears.

4 In the Name field, enter the name of an environment variable to
create for the process. This value is passed on the command line to

the External action.

Note The name of an environment variable is case sensitive.

5 In the Value field, enter the value to assign to the named

environment variable.

Environment variables may include any value-returning Witango
meta tags, which are substituted when the action is executed.

Tip You may re-order variable rows by dragging them within the list.

Witango ships with its own Java server, which is on the same machine as
Witango Server. The Java type External action allows you to connect to

the Java server.

To configure a Java external action

I From the Type drop-down menu, choose Java.

The External action editing window for the Java type appears:

2 Example.taf : External

=l E3

Tvpe: IJava

[

Java Server. I

& JavaClass ¢ JavaBean

Fart : I

Path: I

Arguments:

Hum

Walue

1

2 In the Java Server field, type the IP address or hostname.domain of

the machine running the Java server.

The default server name is localhost (127.0.0.1), meaning that
the Java server is on the same computer as Witango.

Using an External Action

Assigning
Attributes

For a description of each
attribute, see Assigning
Attributes to Actions on
page 264.

3 In the Port field, type the port number the Java server is listening on.
The default port is 4000.

4 Select either Java Class or Java Bean to specify the type of Java file.

5 In the Path field, type the fully qualified path to the Java file. This
path can contain meta tags.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

6 Insert a new argument row by doing one of the following:

¢ From the Edit menu, choose Insert.

* On the main toolbar, click the Insert icon.

* Right-click thein the arguments area, and choose Insert from
the context-sensitive menu that appears.

A new argument row appears. The arguments are numbered for
easy identification.

Tip You may re-order arguments by dragging them within the list.

Note Arguments may include any value-returning Witango meta tags,
which are substituted when the action is executed.

You can also assign the following attributes to an External action:
* Results HTML

* No Results HTML

* Error HTML.

You assign these attributes using the Attributes menu.

You can also right-clickthe External action icon or name in the application
file, or click the open External action editing window to display a context-
sensitive menu of available attributes. The Properties command is also
available in this menu.

If you right-clickan action parameter, the Edit command is active allowing
you to edit the parameter value; otherwise, it is disabled (grayed).

Using an External Action

Deleting To delete an External action parameter

Parameters I Open the External action editing window.

2 Select the parameter row you want to delete, and do one of the
following:

¢ From the Edit menu, choose Delete.

* Right-click the parameter, and choose Delete from the context-
sensitive menu that appears.

¢ Click the Delete icon on the main toolbar.

¢ Press Delete.

3 When you are asked to confirm deletion of the selected row, click
oK.

Executing an When an External action is executed, the DLL, command line, or Java
External Action specified is called and the parameters are passed to it.

Any results returned are accessible in Results HTML in the same way as
in the Search action—by using a <@ROWS></@ROWS> block. The
<@COLUMN> meta tag, however, does not work in the External action. You
must use the <@COL> meta tag along with an item number to refer to
data items, as the items do not have names.

A single item result is treated as a one-column row, a list of items is
treated as a row of columns, and a list of lists is treated as a rowset.

For example, if an External action returns a list of lists of three data items
each, all the results can be viewed with the following Results HTML:

<@ROWS >

Row <@CURROW>, Item 1: <@COL 1>

Row <@CURROW>, Item 2: <@COL 2>

Row <@CURROW>, Item 3: <@COL 3>

<HR>

</@ROWS>

For the command line and Java options, the value returned is treated as
tab and return delimited: a tab separates columns and a return separates
rows.

Only textual data can be returned from an External action.

The entire result rowset from an External action is automatically assigned
to a local array variable, resultSet.

If the External action generates no data, and you have specified No
Results HTML for the action, that HTML is processed instead of the
Results HTML.

Disabling JavaScript, Java and External Actions

Disabling JavaScript, Java and External Actions

You can specify that External actions are executed only in a specified
directory of Witango Server using the absolutePathPrefix
configuration variable. Using this configuration variable to set the path
ensures that users cannot access directories other than the specified
ones when using the External action.

JavaScript, Java, and External actions are by default enabled in Witango. If
you want to disable (or enable) these features, you can do so by changing
the following options in the Witango Administration Manager (the
config.taf application file), in the Feature Switches screen:

javaScriptSwitch
javaSwitch
externalSwitch

Check or uncheck the check boxes beside the options.

CHAPTER SEVENTEEN

Sending Electronic Mail |7
From Witango

Mail Action

The Mail action sends out electronic mail (e-mail) using the Simple Mail
Transfer Protocol (SMTP). SMTP is the main protocol used to send mail
on the Internet.

The Mail action lets you send e-mail messages from Witango application
files and Witango class files. For example, you might send an e-mail
message to a list of recipients notifying them of a change to a database or
that a particular file has been executed. Many types of information
gathering are possible. For example, you can use e-mail for inventory
management, shipping and receiving, data compilation, generating sales
leads, or any function that can use data derived from activity in a database
or an object.

You can also attach files to an e-mail message generated from Witango,
add custom headers, and specify the character set and encoding used for
the e-mail message.

This chapter covers the following topics:

* setting up a Mail action
* disabling the Mail action in Witango.

Setting Up a Mail Action

Setting Up a Mail Action

o

Mail Action

General Tab

When you drag the Mail action into your application file, the Mail action
editing window appears:

2% test_taf : Mail H=] E3

General | Options | Attachments |

From: Idocs@withenterprise.mm

To: fl

Lo

|
Bec: I
|

Subject:

|

Specify the attributes of your message under the three tabs in the top
panel. All of the Mail action fields support the use of Witango meta tags,
which are evaluated at the time the e-mail message is sent.

From. Enter the e-mail address of the sender of your message.
Normally, this is also the address that replies and error messages go
to.

If this field is left empty, Witango uses the system configuration
variable mailDefaultFrom to determine the default value.

The value of this configuration variable can be changed in the
Witango Admin Application, config. taf: enter the address of the
person sending the e-mail message, for example,
Witango@example.com. This configuration variable is stored in the
Witango Server configuration file (witango.ini).

Note If both the configuration variable and the From field are empty,
then the e-mail message cannot be sent. An e-mail message must always
be from somebody.

To. Enter the e-mail address or a comma-delimited list of addresses.

Setting Up a Mail Action

* Cc (Carbon Copy). Enter the e-mail address of the person you want
to send a copy of the message to. This field also allows you to enter a
comma-delimited list of addresses.

* Bcc (Blind Carbon Copy). This field is the same as Cc except the
recipients are not listed in the message; that is, the To, Cc and other
Bcc recipients do not know that the message was also sent to those
addresses.

* Subject. Enter the subject of the e-mail message.

You compose your e-mail message in the bottom pane of the Mail action
window.

Proper E-Mail Address Syntax

You must use a valid e-mail address format in the From, To, Cc, and Bcc
fields of the Mail action. The following formats are supported by Witango
Server:

e johndoe@example.com
e-mail address.
¢ <johndoe@example.com>
e-mail address in angle brackets.
* "John Doe” <johndoe@example.com>
name in quotes, e-mail address in angle brackets.
° johndoe@example.com (John Doe)

e-mail address, name in parentheses.

Note Some e-mail clients may not show the name when displaying an
e-mail header if you use the format shown in the final example.

Setting Up a Mail Action

Options Tab Click the Options tab and specify how you want your message to appear
to the recipient, as shown in the following fields:
2% test.taf : Mail [_ O] x|
General Options | Aftachments I
Content type: IF'lain Text j
Character set: [150 88591 (Latin-1) =l
Wrap lines at |?2 characters.
Custom header lines:
I =
=
Thiz iz my message... ;I
H

» Content Type. Specify the output format of your e-mail message by
selecting Plain Text or HTML from the drop-down menu, or enter a
content type in the text field provided.

* Character Set. Select an option from the drop-down menu to
specify the character format for the e-mail message.

Note When the message is sent, Witango Server adds the following
MIME header lines, displaying the message to the recipient in the chosen
content type and character set:

MIME-Version 1.0

Content-type: type; charset="charset”
Content-transfer-encoding: encoding
X-Mailer: Witango <@VERSION>

The type, charset, and encoding options are replaced by the content
type (for example, text /plain or text/html), character set (for
example, ISO-8859-1), and encoding (for example,
quoted-printable) selected by the user.

* Wrap Lines At. Enter the line length of your message body. The
value of this field must be between 30 and 132 characters. The
default value is 72 characters. This field is available when the
Character Set option is set to ASCII or a user-entered value.
With non-ASCII character sets, no wrapping occurs.

Attachments

Tab

Setting Up a Mail Action

* Custom Header Lines. Enter text or meta tags that are to be

displayed as custom headers at the end of the message headers. Data
in this field should not exceed 32K.

* Click the Attachments tab to attach a file to your message.

2% test.taf : Mail IH[=] B3

Generall Optionz ~ Attachments |

Filenames
<{@APPFILEPATH @@myFiles

This is my message.. | ;I

To attach a file to a message
I Do one of the following:

¢ From the Edit menu, choose Insert.
¢ On the main toolbar, click the Insert icon.

* Right-click in the Filenames window and choose Insert... from
the context-sensitive menu that appears.

2 Specify the full path and name of the file to be attached; for example,
C:\Outbox\Attachments\myattachment.txt.

%

Note The paths specified here are appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

For each path field, meta tags can be inserted to a maximum length of
1024 characters. Witango evaluates meta tags in the file path for each
attachment in the list. After meta tag substitution, Witango determines
whether the value is text or an array. If the value is an array, Witango
processes every cell in the array as a separate file path.

337

Setting Up a Mail Action

For example, you could enter the following in a field in the Filenames
section of the Mail action dialog box:

@emyFiles

When the application file is executed, the file or files specified by the
variable myFiles (single value or array) are attached to the generated e-
mail message.

When the Mail action is executed, Witango Server connects to the SMTP
server. Witango then sends the message to all the specified recipients.

The SMTP server is defined by the configuration variables mailServer
and mailPort. These variables can be changed using the Witango
Configuration Manager (config.taf application file). They are stored in
the Witango Server configuration file (witango.ini).

The result of the action is a one-column array of the messages sent to
and received from the SMTP server. Use <@COL 1> inside a <@ROWS>
block in the Mail action’s Results HTML to display these results. This
information can be useful for debugging a Mail action.

The resultSet for a Mail action shows both the mail server’s and the
client’s side of the SMTP conversation, and the commands Witango sends
to the mail server.

Disabling Mail

Disabling Mail

You can specify that mail attachments to come only from a specified
directory of Witango Server using the absolutePathPrefix
configuration variable. Using this configuration variable to set the path for
mail attachments ensures that users cannot access directories other than
the specified ones when using the Mail action. This configuration variable
also affects all other actions which have absolute paths as parameters.

Mail actions are enabled in Witango by default. If you want to disable (or
enable) this feature, you can do so by changing the following option in the
config.taf application file Feature Switches screen:

mailSwitch

Check or uncheck the check box beside the option.

340

Disabling Mail

CHAPTER

EIGHTEEN

Reading, Writing, and I 8

Deleting Files

File Action

The File action allows you to read, write, and delete files on the Witango
Server machine. Some of the functions you might want to perform using
this action are as follows:

* Store data permanently to disk for later retrieval (as opposed to
variables which are in memory).

* Keep a log file, appending to it when a certain function gets called in
your application file.

* Write HTML files using database-generated data to your Web server
document folder.

* Store data to a file for export to an external system, providing data
navigation.

* Import data from a file from an external system, for example, daily
reports from a mainframe, newswire feeds, and periodic updates to a
third-party supplier.

* Use the action instead of giving FTP access to deploy (upload) one or
two files from a Web site.

* Use the action as an administrative tool to deploy graphics or as an
intranet tool to deploy word processor documents or other types of
documents to the server.

The topics covered in this chapter include:

* setting up a File action

* handling file security.

342

Setting Up a File Action

Setting Up a File Action

El

File Action

Setting Up
Read Options

You can set up the three types of file operations using the File action.

* Read (the default) allows you to specify the path and file name of the
file you want to read. You also specify if you want to read the entire
file or some part of it, and store the data in a local variable.

* Write allows you to specify the path and file name of the file to
write data to. You also specify what that data is and, if the file exists,
whether the data should be appended to or overwrite the existing
data. You can also store the file name in a local variable.

* Delete allows you to specify the path and file name of the file you
want to delete.

When you drag the File action icon from the Actions bar, the File action
editing window appears:

&= Example_taf : File [_ O]]
File Dperation: =
File: |
—Read
* Entire file
= Firgt I butes of the file
" Last I butes of the file
" Bytes I
through
| 7| otfile
Store data in local variable:

%

Note For any of the editing fields, you can include value-returning
Witango meta tags or drag snippets from the Snippets Workspace. You
can also right-click an editing field to display a context-sensitive menu of
editing commands, including the Insert Meta Tag command.

From the File Operation drop-down menu, select Read, if it is not
already selected.

The action editing window changes to show the options for the Read
type operation, which you specify as follows:

Setting Up a File Action

* File. The path and file name of the file you want to display to the
user. You must specify the full, absolute path, not the path relative to
the Web server root.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

* Read. Sets which part of the file to read. You can choose Entire
file, or select one of the following options:

First. Type the number of bytes to read from the start of the
file.

Last. Type the number of bytes to read at the end of the file.

Bytes. Type the starting and ending bytes. If the ending byte you
are specifying is the end of the file, you can select EOF instead.

¢ Store data in local variable. The name of a local variable to store
the read data in.

Note The read data is also available as <@COL 1> in the action’s
Results HTML and is stored in the local resultSet variable.

If you do not specify a file, the action does not do anything. In other
words, the action behaves like a file exists, but the file is empty.
Specifically, the specified variable is empty.

Setting Up From the File Operation drop-down menu, select Write.
Write Options

343

344

Setting Up a File Action

The action editing window changes to show the options for the Write
type operation.

&= Example_taf : File [_ O]]

File Operation:
Fie: | =l
[rata to wijte:
< _>l_I
 If file exists ————— [~ File Attribute:

% Append ta it Uszed by Mac 05 servers only.

' Ovepwrite it Ly ITEXT

" Generate an emor Creator: IF!"c:h
Store file name in local wariable: I

Specify the Write options as follows:

File. The full, absolute path and file name of the file you want to
write data to, for example:

c:\inetpub\wwwroot\client\uploads\mydoc.doc

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location. This file information can
also come from a variable or an argument.

You can also tell Witango to generate a temporary file by selecting
Temporary file from the drop-down menu. If you select this
option, the server creates a temporary file using standard routines
for the operating system.

Data to write. The data to write to the specified file. For example,
you could enter the named post argument for a form field where the
user enters the data to be saved in the specified file, or enters a file
name to deploy.

If file exists. Specify what you want to do if the file already exists.
Select one of the following options:

Append to it appends to the existing file the data you are writing.

Overwrite it replaces the existing data in the file with the data you
are writing.

Generate an error generates an error message on execution.

Setting Up a File Action

* File Attributes (used by Mac OS servers only). These Mac OS only
Type and Creator codes are used when creating a file. TEXT and
R*ch are the default values for new actions. They are also the values
used by the server if either field evaluates to empty. Witango Server
uses the first four characters of each field (after substitution). If you
specify fewer than four characters, the value is space padded to the
end.

* Store file name in local variable. The name of a local variable in
which to store the path and file name of the file written to. You
would use this option when you write data to a temporary file.

Note The read data is also available as <@COL 1> in the action’s
Results HTML and is stored in the local resultSet variable.

Setting Up From the File Operation drop-down menu, select Delete.
Delete Options

The action editing window changes to show the options for the Delete
type operation.

&= Example_taf : File M= E3

File Operation: [inREE

File: |

In the File field, specify the full, absolute path, and file name of the file to
delete.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

345

346

Handling File Security

Handling File Security

You can specify that file reads, writes, and deletes only take place in a
specified directory of Witango Server using the absolutePathPrefix
configuration variable. Using this configuration variable to set the path for
file reads, writes, and deletes ensures that users cannot access directories
other than the specified ones when using the File action.

File reads, writes, and deletes are enabled in Witango by default. If you
want to disable (or enable) these features, you can do so by changing the
following options in the Witango Configuration Manager (the
config.taf application file), in the Feature Switches screen:

fileReadSwitch
fileWriteSwitch
fileDeleteSwitch

Check or uncheck the check box beside the option.

Note The £ileReadSwitch configuration variable also applies to
the <@INCLUDE> meta tag.

CHAPTER NINETEEN

Using Advanced Database I 9
Actions

Transaction and Direct DBMS Actions, and Joining of Database
Tables

You can put several database actions together to create a single
transaction that manages the work being performed. Using Begin
Transaction and End Transaction actions you can specify where to begin,
commit, and rollback database changes.

You can use the Direct DBMS action to execute specified SQL statements
and return any results generated.

Relational databases let you specify joins to permit searches involving
more than one table. A join tells the database how the tables are related.
A standard join preserves only those rows from a search in which a match
exists with the joined table. An outer join preserves all the rows in one of
the tables, even if there is no match with the other table.

The topics covered in this chapter include:

* setting up and executing transaction actions
» setting up and executing the Direct DBMS action
* understanding joins

* creating and editing joins.

347

348

Using Database Transactions

Using Database Transactions

Setting Up a
Transaction
Action

3|

Begin Transaction

Witango supports special database actions that allow you to specify
where to begin, commit, and rollback database changes. Using the Begin
Transaction and End Transaction actions, you can create a well-defined
single transaction.

Normally, actions executed by Witango Server that change the content of
databases (Insert, Update, Delete, and Direct DBMS actions) cause an
immediate change to the database. This is because Witango automatically
sends a COMMIT command as the final step in its execution of these
actions.

However, transaction actions let you control when database changes are
made permanent and also let you undo (or ROLLBACK) the effects of
actions that have been executed.

To perform a transaction action, Witango maintains a database
connection longer than it would for other actions. You should consider
the impact this may have on your server and database resources before
deciding to use transactions in your application file.

Note Witango transaction actions have no effect on databases that do
not support transactions.

Begin Transaction

The Begin Transaction action indicates the beginning of a transaction on a
particular data source.

To set up a Begin Transaction action

I Drag the Begin Transaction action icon from the Actions bar into an
application file.

Using Database Transactions

For more information, See The Data Source Selection dialog box appears:
“Setting Data Sources for
Actions” on page I31. Data Source Selection E
V' Set development data source ¥ Set deployment data source
Development data source: ' Use data source default
ki BlueSkyeDema - & Specify
L V' Same as development
cfexamples
@ cfsnippets e I j
@ dBASE Files Mame: IBug System Data
ki E-Bark
ki ECommerce Data Database: I
@ Eucel Files u I
sername:
@ FouPro Files -
RL Muszic LI Password: I

Ok I Lancel

2 Select a data source and click OK.

If username and password are required for this data source, a
dialog box appears, where you can enter your username and
password:

E-Bank [%]

Connect as:

Usemame: ||

Password: I

™ Remember usemame and password

()8 I Cancel |

3 Enter your Username and Password into the respective fields, and
click OK.

For more information, see If there are more than the maximum number of tables in the

SC°"”e,°,t'”g to Large Data data source, and this is the first time you have accessed this data

ources” on page |38. ; i) :) .
source in this Witango Studio session, the Select Tables dialog
box appears, allowing you to choose which tables you want
visible in the data source. Select the tables and click OK.

The Begin Transaction action dialog box becomes active:

= Example.taf : Begi... [H[=]E3

Isolation Level

' Riead uncommitted

349

Using Database Transactions

4 Click a radio button to select the isolation level you want to assign to
the Begin Transaction action.

* Read/Write exclusive. Locks rows that are read as part of the
transaction until a COMMIT or ROLLBACK command is issued to
the database server.

* Read uncommitted. Reads rows that have been changed by
other database users in a transaction, but for which the
transaction has not been committed or rolled back.

5 Click anywhere outside the Begin Transaction dialog box to close it.

End Transaction

The End Transaction action marks the end of the transaction and either
commits it (saves all the changes) or rolls it back (discards all the
changes).

To set up an End Transaction action

I Drag the End Transaction action icon from the Actions bar into an
] application file.

End Transaction The End Transaction action dialog box appears:

& Example : End_Tranzaction [E[=] E3

End tranzaction using
’7 " Rolback

2 Click a radio button to select the option you want to the End
Transaction action:

* Commit. Commits any modifications made to the database

E E during the current transaction.
Commit RollBack * Rollback. Undoes any modifications made to the database
End End during the transaction.

Transaction Transaction
In the application file, the End Transaction action icon changes to

reflect the associated attribute.

3 Click anywhere outside the End Transaction dialog box to close it.

Using Database Transactions

The following is an example of valid transaction actions appearing in an
application file.

Site_Information
§ Begin_Updating_Account

Begin Transaction
{? Inzert_Joumal_Entry

[I Amount_0F.

£7 Update_sccount

& Commit_Transaction
|+ Ele

-5 RolBack_Transaction
Copyright_lnformation

Commit Transaction

RollBack Transaction

Executing a If Witango Server detects that an End Transaction action is bein

8 g
Transaction executed without first executing a Begin Transaction action, it reports a
Action runtime error. It is also an error to begin another transaction before an

existing transaction is committed or rolled back.

Database actions on data sources that are not the transaction data source
are automatically committed.

If the application file ends without executing an associated End
Transaction action or a Return action, then a Rollback End Transaction
action executes automatically.

Tip When executing a transaction, your application could slow down;
additional RAM may be required for Witango Server.

352

Using SQL Directly

Using SQL Directly

Setting Up a
Direct DBMS
Action

&

Direct DBMS Action

For more information, See
“Setting Data Sources for
Actions” on page |131.

For more information, see
“Connecting to Large Data
Sources” on page 138.

The Direct DBMS action executes specified SQL statements and returns
any results generated.

To set up a Direct DBMS action

I Drag the Direct DBMS action icon from the Actions bar into an
application file.

The Data Source Selection dialog box appears:

Data Source Selection [%]
V' Set development data source ¥ Set deployment data source

Development data source: ' Use data source default

ki BlueSkyeDem & Specify

@ ' V' Same as development

cfexamples

@ cfsnippets e I j
£ dBASE Files Mame: IBug System Data

ki EBank

ki ECommerce Data Database: I

@ Eucel Files u I

sername:
@ FouPro Files -
kaL Music LI Password: I

Ok I Lancel

2 Select a data source.

3 A dialog box appears where you can enter a username and password,
if necessary.

E-Bank [%]

Connect as:

Usemame: ||

Password: I

™ Remember usemame and password

()8 I Cancel |

Enter the Username and Password and click OK.

If there are more than the maximum number of tables in the data
source, and this is the first time you have accessed this data source in
this Witango Studio session, the Select Tables dialog box appears,
allowing you to select which tables you want visible in the data
source.

Using SQL Directly

4 Click OK.

An empty Direct DBMS action editing window appears, displaying
SQL and Results tabs.

2¥ Example_taf : Direct_DBMS

SOL |F|esu|ts|
=l
=
Fill in the tabbed windows as described next.
The Direct The Direct DBMS action editing window consists of two sections: SQL
DBMS Action and Results.
Editing Window

SQL Section

Click the SQL tab to display the SQL section. You can enter SQL
statements in the text area for execution.
For information on All statements are executed against the database specified in the data

constructing SQL source associated with the Direct DBMS action.
statements, consult your

database or ODBC driver . .
documentation. You can easily enter column or table names by dragging them from the

Data Sources Workspace. If you drag multiple columns, they are
separated with commas.

You can also perform standard editing operations in the Direct DBMS
action editing window by one of the following methods:

* From the Edit menu, choose the editing command you want.
* Click the appropriate editing icon on the main toolbar.

* Right-click to display a context-sensitive menu of commands.

You can reference any value-returning Witango meta tags in your SQL.

To insert a meta tag in the Direct DBMS window

I Click the SQL text area of the editing window where you want to
enter a meta tag.

2 Do one of the following:

* From the Edit menu, choose Insert Meta Tag.

Using SQL Directly

For information on filling in
the Insert Meta Tag dialog
box, see Inserting Meta
Tags on page 172.

* Right-clickthe action editing window, and choose Insert Meta
Tag from the context-sensitive menu that appears.

The Insert Meta Tag dialog box appears, allowing you to specify a
meta tag, and inserts it at the insertion point in the SQL text area.

You can use the <@IF>, <@IFEQUAL>, and <@IFEMPTY> meta tags in the
SQL text to include or exclude SQL based on the result of a comparison
at execution time. For example, you could use this capability to execute
different SQL based on the type of data source in use.

Direct DBMS SQL Auto-Encoding

Witango Server automatically performs SQL encoding on meta tag values
substituted in Direct DBMS SQL. For example, if a variable called myName
contains "O'Brien":

SELECT * FROM customer WHERE cust name = '<@VAR
NAME=myName>"'
This results in:
SELECT * FROM customer WHERE cust name = 'O''Brien'
If Witango did not do this, the result would be:
SELECT * FROM customer WHERE cust_name = 'O'Brien'

and a DBMS error would result due to the unescaped quote.

If your Direct DBMS SQL contains meta tags that evaluate to an entire
(or partial) SQL statement constructed elsewhere, the quote-doubling
may cause DBMS errors. This is because all single quotes are doubled,
even those meant to delimit a string. In this case, the solution is to modify
the meta tag(s) returning your SQL by adding the ENCODING=none
attribute. For example:

<@VAR NAME=mySQL ENCODING=none>

Executing a
Direct DBMS
Action

Using SQL Directly

Results Section

Click the Results tab to display the results options you can set for the
Direct DBMS action.

2¥ Example_taf : Direct_DBMS

SOl Resuls
Tetriesve

Hurnby
’76’ i I:imitTo:I
Stark retrieval at match number: |1

f

You can specify options for the maximum number of records to retrieve
from the data source and at which result record number retrieval begins.

Number of rows to retrieve

* To return all matching rows, select No Maximum.

* To limit how many records are returned by the action, select Limit
To and enter the maximum number of rows to retrieve.

Start retrieval at match number

Use this option to skip some of the matching records. Enter “I” (the
default) to start retrieval with the first matching record. When a value
other than “I” is entered into this field, the Direct DBMS action returns
records starting at that number, skipping any records before it.

Both of these fields can contain meta tags which return values.

When Witango Server executes a Direct DBMS action, the specified SQL
is sent to the data source for execution.

#¥ Example_taf : Direct_DBMS1

SOL |F|esu|ts|

SELECT maintable. clazzification, maintable. price ;I
FROM Carz_db
WHERE maintable. price=<RSEARCHARG maintable. price:

Using SQL Directly

The result rows are returned to Witango and may be accessed in the
action’s Results HTML. As with the Search action, a2 <@ROWS>
<@/ROWS > block is used to iterate through the records returned. You
must specify column references differently, however.

You can use <@COLUMN> to refer to your columns by name for ODBC
data sources, but for non-ODBC data sources, you must refer to your
columns in Results HTML by number, using the <@COL> meta tag.

For example, if your Direct DBMS action executed the following
statements with a non-ODBC data source:

SELECT maintable.price, maintable.classification,
maintable.manufacturer
FROM maintable

the following Results HTML would print the database results:

<@ROWS>

maintable.price: <@COL 1>

maintable.classification: <@COL 2>

maintable.manufacturer: <@COL 3>
<HR>
</@ROWS>

When you perform an SQL query where you are selecting an aggregate
function or calculated column, the column name depends on the
database:

Database Return Value Comments

Access Expr100x... Returns Expr1000, Expr1001, and so on, for
each column with an expression.

SQL Server blank No column name.

Oracle (OCI) blank No column name.

Oracle (ODBC) Expression Returns the expression as the column name;

for example, if the column took the
maximum of a list of prices using
MAX(price), the column name is
MAX (price).

If the Direct DBMS action generates no database results, and you have
specified No Results HTML for the action, that HTML is processed
instead of the Results HTML.

You can use bound values in SQL by using the <@BIND> meta tag. When
calling a stored SQL server procedure from a Direct DBMS action with
an ODBC data source, you should use the following syntax:

{call procedureName (param!,param2,paramX) }

Joining Database Tables

Joining Database Tables

For more information on
joins, consult your DBMS
documentation, such as,

THE
PRACTICA
L sQlL
HANDBOO
K (S.BowmanE T .

A L . I1SBN:0-201-

62623-3), or any other
good SQL reference guide.

For more information, see
“Creating a Join in a Search
Action” on page 359.

To understand how joins work, consider a database with vendor and
associated account manager information in two different tables. You want
to create a search to find the account manager for any given vendor, and
display in your browser the vendor information with the corresponding
account manager’s name. Because the vendor table contains only the
account manager’s identifier, you have to join the two tables to get the
account manager’s full name.

The vendor table (VENDOR) has a record for each vendor including a
vendor identifier, name, contact information, payment terms, and an
account manager identifier. The account manager table (ACCTMGR) has
a record for each account manager including the account manager’s
identifier, name, and telephone number. The vendor table is related to the
account manager table by an identifier in the AcctMgr column; the
account manager table has a MgrID column that contains the identifier
corresponding to the AcctMgr column in the vendor table.

Using a Witango search, you select the columns you want to relate and
define the type of join in the Joins section of the Search action or Search
Builder.

. Example.taf : Search_Builder

BB 2|=| B2 Build Actions |

Search I Record List] Record Detail]

Jair Criteria:
Table @ Example.taf : Search [_ O]]
w Selectl Eriterial Fiesults Jains |
Table Eolu_gln Oper. Tab_ls Eolu_'rg.n
WEMDOR WendorD = ACCTMGR MarlD

General , Joirs £

In addition to the standard join, you can define an outer join, which can be
left or right. A left outer join means all rows in the left-specified table are
returned, including those with no match in the right-specified table. A
right outer join means all rows in the right-specified table are returned,
including those with no match in the left-specified table.

357

Joining Database Tables

Working With

Joins

For this example, you would select the MgrID column in the left table,
ACCTMGR, and the AcctMgr column in the right table, VENDOR. Then,
from the drop-down menu you select the type of join you want to use.

* If you select a standard join (=), the search returns only rows of
vendor information where a valid account manager’s identifier is
found. If none is found, the corresponding row is not returned. For
instance, if a vendor has not been assigned an account manager and
thus the MgrlID column is blank for that record, that vendor is not

returned.

Vendor ID |[Hame Account Manager City State

1 ACME Accessoties Erin Shanzhan Groton M Only rows with

2 MNorris Carporation Andreas Franck Groton M & matching

4 Smith & Waterman Assoc. |Wendell Ainsworth Foster City [CA account

5 West End Corp. Paula Jason Cheylan W managers are
returned.

5} Worldwide Posters Unlimited | Andreas Franck Eugene OR

* In contrast, if you define a right outer join (=*), the search returns all
rows of vendor information, regardless of whether an account
manager is found or not.

Vendor ID |[Hame Account Manager City State .

- - | In this case, the
1 ACME Accessories Erin Shanahan Groton M .

row is returned

2 MNorris Carporation Andreas Franck Geaten | |MA even though no
3 Print Ca Carson Gty [NV matching account
4 Smith & Waterman Assoc. |Wendell Answorth Foster City |CA manager is found.
5 West End Corp. Paula Jason Cheylan W
5} Worldwide Posters Unlimited | Andreas Franck Eugene OR

* Aleft outer join (*=) returns rows of vendor information based on the
account managers found, including any account managers without
vendors assigned.

Vendor ID |Name Account Manager |City |State
A amic Frame - !n this case, the row
1 ACME Accessories Erin Shanahan Groton M& is returned even

- : though the account
2 Morriz Corporation Andreas Franck Groton MA manager found has
4 Srnith & Waterman Assoc. |Wendell Ainsworth |Foster City |CA no matching
5 West End Corp. Paula Jason Cheylan A vendor.
5} Worldwide Posters Unlimited | Andreas Franck Eugene OR

To work with joins, you must first have your Search action or Search
Builder action editing window open.

Joining Database Tables

You can include columns from more than one table in a search, if you
define joins for the tables. If you select columns from more than one table
in a search, a message appears telling you to define a join.

There iz no join defined for the table "ACCTMGR". You
will need to define one before the query will wark
properly.

Lancel | Later |

Choose either Define to create the join definition now or Later if you
want to define the join at a later time. Choosing Define opens the Joins
section of the current dialog box.

You create, modify, and delete joins using the Joins section of the Search
editing window or Search Builder.

When you define the join, it adds the columns to the search. In the
Search Builder, you must define the join before you build the actions for
the search or save the application file.

Note In earlier versions of Witango, you could get join information by
using the Attribute menu’s Joins command or the Joins icon in the
Attributes bar. Join information is viewed in the Search action or Search
Builder editing window.

Creating a Join To create a join, drag the columns you want to include in the search from
in a Search the Data Sources Workspace into the Joins section.

Action

Note You cannot create a join from two different data sources.

To create a new join in a Search action

I In the Search editing window, click the Joins tab.

Joining Database Tables

The Joins section appears:

@ Sample.taf : Search =1 E3

Selectl Eriterial Fiesults Jains |

Table Eolu_gln Oper. Tab_ls Eolu_'rg.n
ACCTMGR MarlD = YEMDOR WendorlD

If you added columns from different tables to the Select
Columns list (under the Select tab), a join definition already
appears, showing you the tables selected and the first column

[}

added from each table. The default operator is “=".

If you have not added columns, do so now by dragging the
columns into the Joins section.

2 From the Table drop-down menus, select the left and right tables for
the join. The following is an example of the drop-down menu:

Table
WVEMDOR '!
ICCTHGR

VENDOR

3 From the Column lists, select the columns you want to join in each
table. A table’s first column appears as the default in the list.

4 From the Oper. drop-down menu, select a join operator.

Join Operator Description

= Standard join (the default). Only records matching
the join criterion are returned.

*= Left outer join. All left-table rows are returned,
including those with no match in the right table.

=* Right outer join. All right-table rows are returned,
including those with no match in the left table.

Inserting a Join To insert a join definition

Do one of the following:

Joining Database Tables

* Click in the list area of the Joins section. From the Edit menu,
choose Insert.

* Right-click the Joins section and choose Insert from the context-
sensitive menu that appears.

Editing a Join To edit a join definition
I Click the Joins tab in the Search action editing window.
The Joins section appears, showing you the current join

definition(s) including table names, joined columns, and join
operator.

2 Do one of the following to edit a definition field:

* Click the field twice.
* Right-click and choose Edit from the context-sensitive menu
that appears.

The field changes to a drop-down menu so you can choose a
different entry.

Deleting a Join To delete a join definition
I Click the Joins tab in the Search action editing window.

The Joins section appears, showing you the current join
definition(s) including table names, joined columns, and join
operator.

2 Select the join definition you want to delete, and do one of the
following:

¢ From the Edit menu, choose Delete.
> * On the main toolbar, click the Delete icon.
* Press DELETE on your keyboard.

* Right-click the selected join definition(s) and choose Delete
from the context-sensitive menu that appears.

2 A message appears asking you to confirm that you want to
delete the selected row(s).

You can SHIFT-click 3 Click Yes to delete the selected rows or No to cancel.
(contiguous rows) or CTRL-
click (discontiguous rows)
to select multiple join

definitions. Tip You can bypass the confirmation dialog box by holding down the

Joining Database Tables

Ctrl key when choosing Delete.

Note If your Search action refers to columns from the deleted joined
table, you need to remove these columns and references from the
action or builder window manually.

Creating a Join You create, edit, and delete joins in the Joins section the same way you do
in the Search for a Search action. See Creating a Join in a Search Action on page 359.

Builder The Search and Record List pages of the Search Builder share the same
join information because they both apply to the same generated Search
action. You can specify separate join information on the Record Detail

page.
You switch from the Search, Record List, or Record Detail section to the

associated Joins section by clicking the General and Joins tabs,
respectively, at the bottom of the Search Builder window.

. Untitled1 : Search_Builder

B|E|Z|=| B|51&] & _suidactons

Search I Record List] Record Detail]

Search Columns: — Column Options
|| Field Tive: |

Operator: I j

' User enters value © Fized valus

Field Type: I j

[Include in criteria if value is empty

General £ Joins £

Clicking the General and Joins
I tabs switches you between the

_ selected General section and the
Joinz associated Joins section.

General

Note You cannot create a join between two different data sources.

362

SECTION V

Witango and Objects

How to Use Objects and Create Objects (Witango Class Files)

This section gives details on using objects in Witango.
This section contains chapters on the following topics:

* Chapter 20, Understanding Objects in Witango on page 365

* Chapter 21, Using Objects on page 381

* Chapter 22, Witango Class Files on page 413.

This section is recommended to all users of Witango who are going to

add object functionality to their application files or create their own
objects as Witango class files.

CHAPTER TWENTY

Understanding Objects in 20
Witango

How Objects Work in Witango

Objects are reusable software components. Witango supports the use of
objects in Witango application files. The use of objects can simplify the
development process and reduce development time.

Witango supports different object types:

*» COM objects
* JavaBeans

* Witango class files.
The topics covered in this chapter include:

* anintroduction to objects

* the benefits of using objects in Witango

* an overview of the types of objects supported
* the data types used in Witango.

This chapter covers only the basic concepts of objects in Witango. See
the next chapter for the details of using objects in Witango.

What are Objects?

What are Objects?

Objects as
Black Boxes

Objects are reusable software components. Each object is generally
designed to deal with a specific issue within a programming project. For
example, if you have a project that prepares financial statements for
customers, you may use an object that calculates the compound interest
of an account, and another object that organizes information into a
report.

When you develop a Witango application file that requires calculation of
compound interest and presentation of reports, you do not necessarily
have to write your own code to do the calculation or the presentation;
you could simply select and use the appropriate objects that perform
those tasks. Using objects can simplify your application development and
reduce your development time.

Objects are treated as “black boxes”; that is, as a user of objects, you do
not need to know the source code inside objects or the programming
languages used for writing this code. In fact, unless you are the developer
of an object, you have no access to the inside of that black box.

Instead of editing the source code within an object, you interact with the
object through an interface.

Example: Interest Calculator

Let us assume there is an object called Interest Calculator, which
calculates compound interest. When you use this object in your Witango
application, the object calculates compound interest as one of the tasks in
the Witango application file. You do not know how Interest Calculator
performs this task, nor do you care. You only want to be able to input
your principle, interest rate, and period, and get the result.

With the help of the Interest Calculator example, let us introduce the
basic elements of an object used in Witango:

* Interest Calculator is an object; it is treated as a black box—you have
no access to how the object performs its computations.

* An object instance is a specific application of the Interest Calculator
object. In general, a separate object instance has to be created from
Interest Calculator to handle each customer account. You create an
object instance in Witango using a Create Object Instance action or
the <@CREATEOBJECT> meta tag.

For more information, see
Method Elements:
Parameters on page 368.

Object
Interface:
Methods

For more information, see
“Adding a Call Method
Action” on page 402.

What are Objects?

* Interest Calculator has an interface that allows you to input data
(principle, interest rate, period) into the object and to get results
(interest) from the object. A method is a specific way to interface
with an object instance. You call a method in Witango using a Call
Method action or the <@CALLMETHOD> meta tag.

* Each method of Interest Calculator specifies precisely the
requirements of the input (for example, what type of data is
principle) and output data. These requirements are the parameters.

The interface of an object consists of one or more methods. A method
allows you to tell the object to input data, get data, or carry out any
other action.

Each object includes at least one method; otherwise, you cannot use the
object. An object may include several methods. For example, the Interest
Calculator object (See “Objects as Black Boxes” on page 366.) includes a
method which gives you the interest; it may include another method
which gives you the total payment amount.

When you use an object, you need to choose a method of the object you
want to use.

While an object itself is a black box, the methods of an object are visible
to users. Through a process called introspection,Witango discovers the
methods and properties of the objects you want to use; it then presents
this information to you. For each object, you can view a list of its
methods and their associated parameters (see Method Elements:
Parameters on page 368) in the Objects Workspace. You can view
additional object information in the Object Properties window.

Viewing object information that Witango generates through introspection
merely displays a list of what methods are available for your use; it does
not give you all the detailed information about the objects. Objects may
come with documentation from the vendors of these objects. You need
to find out from this documentation whether a particular object suits
your purpose and how you might use it.

You use objects in Witango by incorporating Create Object Instance and
Call Method actions into Witango application files. Create Object
Instance action and Call Method action are types of Witango actions:
when Witango Server executes a Witango application file that contains a
Call Method action, it performs the task specified by the method.

You can also create object instances and call methods in Witango by using
the <@CREATEOBJECT> and <@CALLMETHOD> meta tags. However, these
meta tags do not show you the methods and parameters of your objects,
and are therefore recommended for advanced users of Witango.

367

What are Objects?

Method
Elements:
Parameters

Class, Object,
and Object
Instance

For more information, see
“Object Types Supported in
Witango” on page 375.

Parameters are the basic data elements of a method. A parameter defines
what the object accepts as an input, output, or both. Each method
consists of one or more parameters.

For example, the Interest Calculator object (See “Objects as Black
Boxes” on page 366.) includes a method that contains a parameter called
Principle. You have to input data into Principle according to the
requirements of this parameter. Another parameter of this method is
called Interest. The object outputs the result of interest calculation
according to the requirements of the Interest parameter.

In theory, a class is a category of objects. A class defines all the common
properties of the different objects that belong to it. In the computer
industry, however, the term “object” is often used loosely. What is called
an object may in fact be a category of objects.

Many of the “objects” available on the market—such as COM objects and
JavaBeans—are, strictly speaking, classes. Witango class files, which you
can create using Witango Studio, are also classes.

Witango Server does not execute a class directly; instead, it executes an
object instance of a class. An object instance is an application of an
“object” in the real world. You can create multiple object instances based
on the same “object””

The example below illustrates the relationship between a class (“object”)
and an object instance:

Interest Calculator (See “Objects as Black Boxes” on page 366.) can
be seen as a class. It is a generic interest calculator, in the sense that
it does not calculate interest for any particular customer; it can
potentially perform similar tasks for many customers. When your
Witango application file asks Interest Calculator to calculate interest
for John Smith, Witango Server creates an object instance of Interest
Calculator for the John Smith account. Similarly, Witango Server
creates an object instance of Interest Calculator for the Mary Brown
account, when it is needed.

The object instance created for the John Smith account has nothing
to do with the object instance created for the Mary Brown account;
yet both object instances are based on the common properties of
Interest Calculator.

What are Objects?

In the computer industry, an object instance is often also called an
“object”.

%

Note While Witango attempts to use an unambiguous terminology
whenever possible, it is not always practical to avoid terms that are
already widely used in the computer industry. The following is a brief
description of what “object” may mean in Witango, depending on
context:

. a class (a category of objects with the same behavior)

. an object instance (a particular use of an object in the real world)
. a data type used with objects.

Creatin Before you can use an object in Witango, an object instance has to be
Y] g]
Object available for use. In general, this means you have to create the object

Instances instance first.

For more information, see This section explains how you can create an object instance in the same
|Us'"g Available Object application file that you use it. There are circumstances when you do not
nstances” on page 370. .) - o .
have to create an object instance in the same application file before using
it.
In your Witango application file, use a Create Object Instance action to
create an object instance from an object that Witango supports.

For more information, see Object instances are stored in Witango variables. The scope of the

;Y‘Vsargénlgsvl\{ith Variables” 3 riable determines where the object instance is available. For example,
local scope applies to the current execution, and user scope applies to
all the Witango application files executed by the current Witango user.

An object instance is destroyed when the variable in which it is stored
expires or is purged, using the <@PURGE> meta tag. .

You can also use the <@CREATEOBJECT> meta tag to create an object
instance.

In some cases, you may want to create more than one object instance
from the same object. The following example shows such a case:

You use the Interest Calculator object to calculate interest for
various customer accounts. In your application file, you already have
an object instance of Interest Calculator that calculates interest for
John Smith, and now you need to calculate interest for Mary Brown.
Because the two accounts are not related, you do not want to use
the existing instance (with John Smith’s data) for Mary Brown.

In this scenario, you create a new object instance of Interest
Calculator for the Mary Brown account.

370

What are Objects?

Using Available
Object
Instances

For more information, see

“Creating Object
Instances” on page 369.

For more information, see
Calling Methods
page 3700n this page.

Calling
Methods

There are several ways in which object instances can be available for use
in your application file:

* An object instance has been created for this application file, using the
Create Object Instance action.

* An object instance has been created for a different application file
and, during execution of the current application file, the variable in
which that object instance is stored has not yet expired.

For example, application files A and B are running simultaneously
under the same username. File A created an object instance stored in
the user scope. File B can access the object instance that has already
been created by file A.

* An object instance has been created as a result or an output of a
previous Call Method action, provided that the variable in which that
object instance is stored has not yet expired.

After creating an object instance or finding one that is available for use in
your application file, you can select a method from this object instance
and call the method using a Call Method action.

You can also use the <@CALLMETHOD> meta tag to call methods on
objects.

An object typically consists of a number of methods in its interface. You
can call more than one method from the same object instance, and you
can call the same method several times in the same application file. Every
time you call a method, you need to use a Call Method action. The
following example shows how you might use several methods from the
same object instance:

You use the Interest Calculator object to calculate interest for John
Smith. The first Call Method action is SetPrinciple, and you set
the principle to $100. The second Call Method action is
SetInterestRate, and you set the interest rate to 5%. Your
second Call Method action must use the previous object instance of
the Interest Calculator object; otherwise, Witango does not know
that the $100 and the 5% refer to the same account. The third Call
Method action is GetBalance. This action must also use the
previous object instance of the Interest Calculator object; otherwise,
Witango does not get the balance from the John Smith account.

In this scenario, every time you use a Call Method action, you refer
to the same object instance, that is, the one set up for the John Smith
account.

Example I:
Investment
Scenarios

What are Objects?

The following example shows how you might use the same methods in
the same application file, but with different object instances:

Let us say you now want to perform interest calculation for both the
John Smith account and the Mary Brown account in the same
application file. Because you do not want to mix up the two
accounts, you have to create two separate object instances for the
two accounts before you use the Call Method actions.

A Call Method action may return a result or an output. In some cases, the
result or output is another object instance, which you may then use with
another Call Method action.

Let us assume you are developing a Witango application file
(Invest.taf) for a financial institution that advises customers on
retirement investment strategies. You want to present scenarios to
customers based on different mixes of savings and mutual funds.

You can use an object that calculates accumulated savings (Savings
Calculator), another object that projects the future values of mutual
funds (Mutual Funds Calculator), and another object that works out
different investment scenarios and organizes the results into a report
(Report Organizer).

The parameters of Savings Calculator may include current age, retirement
age, monthly contribution, and total savings; the parameters of Mutual
Funds Calculator may include monthly contribution, mutual fund
category, risk factor, and total value; the parameters of Report Organizer
may include savings, mutual funds, and total investments.

What are Objects?

The following diagram shows how you might incorporate several objects
into your Witango application file (The other actions shown in the
application file are entirely arbitrary.):

Partial Invest.taf

Invest.taf
Create Object Instance
- Object=Savings Calculator
- Object Instance=MySavings
Call Method
- Object=Savings Calculator
- Object Instance=MySavings
- Method=Calculatelnterest
For Loop
Create Object Instance
- Object=MutualFundsCalculator
- Object Instance=MyMutualFunds Mutual
Call Method -] Funds
- Object=MutualFundsCalculator Calculator
- Object Instance=MyMutualFunds
- Method=CalculateCapitalGain
Results
Create Object Instance
- Object=ReportOrganizer
- Object Instance=MyReport

Call Method
- Object=ReportOrganizer
- Object Instance=MyReport

- Method=PresentFindings
Results

//\/\/\§

Savings
Calculator

Report
Organizer

Example 2: Let us assume that you now want Invest .taf he Witango
More

Investment application file shown in Example 1) to keep track of two
Scenarios separate savings accounts and you want to use three different methods—

SetPrinciple, SetInterestRate, and GetBalance—on each of
these accounts.

Because both savings accounts behave in the same way, but with different
data, you create two separate object instances—MySavings1 and
MySavings2—based on the “Savings Calculator” object. When doing
your interest calculation for each of these accounts, you call the three
different methods on each of the two object instances.

372

What are Objects?

The following diagram describes the logical flow in a part of a Witango
application file, which shows how you might incorporate two or more
object instances, each with several Call Method actions, into your

Witango application file:

Partial Invest.taf

Invest.taf

Create Object Instance
- Object=Savings Calculator
- Object Instance=MySavings |

Create Object Instance
- Object=Savings Calculator
- Object Instance=MySavings2

Call Method

- Object=Savings Calculator
- Object Instance=MySavings |
- Method=SetPrinciple

Call Method

- Object=Savings Calculator
- Object Instance=MySavings |
- Method=SetInterestRate
Call Method

- Object=Savings Calculator
- Object Instance=MySavings |
- Method=GetBalance

Call Method

- Object=Savings Calculator

- Object Instance=MySavings2
- Method=SetPrinciple

Call Method

- Object=Savings Calculator

- Object Instance=MySavings2
- Method=SetInterestRate

Call Method

- Object=Savings Calculator

- Object Instance=MySavings2
- Method=GetBalance

Create first object instance from the
"Savings Calculator" object

Create second object instance from
the "Savings Calculator" object

Call several methods on the first
object instance based on the "Savings
Calculator" object

Call several methods on the second
object instance based on the "Savings
Calculator" object

373

374

Benefits of Using Objects in Witango

Benefits of Using Objects in Witango

When to Use
Objects

When you use objects in your Witango application files, you obtain a
number of benefits:

Many objects are available for free or for purchase from a variety of
vendors. They perform various programming tasks, some of which
may be useful to your Witango application files. When you
incorporate objects in your Witango application files, you save on
development and testing time.

Many programming tasks are most efficiently performed by writing in
particular programming languages, such as C++, Visual Basic, or Java.
You do not have to know any of these languages to use objects
written in these languages.

Developers of objects are often experts in their respective fields.
When you use objects to develop Witango application files, you draw
on their expertise.

You can develop your own objects in Witango (Witango class files).
You can then reuse these objects in your current and future Witango
application files.

You can mix and match different object types supported by Witango:
objects available from many vendors and objects you develop
yourself can be used in the same Witango application file.

Because of the modular structure of objects, using objects in your
Witango application files helps you organize and maintain these files.

Developers of objects may modify the source code inside their
objects to improve their design. As long as they do not change the
interface—which is typically the case—you can benefit from the
improved design, without having to alter the code in your Witango
application files.

When you use objects to isolate certain areas of functionality in your
application file, it is relatively easy to replace those objects later with
other objects, without requiring a great deal of rewriting of the main
application file.

You can incorporate objects in any Witango application file. In general,
the more complex your Witango application file is, the more benefits you
can derive from using objects.

Object Types Supported in Witango

Object Types Supported in Witango

For more information, see
“Class, Object, and Object
Instance” on page 368.

Object Type
Independence

For more information, see
“Adding a Call Method
Action” on page 402.

COM Objects

Witango supports different types of objects. You can use any of the
following types or a combination of them within the same Witango
application file:

+ COM/DCOM objects

* JavaBeans

* Witango class files.

Strictly speaking, all “objects” that Witango supports are classes;
however, because they are typically called “objects” in the computer

industry, Witango Studio and Witango documentation generally conform
to the popular usage.

Note Because the method calls are made on the server side by
Witango Server, COM objects and JavaBeans that have a user interface
are generally not appropriate for use with Witango. A server-side
object with user interface elements works with Witango as long as the
object works without user interaction.

In Witango Studio, you do not have to write code to identify whether the
object you are using is a COM object,JavaBean, or Witango class file.
Witango takes care of all the implementation details for you. This
Witango design feature simplifies the use of objects.

When you incorporate objects into your Witango application, you follow
a very similar procedure, no matter which object type you are using.

COM (Component Object Model) objects are objects that conform to
the COM objects specifications developed by Microsoft. COM objects
currently run on the Windows platform only.

Automation Servers

Witango supports the kind of COM objects known as Automation Servers
(also called Automation Objects). Many Automation Servers, when
installed, inform Witango that they are “programmable”. These objects
generally offer sufficient information on their methods and parameters to
make them useful in Witango application files.

375

Object Types Supported in Witango

For more information, see
“Adding an Object to the
Objects Workspace” on
page 385.

For more information, see
“Installing an Object” on
page 382.

For more information, see
“Details” on page 394.

JavaBeans

Witango Class
Files

376

To help you identify COM objects useful in Witango, by default, Witango
gives you a list of available “programmable” Automation Servers when
you want to add a COM object. It is recommended that you select COM
objects from this list.

Witango can also give you a complete list of available COM objects, if you
select the “Show All Objects” option. However, COM objects which are
not “programmable” Automation Servers may not respond correctly, if at
all.

DCOM Environment

Witango supports the DCOM (Distributed COM) environment. In the
DCOM environment, you can deploy COM objects on machines other
than the one running Witango Server.

You set up the DCOM environment by indicating which particular object
implementation is available on which machine. Once you have done that,
your Witango applications work transparently; you need not be
concerned with object locations. You simply build your Witango
application files as though all objects are executed on Witango Server.

Licensed COM Objects

Some COM objects require licensing. When a COM object is installed,
the license is generally installed with it. This works fine with Witango
Studio on the development machine. During deployment, however,
Witango Server may or may not be able to validate the license on the
deployment machine.

In many cases, the vendor of a licensed COM object generates a license
key, which allows the license to be transferred from the development
machine to the deployment machine. If the deployment machine has a
license already or receives a license key, Witango Server executes the
COM object transparently; otherwise, it returns an error message.

When you use Witango Studio, you can find out whether the COM
object you plan to use requires a license, has a license, or has a license
key. This information is displayed in the Detail section of the Object
Properties window.

JavaBeans are objects that conform to the JavaBeans specifications
developed by Sun Microsystems. JavaBeans can run on any platform.

Witango class files are objects designed specifically for use in Witango
application files.

For more information, see
“Witango Class Files” on
page 413.

General
Requirements

Object Types Supported in Witango

You can create Witango class files in Witango Studio and incorporate
them in Witango application files, just like any other objects that Witango
supports. Witango class files can run on any platform.

Regardless of object types, only objects that satisfy certain requirements
are appropriate for use with Witango:

* objects intended for use in a server environment

* objects that do not present a user interface.

When you call methods in Witango, the objects you use are run on
Witango Server, not in the end-user’s browser. Therefore, objects which
present user interface elements (for example, windows, buttons, grid
controls, and charting applets) are not appropriate.

Of course, you may include objects that present user interface elements
in your Witango application files; but to do so, you need to include the
appropriate markup in the HTML returned to the user (for example,
<EMBED>, <APPLET>, Or <OBJECT>). Refer to an HTML reference book
for detailed instructions.

377

Understanding Data Types

Understanding Data Types

378

Different object types have different specifications for their data types,
which are often incompatible with one another. For example, although
both COM objects and other object types have a data type called “float”,
the specifications are not necessarily the same.

Witango facilitates the use of COM objects, JavaBeans, and Witango class
files within the same application file by converting the various data types
to the Witango data types, whenever possible. When you use a
combination of data types from different object types, you do not have to
worry about their compatibility with one another. Witango handles the
conversion transparently.

Witango Studio displays native data type names. For example, if the
object is a COM object, you see the names of the COM object data types
in the Objects Workspace (see page 391) and Call Method Action
window. Refer to the respective object vendors for the details of these
native data types.

Setting up Security for Executing Objects

Setting up Security for Executing Objects

For security reasons, you may want to control which objects can be
executed by Witango Server. The file that contains the control settings is
the object configuration file. The default name of this file is
objects.ini; this name is user-definable.

During execution of a Witango application file, if Witango Server
encounters a Create Object Instance action involving an object that it is
not allowed to run, it returns an error.

The control of object execution can take place at the system level
(system scope) or at the application level (application scope).

379

Setting up Security for Executing Objects

CHAPTER TWENTY-ONE

Using Objects 2 I

Incorporating Objects in Application Files

You use objects in Witango by adding Create Object Instance and Call
Method actions to application files.

You can also use the <@CREATEOBJECT> and <@CALLMETHOD> meta tags
to create and use object instances in Witango. This alternative is
recommended for advanced users. For more information, see the
Witango Programmers Guide.

The basic concepts of objects in Witango are covered in the previous
chapter. This chapter focuses on the procedure and details of using
objects.

The topics covered in this chapter include:

* preparing to use objects

* adding objects to the Objects Workspace

* viewing object information in the Objects Workspace
* creating object instances

* using the Create Object Instance action window

* calling methods

* using the Call Method action window

* using the Objects Loop action.

Preparing to Use Objects in Witango

Preparing to Use Objects in Witango

Planning to Use Here are some issues to be aware of before using objects with Witango
an Object application files:

* Before you use an object in Witango, you have to know what the
object can do for you, what the requirements of using the object are,
and whether the object suits your Witango application file. You may
have to consider several alternatives to select the object that is the
best for your situation.

* Read the documentation on the object, provided by the object
vendor. Find out about the methods you can use with the object and
the information on parameters. Understanding the parameters helps
you set up your Witango application file in order to use the object
effectively.

* Make sure the object you plan to use belongs to one of the types
supported by Witango : COM object, JavaBean, or Witango class file.

Installing an The following are some guidelines for installing objects before developing
Object and deploying Witango application files:

* ltis best to install the objects you plan to use on your development
machine. At least, these objects must be visible on the network from
your machine.

* Some objects already exist on your machine. If the object you need is
not on the machine or visible on the network, you must install it first.
Follow the instructions provided by the object vendor.

Local and Remote Machines

The different object types that Witango supports areCOM objects,
JavaBeans, and Witango class files.

In most cases, you use objects installed on the local machine (same
machine as Witango Server). If your deployment machine is not the same
as your development machine, you need to install the objects on both
machines.

Depending on the object type, you may also be able to use objects
installed on remote machines. When deciding which machine to use,
consider load balancing and fault tolerance issues.

* COM object

382

For more information, see
“Setting Search Paths for
Witango Class Files” on
page 434 and Objects on
page |61.

Preparing to Use Objects in Witango

You can access and execute COM objects on both local and remote
machines. Use the DCOM environment to deploy COM objects on
remote machines.

JavaBeans

Witango uses the CLASSPATH environment variable and the
beanpaths.ini file, maintained by Witango, to locate JavaBeans.

When using Witango Studio, adding a JavaBean to the Objects
Workspace prompts you to add the path to the JavaBean to the
beanpaths. ini file, if it is not already in the CLASSPATH
environment variable or the beanpaths. ini file.

When using Witango Server, you must manually add the path to the
.jar file to the beanpaths.ini file, if it is not already in the
CLASSPATH environment variable or in the beanpaths. ini file on
the Witango Server machine.

The beanpaths. ini file is located in the root folder of Witango (by
default, this is C: \PVSW\Witango\).

Witango class files

While you can access Witango class files on both local and remote
machines, you are able to execute Witango class files only on the
local machine.

When using Witango Studio, use the Objects section of the
Preferences dialog box to list the search paths on various machines.

When using Witango Server, use the TCFSearchPath configuration
variable.

Overview of Using Objects in Witango

Overview of Using Objects in Witango

For more information, see
“Adding an Object to the
Objects Workspace” on
page 385.

For more information, see
“Viewing Object

Information in the Objects
Workspace” on page 391.

For more information, see
“Using Available Object
Instances” on page 370.

For more information, see
“Adding a Create Object
Instance Action” on

page 396.

For more information, see
“Adding a Call Method
Action” on page 402.

You use an object in Witango by adding Create Object Instance and Call
Method actions associated with an object to your Witango application file
or Witango class file. The procedure can be broken down into three
steps.

The following steps allow you to use the graphical interface of Witango
Studio to develop Witango application files with objects. Advanced
Witango users may want to use Witango meta tags to create and use
object instances. See the Witango Programmers Guide for details.

I Add Objects to the Objects Workspace

You can only use objects that are visible in the Objects
Workspace. If the objects you want to use are not there, you
have to add them first.

Note Witango allows you to view object information in the Objects
Workspace, if the objects have already been added to the Objects
Workspace.

2 Add Create Object Instance Actions

Witango does not use the objects you see in the Objects
Workspace directly; it uses instances created from these objects.
The instances created from these objects are called “object
instances”, or simply “objects”.

Before you can call a method involving an object in a2 Witango
application file or Witango class file, an object instance must be
available.

Depending on the circumstances, you may have to create an
object instance with a Create Object Instance action.

3 Add Call Method Actions

Once an object instance is available, you can incorporate its methods
into your Witango application file or Witango class file by adding Call
Method actions associated with this object.

Adding an Object to the Objects Workspace

Adding an Object to the Objects Workspace

If the Workspace is not visible on your screen, choose Workspace from
the Windows menu.

To view the Objects Workspace, click the Objects tab in the
.,Iﬁ Workspace. The following is an example of the Objects Workspace:

x|

- [[1iClass Files
[:| COM/DCOM Objects

EIEEl

COM Objectsin To add a COM object to the Objects Workspace

the Objects I Do one of the following:
Workspace

* From the Object menu, choose Add Objects, then choose
COM/DCOM Objects.

* From the Objects Workspace, right-click the coM/DcoM

Objects icon. Choose Add ... from the context-sensitive menu
that appears.

Adding an Object to the Objects Workspace

The Select Object dialog box appears:

Select Object E

Installed COM Objects:
etalre: Center Curlz Cancel |

Microzoft OLE DB Service Component Data Links

FrofferService Class

SrcEditor Class

™ Show &l Objects Objects Found: 5

Filter: ICE

Library
’7 HENROLLLib

Detail

Frogram Identifier: CEnroll. CErnroll. 1
@ Thiz object iz programmable.

You can choose which objects are displayed in this dialog box:

* Showing all COM objects

For more information, see By default, the dialog box shows a list of the installed
P’:‘g”;‘;'}";m" Servers” on Automation Servers. If you want to see a list of all the installed
COM objects—including Automation Servers—check the Show
All Objects check box.
* Filtering objects
The Filter text box allows you to enter the name or partial
name of a COM object. The scroll-down list of the dialog box
then shows only the COM objects that match what you have
entered.
* Seeing additional information
For more information, see The Library area shows the library to which this object
Referenced _ belongs. Objects in a library often work together; they make
Object spage 3870n this . ! A
page. references to one another. When added, objects in a library are
placed in the same folder, generally bearing the name of the
library.

The Details area gives you additional information about the
object you select. For example, it may state the program

JavaBeans in
the Objects
Workspace

Adding an Object to the Objects Workspace

identifier and indicate whether the object is programmable.

Cautionlf the Details area indicates that the object is not
programmable, it means the object may not work properly with
Witango. It is strongly recommended that you do not use objects
described as not programmable.

I From the scroll-down list in the dialog box, select the COM object
you want to use. (You can select more than one object
simultaneously by pressing Ctrl or Shift.)

2 Click OK.

In the Object Workspace, the name of the COM object you have

added appears under the COM/DCOM Objects object type.

Referenced Objects

In some cases, a COM object contains references to one or more related
COM objects. You probably need all these objects to work together as a
group, called a library. When you add one of these objects, the Add
Referenced Objects dialog box appears:

Add referenced objects B

@ The object you are about to add contains references to other objects. Do you wish to add these az well?

The dialog box asks whether you also want to add the related objects. It
is recommended that you click Yes, to add the entire group of COM
objects. When you add the group, these objects appear together in a
folder in the Objects Workspace.

To add a JavaBean to the Objects Workspace
I Do one of the following:

* From the Object menu, choose Add, then choose JavaBeans.

387

Adding an Object to the Objects Workspace

* From the Objects Workspace, right-click the

icon. Choose

Add... from the context-sensitive menu that appears.
The Select JavaBean(s) dialog box appears:

Select Java Bean(s] HE
Laak jr: |@ Beans j gl

b 1 quiote.jar
eventmoritor. jar select jar
jelly.jar zort.jar
juggler.jar test.jar

misc. jar transitional.jar
molecule.jar

Filez of type: IJavaArchives[".iar] j Cancel |

2 Locate the Java archive files (. jar) and select the file you want to
use. Click Open.

The Select Bean(s) dialog box appears:

Select Bean(s] E

"n The fallowing J avaBeans were found in the Add
m zelected archive(s).

Cancel

Beans Found:

Deselect Al

Beans Found: 4

The dialog box displays all the JavaBeans found in the Java archive
file. You can add one or more JavaBeans from this archive file.

3 Select one or more JavaBeans from the list. (To select more than one
object simultaneously, press Ctrl or shift. You can also select or
deselect all the JavaBeans on the list by clicking Select All or
Deselect All, respectively.) Click Add.

388

Adding an Object to the Objects Workspace

In the Objects Workspace, the name(s) of the JavaBean(s) you have

added appears under the JavaBeans object type. The JavaBeans that
belong to the same Java archive file (. jar) are contained in a folder
bearing the name of that Java archive file.

Note Witango Studio uses the CLASSPATH environment variable and
the beanpaths. ini file maintained by Witango for locating
JavaBeans. If the path to that JavaBean does not already exist in the
CLASSPATH, Witango Studio prompts you to add the path to
beanpaths. ini. Click Yes to add the path.

Witango Class To add a Witango class file to the Objects Workspace
Files in the
Objects

Workspace

I Do one of the following:

* From the Object menu, choose Add Objects, then choose
Witango Class Files.

* From the Objects Workspace, right-click the Witango Class

Files icon and choose Add... from the context-sensitive menu
that appears.

The Select Witango Class File(s) dialog box appears:

Select Class File(s) 2] X]
Lookjn: |3 TCFs =l g' |_

TCF-examplel.tcf
TCF-example2.tcf
TCF-example3.tcf

File name: TCF-example3.tcf DOpen I
lass Files Cancel |

Files of type:

2 Locate the Witango class files (. tc£) in the dialog box and select
one or more Witango class files from the list. (To select more than
one object simultaneously, press ctrlor shift.) Click Open.

In the Objects Workspace, the name(s) of the Witango class file(s)
you have added appears under the Witango Class Files object

type.

Removing an Object From the Objects Workspace

Removing an Object From the Objects Workspace

If there are objects in the Objects Workspace that you do not need, you
can remove them.

When you remove an object from the Objects Workspace, you are not
deleting the object from your machine, just from the Objects Workspace.
You can easily add the object to the Objects Workspace again, when you
need it.

If you have already incorporated an object in a Witango application file or
a Witango class file, removing the object from the Objects Workspace
does not affect the application file or the Witango class file.

To remove an object from the Objects Workspace

Do one of the following:

* Select the object you want to remove. From the Object menu,
choose Remove.

* Right-click the object you want to remove, and choose Remove
from the context-sensitive menu that appears.

Viewing Object Information in the Objects Workspace

Viewing Object Information in the Objects Workspace

For more information, see
“Object Properties” on
page 393.

In the Objects Workspace, you can view information on objects by
successively expanding items at each level. The information you get from
the Objects Workspace includes the following:

* the objects available for each object type

* the methods available for each object

* the parameters for each method

¢ whether the method returns a result.

Additional object information is available to you in the Object Properties
window. For further information about objects, consult the
documentation supplied by the respective object vendors.

The following is an example of the Objects Workspace with expanded

items:

Object type

Folder containing
referenced obje
(may not be present]

Objects

)

El-£3 |Class Files

L bevw

L5 TCF-Examplel
P33 COM / DCOM Objects

[~—=-£3 Directénimation Library

% Directbnimation. DAMumber
& Directinimation.DAPair
% Directinimation DASound

Folder containi
getter and setter
methods (may not
be present)

Input paraméter

Metho

% Directinimation DAStatics
% Directénimation.DASting
EI@ Directinimation. DAT ransforma
- B[] Attributes

== Duration [ID&B ehavior]

o = Digration [Double]
34 Diurationdrim [IDAB ehavior]
GetClazzMame [Text]
Hook [IDABehavior]
Importance [IDABehavior]
Init [Mone]
Inverse [IDAT ranzformz]
|zReady [Bool]
Fepeat [IDAB ehavior]
FiepeatForever [IDABehavior]
FunOnce [IDAE ehavior]
[0 SubstituteTime [IDAB ehavior]
[H-e=C SwitchTo [Mone]
-2 SwitchT oMumber [Mane]
[H-e=C SwitchToSting [Mone]
& Directinimation.DAT ransform3
% Directinimation DATuple

W

ELLLELLLLS

Viewing Object Information in the Objects Workspace

For more information, see
“Parameter List” on
page 407.

For more information, see
“Result Variable” on
page 406.

Attributes
Folder

392

To view information on an object

I In the Objects Workspace, click the plus sign (+) to the left of an
object type to expand one of the three object types:COM/DCOM
Objects, JavaBeans, or Witango class files.

A list of all the objects available for the object type appears.

Note Different object vendors tend to use different icons to represent
their objects. Witango generally displays these icons next to the
respective object names.

Related objects may be grouped together in a folder. An example of
such a folder isa library of COM objects or a Java archive file of
JavaBeans.

2 Click the plus sign (+) to the left of an object to expand the object.

A list of all the methods available for the object appears.

Note If the Attributes folder exists under this object, click the
plus sign (+) to see additional methods in this folder.

3 Click the plus sign (+) to the left of a method to expand the method.

* Alist of all the parameters for the method appears. Input,
output, and input/output parameters are shown with the
following icons:

= input parameter
A output parameter
L o input/output parameter

The data type of the parameter is indicated in brackets after the
parameter name, for example, [double].

* If the method returns a result, the data type is indicated in
brackets after the method name, for example, [text] ;
otherwise, it is indicated as [none] or [void].

In some cases, the Attributes folder appears under an object. This
folder contains the getter and setter methods of the object.

The getter and setter methods let you get and set attributes (also known
as properties or data members). Unlike most methods of an object,
getter and setter methods are very simple methods:

¢ Getter method

Viewing Object Information in the Objects Workspace

A getter method returns the value of an attribute from the object.
An example of this is GetBalance.

e Setter method

A setter method lets you set the value of an object attribute. An
example of this is SetBalance.

Note If the object vendor does not classify these methods as
attributes, Witango does not place them in the Attributes folder.

Object The Object Properties window displays a summary of the information
Properties about the object you select. You cannot change the information in this
window.

Note Much information about objects is available in the Objects
Workspace. See Viewing Object Information in the Objects Workspace
on page 391.

To view object properties
I Right-click an object in the Objects Workspace.
2 Choose Properties from the context-sensitive menu that appears.

3 From the Object Properties window, select the General tab or the
Details tab.

The General section or the Details section appears.

General

The General section of the Object Properties window displays the
following information:

Item Description

Object type This icon identifies the type of object as COM object, JavaBean, or

icon Witango class file. The icon may be provided by the object vendor.

Object name This field, located to the right of the icon, identifies the name of the
object.

Object type This field identifies the type of object as COM object, JavaBean, or

Witango class file.

Path This field shows the location of the object.

Viewing Object Information in the Objects Workspace

Item

Description

Thread safe

This field indicates whether the object is thread safe.

Witango Server can execute several Witango application files
simultaneously. Depending on its design, an object may or may not be
thread safe. An object instance that is not thread safe may interfere
with the execution of another Witango application file using the same
instance.

If this field indicates Yes (thread safe), Witango Server executes
multiple calls to the instance simultaneously. If the field indicates No
(not thread safe), Witango Server waits for one execution of the
instance to complete before it starts another, to avoid any
interference between the two. From the user’s perspective, the
difference is in performance only.

The following is an example of the General section (in this case, the
object is a COM object):

Object Prop

General | Distails |

@ Directanimation. AT ransformz

Object Type: COM
Fath: LA IMM T4 S pstem 325 danim.
Thread Safer Mo

Details

The Details sec

tion of the Object Properties window displays attributes

and their associated values. The attributes displayed in this section
depend on the object type and the object. For a detailed description of
the attributes, refer to the documentation from the object vendor.

The following is an example of the Details section (in this case, the object
is a COM object):

General Details

Prog D Directnimation. DAT ransform2. 1
| Requires License o
Have License SA
Type Library 134FEE1D0-3640-11CF-9294-004400B 84733}
InprocS erver32 CoAWANMNT S yster3 2t daninm. dil

COM object only:

* Witango uses the Prog ID attribute to identify a COM object when

using the <

@CREATEOBJECT> meta tag.

Viewing Object Information in the Objects Workspace

* Several attributes are related to licensing of the COM object.

These attributes show whether a license is required for this object,
whether the license is installed, and whether it generates a license

key.
Caching and When you add an object to the Objects Workspace, Witango stores the
Refreshing of introspection information about the object—including methods and
Object parameters—in the \Witango\Cache\ Object Cache file in the

. S t Files folder within the Wit folder.
Information upport riles itango

The cache offers you some advantages:

* Because Witango stores the object and introspection information in
the cache, it can access this information faster.

* The cache allows you to work away from your network or in a
location where objects are unavailable.

Developers of objects sometimes improve the design of their objects. If
you want to update the object information in the cache, you can refresh
the objects as follows:

I From the Objects Workspace, select the object or objects you want
to update.

2 Do one of the following:

* From the Object menu, choose Refresh.

* Right-click the object(s), and choose Refresh Object(s) or
Refresh All from the context-sensitive menu that appears.

Note Refreshing does not update any actions that are already using the
object(s).

Adding a Create Object Instance Action

Adding a Create Object Instance Action

For more information, see ~ Before you add a Create Object Instance action to your Witango
“Adding an Object to the oo f ; ;
Obijects Workspace” on application file or Wl'Fangt? class ﬁlg, mal.<e sure the objef:t from which you
page 385. want to create an object instance is available in the Objects Workspace.

A Create Object Instance action is a Witango action. The action icon is
available on the Actions bar.

The procedure for adding a Create Object Instance action is the same
whether you are working with a COM object,JavaBean, or Witango class
file.

To add a Create Object Instance action

I Create or open the Witango application file or Witango class file in
which you want to create an object instance.

2 Drag the Create Object Instance action icon from the Actions bar to
Dﬁ the location you want in your application file or Witango class file.

The Create Object Instance action window appears. The field
next to the Create Object Instance action icon displays a
message: “Drag an object from the Workspace.”

3 Click the Objects tab in the Workspace to view the Objects
Workspace.

4 Expand one of the object types—COM/DCOM Objects, JavaBeans,
or Witango class files—that you want to view, by clicking the plus
sign (+) to the left of this object type.

A list of all objects of this type appears.

5 Select the object from which you want to create an object instance
and drag it to the Create Object Instance action window.

The Create Object Instance action window displays the name of
the object. An example of the Create Object Instance action
window is shown on page 398.
For more information, see 6 Complete the information in the Create Object Instance action
“Completing the Create window.

Object Instance Action” on
page 398

Note You can skip this step for the time being. At a later time, open
this action item and complete the information.

7 Close the Create Object Instance action window.

For more information, see
“Working With Actions”
on page 257.

Shortcut to
Adding a
Create Object
Instance Action

Adding a Create Object Instance Action

A Create Object Instance action appears in your application file
or Witango class file. The default name for the action is
Create Object Instance.

8 If you want, you can change the default name to whatever is
appropriate in your case.

An alternative approach to adding a Create Object Instance action from
the Actions bar is to do it directly from the Objects Workspace. This
procedure is a slight modification of the one described on page 385.

Skip the step involving the Create Object Instance action icon. Just drag
the object you want to use from the Objects Workspace to the location
you want in the application file or Witango class file.

397

Completing the Create Object Instance Action

Completing the Create Object Instance Action

For more information, see
“Adding a Create Object
Instance Action” on

page 396.

For more information, see
“Shortcut to Adding a
Create Object Instance
Action” on page 397.

For more information, see
“Working With Actions”
on page 257.

The Create Object Instance action window contains important
information about a Create Object Instance action. It allows you to view
and edit this information.

You can open the Create Object Instance action window by doing one of
the following:

* dragging the Create Object Instance action icon from the Actions bar
to an application file
(when you create a new Create Object Instance action)

* dragging an object from the Objects Workspace to an application file
(when you create a new Create Object Instance action)

* double-clicking the name of a Create Object Instance action in your
application file
(when you edit an existing Create Object Instance action).

The title of the Create Object Instance action window consists of the
name of your Witango application file, followed by the name of the
action, separated by a colon.

The default name of the Create Object Instance action is
Create_Object_Instance. You can change it in the application file
window.

The following is an example of the Create Object Instance action
window:

=1 E3

.m Example_taf : Create_DirectAnimation. DAT uple

Object Mame: Directdnimation. DAT uple

— Object Ingtance Y ariable

Seope: [Local =]
Mame: IMyDbiect Instance j

— Instance
' Create new object
' Get existing objsct

Initialization String:

Expiry URL: I

There are several sections to the Create Object Instance action window:
object name, object instance variable, instance, and expiry URL.

Completing the Create Object Instance Action

Object Name This is the field next to the Create Object Instance action icon. The
object name is the name of the object from which you create the object
instance. If no object has been assigned to this action, the field displays
the message Drag an object from the Workspace.

Object Instance This section sets the name and the scope of the variable that refers to the
Variable object instance once it is created.

Scope

You can select a scope from the drop-down menu, or enter a custom
scope. The default is Request.

When you select a scope, consider how you plan to use the variable. For
example, you are using the object instance to calculate interest based on
principle and interest rate, and you want to get the balance later, in
another application file. In this case, you should select the User scope
instead of the Request scope, because the User scope makes the
variable available beyond the execution of the current application file.

Name
Enter the variable name in this dialog box.

The name that you enter in this box becomes available in the drop-down
menu in the Object Instance Variable section of Call Method action
windows in the same Witango application file or Witango class file.

Instance Create New Object

Create New Object is the default option. Witango Server creates a
new instance of the object when the application file is executed. The new
instance exists until the expiry time is reached—which is determined by
the variable scope that you specify in the Object Instance Variable
section—or until it is purged with a <@PURGE> meta tag.

This is the only selection, unless you are using a COM object. Even if you
are using a COM object, in most cases, this is the appropriate selection.

Get Existing Object

In some special cases, you may want Witango to connect to an object
instance that is already existing, instantiated by the operating system of
your machine, independent of your Witango application file. If you are
familiar with the way this process works and you want to use the object

instance in this manner, you can make this selection.

400

Completing the Create Object Instance Action

Currently, Witango supports this feature only in COM objects. If you are
using a JavaBean or a Witango class file, this selection is disabled.

If the object you specify is not registered properly as a global COM
resource when Witango Server executes the Create Object Instance
action, WitangoServer generates an error.

Initialization String

This feature allows you to bring up COM objects in some initialized state,
as implemented by the referenced moniker. (A referenced moniker is a
term used with COM objects; it is essentially a string of characters in a
special format for creating initialized COM objects. See your COM object
documentation for details.) Specifying an initialized state can combine
several actions into one, and thus save development time.

An example of using a referenced moniker is to specify an action based
on a spreadsheet file. When Witango Server executes this initialized
object instance, it opens the spreadsheet program and the spreadsheet
file, lets the spreadsheet program perform its operations and returns the
result to Witango.

Currently Witango supports the use of initialization string only in COM
objects. If the instance you are creating is from a JavaBean or a Witango
class file, the field is disabled.

You can do one of the following with the Initialization String text box:
* Leave the text box empty.

Witango creates an uninitialized instance of the COM object (the
object indicated in the Object Name field).

* Enter the referenced moniker in the text box. (Refer to the
documentation from your COM object vendor for the use of
referenced monikers.)

Witango reads the initialization string to create an initialized instance;
it ignores whatever COM object that you may have selected when
you started the Create Object Instance action (that is, the object
indicated in the Object Name field). The information you enter in
the Object Instance Variable section applies to this initialized
instance.

Expiry URL

Completing the Create Object Instance Action

Username and Password

By default, a COM object uses the username and password of your
Witango Service login.

Tip You can view your Witango Server login information as follows.
From the Control Panel, choose Services, then select the Witango
Server you want to view, then click Startup. In the Service dialog box
that appears, you see the login information under Log on as. The
default is System Account.

However, you have the option to specify a different username and
password for this COM object.

The Username and Password text boxes allow you to enter optional
security information for this COM object. Both text boxes accept meta
tags and are encrypted in the Witango application file or Witango class
file. Username and password fields are limited to 128 characters.

Currently, Witango supports the use of username and password only in
COM objects.

When the object instance expires, Witango destroys the instance.

You can direct Witango Server to perform application-specific cleanup
operations prior to the destruction of the instance. Enter either a valid
URL or one or more meta tags that evaluate to a valid URL. The URL
must be a complete HTTP URL that Witango Server can access. For
example:

http://127.0.0.1lmycleanup.taf?object=myobject

402

Adding a Call Method Action

Adding a Call Method Action

For more information, see
“Adding an Object to the
Objects Workspace” on
page 385, Using Available
Object Instances on

page 370, and Completing
the Call Method Action on

page 404.

Before you add a Call Method action to your Witango application file or
Witango class file, make sure the following conditions are met:

* the object associated with that method is available in the Objects
Workspace

* the object instance to which this Call Method action refers has
already been created earlier in the execution of your Witango
application file

» the information for the object instance is complete; in particular, the
object instance has been assigned to a Witango variable.

A Call Method action is a Witango action. The action icon is available on
the Actions bar.

The procedure for adding a Call Method action is the same whether you
are working with aCOM object, JavaBean, or Witango class file.

To add a Call Method action

I Open the Witango application file or Witango class file in which you
want to call a method.

2 Drag the Call Method action icon from the Actions bar to the
location you want in your application file or Witango class file. (It
must be in a logical sequence after the Create Object Instance action
that this Call Method action refers to.)

The Call Method action window appears. The field next to the
Call Method action icon displays a message: “Drag a method
from the Workspace.”

3 Click the Objects tab in the Workspace to view the Objects
Workspace.

4 Locate the object and method you want to use, as follows:

* Expand one of the object types—COM/DCOM Objects,
JavaBeans, or Witango class files—that you want to view, by
clicking the plus sign (+) to the left of this object type.

Note The object you select for your Call Method action must be the

same as the object in the Create Object Instance action that you want
this Call Method action to refer to. Otherwise, Witango Server returns
an error during execution of the application file.

A list of all objects of this type appears. (A group of related

For more information, see
“Completing the Call
Method Action” on

page 404.

For more information, see
“Working With Actions”
on page 257.

Shortcut to
Adding a Call
Method Action

Adding a Call Method Action

objects may be contained in a folder.)

* Expand the object that you want to use by clicking the plus sign
(+) to the left of this object.

A list of available methods appears.

Note Some methods are listed under the Attributes folder, if this
folder exists. Expand the Attributes folder to see those methods.
For more information, see “Attributes Folder” on page 392.

5 Select the method you want to use and drag it to the Call Method
action window.

The Call Method action window displays the names of the object
and the method, as well as the list of parameters for this
method. An example of the Call Method action window is
shown on page 405.

6 Complete the information in the Call Method action window.

Note You can skip this step for the time being. At a later time, open
this action item and complete the information.

7 Close the Call Method action window.

A Call Method action appears in your application file or Witango
class file. The default name for the action is the name of the
method.

8 If you want, you can change the name of the action to whatever is
appropriate in your case.

An alternative approach to adding a Call Method action from the Actions
bar is to do it directly from the Objects Workspace. This procedure is a
slight modification of the one described on page 402.

Skip the step involving the Call Method action icon. Just drag the method
you want to use from the Objects Workspace to the location you want in
the application file or Witango class file.

403

404

Completing the Call Method Action

Completing the Call Method Action

For more information, see
“Adding a Call Method
Action” on page 402.

For more information, see
“Shortcut to Adding a Call
Method Action” on

page 403.

For more information, see
“Working With Actions”
on page 257.

The Call Method action window contains important information about a
Call Method action. It allows you to view and edit this information.

You can open the Call Method action window by doing one of the
following:

* dragging the Call Method action icon from the Actions bar to an
application file
(when you create a new Call Method action)

* dragging a method from the Objects Workspace to an application file
(when you create a new Call Method action)

* double-clicking the name of a Call Method action in your application
file
(when you edit an existing Call Method action).

The title of the Call Method action window is the name of your Witango
application file, followed by the name of the Call Method action,
separated by a colon.

You can change the name of the Call Method action in the application file
window.

Object/Method
Name

Object Instance
Variable

Completing the Call Method Action

The following is an example of the Call Method action window:

Untitled1 * ; Activate PIN

Method Name:

—lox]

FiN Actvate_FIN

Ohjectinstance variahle

Scope: IRequest

[

Marne: I

But result into wariahle (Any)

Scope: IRequest

=

Marme: I

Farameters:

MName | Type

| Format

| “alue |

= PIN

Text

Status

Yariakle

Request

Tt &

Message Text

Yariakle

Fequest

<

There are several sections to the Call Method action window: object/
method name, object instance variable, result variable, and parameter list.

This is a non-editable field at the top of the window, next to the Call
Method action icon. The object/method name consists of the name of the
object, followed by the name of the method, separated by a dot. If no
method has been assigned to this action, the field displays the message
Drag a method from the Workspace.

This section allows you to specify the object instance you want to use in
your Call Method action. You must have created the object instance in a
Create Object Instance action and given it a variable name.

Before you complete the information in this section, you need to know

the following:

* the variable name given to the object instance you want to use

* the scope of this variable.

405

406

Completing the Call Method Action

Result Variable

For more information, see
“Viewing Object

Information in the Objects
Workspace” on page 391.

You can view this information by double-clicking the appropriate Create
Object Instance action.

From the Scope and Name drop-down menus, select the appropriate
items or enter them.

CautionThe information you enter in the Object Instance
Variable section of the Call Method action window must be identical
to the corresponding section of the Create Object Instance action
window. (This includes the scope and the name of the variable.)
Otherwise, Witango Server returns an error when it executes the
application file.

Example

The Create Object Instance action creates an object instance,
MyObjectInstance, from the object, MyObject; the variable to
which this instance is assigned is MyVariable, in Local scope. To
specify a Call Method action using this object instance, drag
MyObject in from the Objects Workspace, and specify
MyVariable, in Local scope, in the Object Instance Variable
section of the Call Method action window.

The Call Method action may generate a result. The data type of the
return result is indicated in parentheses after the Put Result into
Variable title. An example is (bool).

This information is also shown in the Objects Workspace.

Note If the Call Method action does not generate a result, it is
indicated as (none) after the Put Result into Variable title. The
Scope and Name drop-down menus are disabled.

If you plan to use the result later in your application file, put the return
result into a variable. From the Scope and Name drop-down menus,
select the appropriate items or enter them.

Example

You are using the Interest Calculator object to calculate the interest
on a customer account. When you get the result of the calculation,
you can store it in a variable called Interest. When you need to
use this result later to present a statement on a Web page, refer to
the Interest variable.

Parameter List

For more information, see
“Object Properties” on
page 393.

Completing the Call Method Action

A parameter allows a Witango application file to exchange data with an
object. The exchange can be an input (passing data from the application
file to the object), output (passing data from the object to the application
file), or input/output (passing data from the application file to the object
and putting the new value from the object in the original variable).

Name

This column shows the parameter names, and whether a parameter is an
input, output, or input/output parameter. The following icons are used:

= input parameter
A output parameter
L o input/output parameter

Parameter names are also listed in the Objects Workspace. If you want to
change a parameter name, do it in the Objects Workspace. After the
change, Witango updates the Call Method action window. (You have to
close and reopen the Call Method action window to see the new name.)

Type

This column shows the data type of each parameter. There are two
categories of data types:

¢ Fixed

In most cases, the data type for a parameter is fixed. It does not vary
from one Call Method action to another. This is the data type
specified by the object vendor. For details, see the documentation
supplied by your object vendor.

¢ Variant

When using COM objects, you may encounter variant parameters. A
variant parameter is a parameter which does not have a fixed data
type assigned to it; the data type may vary from one Call Method
action to another. A variant parameter can be an input parameter or
an input/output parameter.

If you click the Type column of a variant parameter, you see a drop-
down menu of data types used in COM objects. Refer to the
documentation from your COM object vendor and select the
appropriate item from the menu. The default is Text.

Tip Instead of selecting from the drop-down menu, you can also type
in a meta tag which evaluates to a data type when Witango Server

407

Completing the Call Method Action

For more information, see
“Viewing Object

Information in the Objects
Workspace” on page 391.

For more information, see
“Working with Meta Tags”
on page 167.

For more information, see
“Working With Variables”
on page I81.

408

executes the Witango application file.

The data type you select for the variant parameter applies to this
particular Call Method action only.

Parameter data types are also listed in the Objects Workspace, in
brackets, after the respective parameter names. The exception is the
variant data type, which depends on the particular Call Method action.

Format

This column shows the format of a parameter. A parameter has one of
two formats: Variable and vValue.

Parameter Type Possible Formats

Input Variable or Value

Output or Input/Output Variable

When you click the Format column of a parameter, the format for this
parameter becomes enclosed in a drop-down menu. If the parameter is
an input parameter, you can select Variable or Value; otherwise, it can
only be variable.

Value

This column shows the value or variable of a parameter. You can change
the values and variables in this column.

¢ Formatis Value

If the format of a parameter is Value, you input a literal value or a
meta tag that evaluates to a literal value.

Examples of literal value are 237 (integer), John Smith (text), and
3.14159265 (floating point).

An example of a meta tag that evaluates to a literal value is
<@SUBSTRING STR="alpha" START="3" NUMCHARS="2">
(This meta tag evaluates to the literal value, ph.)

¢ Formatis Variable

If the format of a parameter is Variable, this column shows the
scope and the variable name of the variable.

When you click the Value column of a parameter, two cells appear.
The left-hand cell, which contains the scope name, becomes a drop-
down menu. You can make changes by selecting another scope or

Completing the Call Method Action

entering a custom scope. The right-hand cell, which contains the
variable name, becomes a text box. Enter a variable name or change
the existing variable name.

When the Call Method action is executed, the value for this
parameter is taken from the variable specified (Input/Output or Input
type) and any output value is placed in the variable (Input/Output or
Output type).

Incl. Empty

This column is enabled for optional parameters. With an optional
parameter, you can specify whether or not to include this parameter in a
Call Method action. Only COM objects can have optional parameters.

It specifies whether a value is passed or not if the Value field evaluates to
empty at execution time.

* If the parameter is an optional parameter, you can select either True
or False as the value.
* True

You ask Witango to always use this parameter. Complete the
information in the Type, Format, and Value columns.

. False

You ask Witango to use this parameter only when the value
specified is non-empty.

e If the parameter is not an optional parameter (that is, you are
required to use this parameter) the value in this column is indicated
as True. This value is hard coded; you cannot change it. Complete
the information in the Type, Format, and Value columns.

409

410

Using the Objects Loop Action

Using the Objects Loop Action

For more information, see
“Repeating a Set of Actions
(Loop Actions)” on

page 314.

Example of
Using an
Objects Loop

See an example of the
Objects Loop action dialog
box on page 412.

In some cases, a method call returns several items collected into an
object, called a collection object. The purpose of a collection object is to
allow you to work with all the items or selected items in the collection,
one by one, in a loop action.

The Objects Loop action is a loop action which works similarly to the For
Loop action. You can have nested Objects Loop actions (an Objects Loop
action within an Objects Loop action).

The Objects Loop action can work with appropriate objects retrieved
from COM objects and JavaBeans.

Suppose there is a group of related objects that allow you to look up and
present all the product names in a product category. This involves the
following objects:

* ProductCollection
This is a collection object containing product objects.
. ProductCategory

This is an object which allows you to access the collection. This
object contains a method, get Product, which puts the result into a
variable, x, assigned to ProductCollection.

. Product

This is an object which contains all the attributes of an individual
product. This object contains a method, getName.

You first create an object instance of the ProductCategory object,
using a Create Object Instance action. Then use a Call Method action to
call getProduct and to put the result of this method—the
ProductCollection collection object—into variable x.

Now you start an Objects Loop action to work with the items in the
collection object, which is the result of the aforementioned Call Method
action. This Objects Loop action uses the variable x to refer to the
ProductCollection collection object and the variable y to refer to
each individual item in the collection.

Place a Call Method action inside the Objects Loop action, to call
getName, so that it to looks up and presents the items in
ProductCollection. Use the variable y as the object instance variable
to refer to the current item in the collection.

Using an
Objects Loop

For more information, see
“Using Available Object
Instances” on page 370

For more information, see
“Adding a Create Object
Instance Action” on

page 396 and .

Using the Objects Loop Action

The following diagram shows how you might incorporate a sequence of
actions in you Witango application file to use an objects loop:

Partial application file

Product.taf

Create Object Instance
- Object=ProductCategory
- Object Instance Variable=Mylnstance
Call Method
- Method=ProductCategory.getProduct
- Object Instance Variable=Mylnstance
- Result=ProductCollection
- Variable for Result=x
Objects Loop
- Collection Object=x
- Item Variable=y
Call Method
- Method=Product.getName
- Object Instance Variable=y

//\/\/\\

Objects loop for the
"ProductCollection”
collection object

Using an objects loop requires a sequence of actions, generally including
at least a Create Object Instance action, a Call Method action, and an
Objects Loop action. The precise requirements depend on the collection
object you use and what you want to do with it. Refer to the
documentation from your object vendor for details.

The heart of the sequence is the Objects Loop action, which works on a
collection object. Typically you get a collection object as the result or an
output from a Call Method action, which in turn needs to use an available
object instance.

The use of Create Object Instance action and Call Method action is
covered in other sections. This section focuses on using the Objects
Loop action.

To specify an objects loop for a collection object

I Open the Witango application file or Witango class file that you want
to use an objects loop.

412

Using the Objects Loop Action

[@

2 Drag the Objects Loop action icon from the Actions bar to the
location you want in your application file or Witango class file.

Note The Objects Loop action must be placed in a logical sequence
after a collection object has become available. Typically, you get a
collection object as the result or an output from a Call Method action.
For an illustration of how this works, see Example of Using an Objects
Loop on page 410.

The Objects Loop action dialog box appears:

[Example.taf : Objects_Loop M= 3
— Collection Object
Scope: IDefauIt - l
Mame: Ix
— ltem Y ariable
Scope: IDefauIt - l
Mame: I y
— Limit:
Start: I
Stop: I

3 Complete the information in the Objects Loop action dialog box:

Collection Object

The name and scope must be identical to those of the variable
assigned to the result or an output (a collection object) from the
Call Method action (or the <@CALLMETHOD> meta tag) to which
this Objects Loop action refer.

Item Variable

This is the variable to which the current item in the collection is
assigned on each iteration of the loop. When the counter
advances, the same variable name is used for the next item in the
collection.

Limits
Enter the numbers—or meta tags that evaluate to numbers—

which represent the items that you want the loop action to start
and stop with.

If the value is something other than a number, Witango ignores it
and uses the default value (1 for start and the last item in the
collection for stop). If you leave the boxes empty, the loop action
covers all the items in the collection.

CHAPTER TWENTY -TWO

Witango Class Files

Creating Your Own Witango Modular Code

Witango class files are reusable software components that you can
incorporate in Witango application files. You can create and edit Witango
class files using Witango Studio.

Witango supports the use of several types of resusable software
components—called classes or “objects”—in Witango application files.
Witango allows you to use the Witango class files that you create
yourself, along with other objects that are available from third-party
vendors.

For more information, see This chapter assumes you are familiar with the basic concepts of using
v&;{gg:;f?gﬂ'ggaggzgs " objects in Witango. The topics covered in this chapter include:

* an introduction to Witango class files

» the benefits of using Witango class files

* creating and editing Witango class files

» using editing windows for Witango class files

» setting search paths for Witango class files.

For more information, see Once you have created your Witango class files, you can incorporate

“Using Objects” on : . .
page 381. them in your Witango application files.

414

What are Witango Class Files?

What are Witango Class Files?

For more information, see
“Understanding Objects in
Witango” on page 365.

Witango class files are reusable software components that you can create
and edit using Witango Studio.

Witango supports several types of reusable software components
available on the market, such as COM objects and JavaBeans. These
software components are, strictly speaking, called classes. A class is a
category of objects; it defines all the common properties of the different
objects that belong to it. In industry, however, the term “object” is often
used loosely. What is called an object, such as a COM object, may in fact
be a class or a category of objects.

A Witango class file is a class or “object” you can use in Witango. You can
use a Witango class file in Witango in the same way that you use a COM
object or a JavaBean. The main difference is that, with Witango class files,
you can create and edit your own reusable software components using
Witango Studio.

Because Witango class files are treated like COM objects and JavaBeans
in Witango, they are generally called “objects” in the User’s Guide.

Example

To see how you might use a Witango class file, refer to Example I:
Investment Scenarios on page 371. You are looking for an object to
organize your report in the invest . taf application file. Suppose
you cannot find a suitable object from a third-party vendor—you may
want to create your own Witango class file.

After you have created the Report Organizer as a Witango class file,
you can incorporate it in invest.taf.

Benefits of Using Witango Class Files

Benefits of Using Witango Class Files

When you use Witango class files in your Witango application files, you
obtain a number of benefits:

Because Witango class files work like other objects—such as COM

objects and JavaBeans—in Witango application files, the benefits you
get from using these objects also apply when you use Witango class
files.

You do not have to rely exclusively on third-party object vendors. If
the objects available on the market do not suit your purpose, you can
create your own.

Any Witango class file you develop is potentially reusable in future
Witango application files. You can create a library of Witango class
files that you and others can use.

In addition to the Witango class files that you develop, you can draw
on the Witango class files that others have developed.

You do not have to know any of the programming languages—such as
C++, Visual Basic, or Java—commonly used for writing objects.
Developing a Witango class file is similar to developing a Witango
application file, a process you are already familiar with.

You can mix and match different object types supported by Witango:
objects available from many vendors and objects you develop
yourself (that is, Witango class files) can be used in the same
Witango application file.

You may modify the source code inside Witango class files to
improve their design. As long as you do not change the interface—
which is normal practice—you can benefit from the improved design,
without having to alter the code in your Witango application files.

You can use Witango class files as “wrappers” for COM objects and
JavaBeans to simplify calling them from your application files. One
example is to replace several COM object or JavaBean method calls
with a single Witango class file method call. Another example of
using a Witango class file as a “wrapper” is to simplify the parameter
list of a COM object or JavaBean method by exposing in a Witango
class file only those parameters that you normally change and hard-
coding the others.

415

416

Benefits of Using Witango Class Files

When to
Develop and
Use Witango
Class Files

If the objects available from third-party vendors suit your purpose, it is
probably easiest to use them.

If you plan to reuse sections of your Witango application file in future
application files, it may be more efficient to develop Witango class files
and then use them in your current and future application files.

In general, Witango code that you often call by using a Branch action with
the return option set is a good candidate for encapsulation into a
Witango class file method.

You can incorporate Witango class files in any Witango application file, in
the same way you incorporate other objects that Witango supports.

Using Witango Class Files

Using Witango Class Files

There are two main steps in using Witango class files:
I Creating and editing Witango class files

* If the Witango class file you plan to use is existing—that is, it has
been created by you or by others—go directly to step 2.

For more information, see * If the Witango class file you plan to use does not exist, you have

“To create a Witango class ;
file” on page 426. to create it first. Then go to step 2.

For more information, see * If an existing Witango class file does not meet your precise

“Editing a Witango Class e
File” on page 427. needs, you can modify it. Then go to step 2.

2 Incorporating Witango class files in Witango application files

Once created, Witango class files can be incorporated in Witango
application files, just like other objects. Witango class files are treated
as “black boxes”; that is, as a user of Witango class files, you do not
need to know the source code inside the Witango class files. You
simply interact with a Witango class file through its interface, that is,

its methods.
For more information, see Using Witango class files in Witango is similar to using other objects
Overview of Using in Witango.

Objects in Witango” on
page 384.

417

Developing Witango Class Files

Developing Witango Class Files

For more information, see
“Creating a Witango Class
File” on page 426 and
Editing a Witango Class File
on page 427.

418

Two windows in Witango Studio are specially designed for developing
Witango class files:

* The Witango class file window is the main environment in which you
develop Witango class files. It allows you to set up the methods for
each Witango class file and specify actions for each method.

* The Method Definition window allows you to set up the return value
and parameters for each method.

This section focuses on the features available in the Witango class file
window and Method Definition window.

The other sections in this chapter give you the procedures for creating
and editing Witango class files.

To open the Witango class file window

Do one of the following:

* New Witango class file: From the File menu, choose New, then
choose Witango Class File.

» Existing Witango class file: From the File menu, choose Open, then
locate and open the Witango class file you want.

The Witango class file window consists of three panes: Method List pane,
Instance Variables List pane, and Method Editing pane.

The following is an example of the Witango class file window:

Method List pane Method Editing pane

] wevw. tcf =] 3
Methods I;| Action | Attributesl D{{iect.ﬂ’Data...I Eommentsl
& On_Create [=}- =% Enumiisits # 0
& On_Destroy =+-T2 IF_GetFirst
el Enum\:\u"el;sites = Set_Start_And_Max_0
-G Get\:\u"ebsnelr.ﬂo @ Get_website_Name kL i
% Set_ReportTimeframe @ GetTotalRows RL WA
= Enumtisits - %2 Eleii Getl
LI I 5 E} ? Elzeif_GetMext
.= Set_Start_And_Max_1
Instance Yariables |A 7 Elseif_GetPrev
. = Set Start_snd Max_2
: B it J ----- |+ Else_RefetchSame
_wiebsite .
@ FoEnae | ? Enumisits b wi
@ FptStatDate | 7 = TempHackl
@ P _FirstinBatch =l

Instance Variables List

Method List
Pane

For more information, see
“Editing a Witango Class
File” on page 427.

Developing Witango Class Files

The Method List shows the names of all the methods in the Witango class
file. Two types of methods are shown in the list: user-created methods
and default methods.

User-Created Methods

These methods constitute the Witango class file’s interface when you
incorporate the Witango class file into your Witango application file.
When you use a Call Method action, you are specifying one of the user-
created methods on this list.

You can create as many methods for a Witango class file as you want. You
can delete the user-created methods that you no longer need. You can
also change the order in which the methods appear in the list.

Default Methods
The two default methods in the list are On_Create and On_Destroy.
® On Create

When Witango Server creates an instance of the Witango class file,
it automatically calls the On_Create method before any further
processing.

The On_Create method is initially empty. When you select this
method and specify actions in the Method Editing pane, you direct
Witango Server to execute these actions prior to the creation of the
instance. An example of using the On_Create method is to initialize
certain instance variables.

The use of the On_Create method is optional. If you do not want to
use it, just leave the Method Editing pane empty.

e On_Destroy

When Witango Server destroys an instance, it automatically calls the
On_Destroy method just before it proceeds with the destruction.

The On_Destroy method is initially empty. When you select this
method and specify actions in the Method Editing pane, you direct
Witango Server to execute these actions prior to the destruction of
the instance. An example of using the On_Destroy method is to
perform certain clean up activities.

The use of the On_Destroy method is optional. If you do not want
to use it, just leave the Method Editing pane empty.

The default methods differ from user-created methods as follows:

* you cannot delete them

419

420

Developing Witango Class Files

Method Editing
Pane

For more information, see
“Witango Studio Basics” on
page 5.

For more information, see
“Return Value” on
page 424.

* they have no parameters or return values
* you cannot edit the parameter list

* they are invisible when you view Witango class file information in the
Objects Workspace

* you cannot call them using Call Method actions or the
<@CALLMETHOD> meta tag.

When you select a method on the Method List, the Method Editing pane
shows the actions included in this method. (The root item in the Method
Editing pane is the method currently selected on the Method List.)

Because a method of a Witango class file is simply a reusable software
component that you insert into a Witango application file, the content of
a method looks like and behaves like part of the content of a Witango
application file.

Indeed, the Method Editing pane resembles the Witango application file

window. In most cases, you use the Method Editing pane similarly to the
way you use the Witango application file window: you drag actions from
the Action bar into the pane and edit them.

You can copy an action or a series of actions within the same Witango
class file and between Witango class files. You can also copy actions to
and from Witango application files. Other than a few exceptions, copying
actions involving Witango class files is similar to copying actions in
Witango application files.

Differences from Witango application files

Because Witango class files and Witango application files do not perform
identical functions, there are some differences between Witango class
files and Witango application files that you should be aware of:

* Executing a Witango class file. You cannot execute or branch to
a Witango class file directly. All access to Witango class file methods
is via Call Method actions or <@CALLMETHOD> meta tags and
executed in a Witango application file.

¢ Branch action. The Branch action, when used in a method, is
limited to branching within the current method. If you copy from a
Witango application file to a Witango class file, Witango Studio does
not allow you to copy a Branch action that branches to a location
outside the current method.

¢ Return value/Results HTML. Each method call has its own
private Results HTML, which is empty at the start of its execution.

Developing Witango Class Files

Like Witango application files, the Results HTML associated with
each action is accumulated as execution progresses. Unlike Witango
application files, however, the Results HTML of a method is not
automatically appended to the Results HTML of the Witango
application file. You may return the Results HTML as the method’s
return value or in an output parameter (using <@RESULTS>). To
append the method’s Results HTML to the calling Witango
application files, you need to include the variable you stored it in the
Witango application files’s Results HTML, for example, <@VAR
NAME="myresults" ENCODING="none"s.

Push attribute. The Push attribute is disabled for actions inside a
method. If you copy from a Witango application file to Witango class
file, Witango Studio turns off the Push attribute automatically.

Assign action. The Assign action in a Witango class file allows you
to set variables in the instance and method scopes, in addition to
those scopes available to Witango application files.

When copying Assign actions from a Witango class file to a Witango
application file, all the variables are copied; however, the scopes of
instance and method variables are changed from instance and
method to default.

Meta tags to set and get parameters. Within a Witango class
file method, there are two meta tags available (<@GETPARAM> and
<@SETPARAM>) which set and return the value of a named
parameter. The tags get and set the named method variables, with
the added benefit of error checking; that is, if the variable specified is
not a parameter, an error occurs.

Recursion. You can make recursive calls to a method. The
returnDepth configuration variable tracks recursive calls to
methods as well as Branches, and the maxActions configuration
variable includes actions in methods in its count of the total
executed.

Error handling. When an error occurs in a Witango class file
method action:

* If the action has Error HTML, Witango processes it and stops
method processing.

* If the method's return value is the Results HTML, Witango
returns the Error HTML.

* If the action has no Error HTML, Witango passes the error up
the calling chain to the original Witango application file.

422

Developing Witango Class Files

Instance
Variables List
Pane

Nested Method Calls

When you specify actions for a method, you can include Call Method
actions involving other methods. The calling of one method from another
is a nested method call.

Assuming method A calls method B, the following issues affect the nested
method call:

¢ The instance and method variables in method A become unavailable
until Witango Server has completed the execution of method B and
returns to method A.

The exception is that, if method A and method B are part of the
same instance, the instance variables are shared.

* Assignments to configuration variables in the instance and method
scopes of method A have no effect on method B.

If an assignment is made to method$dateFormat in method A, the
method$dateFormat in method B remains empty until set
explicitly. Further, the scope of method$dateFormat in method B is
determined by the default scoping rules, not the scope set in
method A.

Self-Referencing

When you specify actions for a method, you can include a Call Method
action that refers to the current Witango class file. In this case, the object
instance variable for this self-referencing Call Method action is set
automatically: the scope is Method and the name is this.

The Instance Variables List shows the names of all the unique instance
variables for the Witango class file. All instance variables in the list are
available to all the methods in the Witango class file.

Instance variables (variables in the instance scope) are available only in
Witango class files; they are not available in Witango application files.

The Instance Variables List in a new Witango class file is empty. It is
populated automatically if you assign instance variables in the Witango
class file by doing one of the following:

* using an Assign action

* using the Put result into variable section of a Call Method action
window

» using the Out or In/Out parameters of the Parameter List of a Call
Method action window.

Developing Witango Class Files

An item that appears in this list may be dragged into an Assign editing
window or Results HTML window, automatically assigning the instance
variable in that Assign action or creating a snippet with the <@ASSIGN>
meta tag in that Results HTML.

When you delete all references to an instance variable in all the Assign
actions of a Witango class file, this instance variable automatically
disappears from the Instance Variables List.

To use an instance variable in an assignment

I Open an Assign editing window or a Results HTML window in the
Method Editing pane of the Witango class file window.

2 Drag an item from the Instance Variables List into the Assign editing
window or Results HTML window.

Tip When you click in the Witango class files window, the Witango
class files window is brought to the front, which may hide the Assign
editing window or Results HTML window. Rearrange the windows so
that both are visible at the same time.

A new assignment is added to that window.

Method The Method Definition window contains important information about a
Definition Witango class file method. It allows you to view and edit this information.
Window L

To open the Method Definition window
For more information, see I Open the Witango class file window.
“To open the Witango class
file window” on page 418. 2 Do one of the following:

* In the Method List pane, double-click a user-created method.

* In the Method List pane, select a user-created method, right-
click it, and choose Open from the context-sensitive menu that
appears.

* From the Method List pane, select a user-created method. Then,
double-click the root item in the Method Editing pane.

* From the Method List pane, select a user-created method. Then
right-click the root item in the Method Editing pane, and choose
Open from the context-sensitive menu that appears.

Note Default methods have no return values or parameters.

423

424

Developing Witango Class Files

For more information, see
“Parameter List” on
page 407.

The Method Definition window consists of the return value section and
the parameter list for a method.

The following is an example of the Method Definition window:

: Good_Method [H[=] B3
— Beturn ' alue
" Results HTML
& Method Variable IreturnVaIue Tvpe: IAn}' j
P " |
In/0ut Mame Type Comments
= In parm Text
= Out parmé Any
“ |n/0ut | parm3 DOk
= |n parmd Array
= Out parmb Object

Return Value

You return either the Results HTML or the contents of a method
variable, by choosing one of the options.

If you select Method Variable:

¢ The default variable name is returnvalue.

* The default data type for this variable is Any. You can select the data
type you want from the Type drop-down menu. When returning
results, Witango generates an error if the value is not of the type
specified here.

Parameter List

The Parameter List is where you define the interface to a method of a
Witango class file.

A parameter allows a Witango application file to exchange data with a
Witango class file. The exchange can be an input (passing data from the
application file to the Witango class file), output (passing data from the
object to the application file), or input/output (passing data from the
application file to the object and putting the new value from the object in
the original variable in the application file).

The Parameter List for a method of a Witango class file resembles the
Parameter List in the Call Method action window. When you perform a
Call Method action on a Witango class file, the information from the
Parameter List in the Method Definition window is transferred to the
Parameter List in the Call Method action window.

Developing Witango Class Files

The Parameter List for a Witango class file consists of four columns: In/
Out, Name, Type, and Comments.

* In/Out

This column shows whether a parameter is an input (In), output
(out), or input/output (In/Out) parameter.
The following icons are used:

- input parameter
L output parameter
A input/output parameter.

When you click the In/fOut column of a parameter, you see a
drop-down menu consisting of the three possible values. Select the
one you want to use.

* Name
This column shows the parameter names.

Assign a unique name to each parameter. It is best to use friendly and
informative names. The rules for assigning parameter names are the
same as those for naming variables.

* Type

This column shows the data type for each parameter. You can accept
the default, which is Text, or select one of the following from the
drop-down menu: Any, Array, Object, and DOM.

If Any is selected, any type of value is allowed; otherwise, Witango
Server checks the input value for the parameter when it starts to
execute a method. If the value does not match the specified type,
Witango Server generates an error.

¢ Comments

This column allows you to enter your optional comments for each
parameter.

425

Creating a Witango Class File

Creating a Witango Class File

For more information, see
“Default Methods” on
page 419.

For more information, see
“Adding a New Method”
on page 428.

For more information, see
“Method Editing Pane” on
page 420.

For more information, see
“Method Definition
Window” on page 423.

For more information, see
“Saving a Witango Application
File or Witango Class File as
Run-Only” on page 63.

To create a Witango class file

I From the File menu, choose New, then choose Witango

Application File, or, on the main toolbar, click the New Witango
Class File icon.

The Witango class file window opens. This window consists of
three panes: Method List pane, Instance Variables List pane, and
Method Editing pane.

An example of the Witango class file window is shown on page
418.

If you want to use the On_Create method, select On_Create from
the Method List. In the Method Editing pane, specify the actions
you want to include in this method.

If you want to use the On_Destroy method, select On_Destroy
from the Method List.In the Method Editing pane, specify the
actions you want to include in this method.

Add a method to the Method List.

The new method is automatically selected and becomes the root
item in the Method Editing pane.

In the Method Editing pane, specify the actions you want to include in
this method.

Double-click the root item (that is, the selected method) in the
Method Editing pane to open the Method Definition window.

Complete the information in the Method Definition window.
Repeat steps 4 to 7 until you have added all the methods you want.

Save the Witango class file.

Tip If you want, you can save the Witango class file as run-only. This
feature works in a way similar to that of the Witango application file.

Editing a Witango Class File

Editing a Witango Class File

There is a major difference between editing a Witango class file before and
dfter it is incorporated into a Witango application file, through a Call
Method action. Before you use a Witango class file in a Witango
application file, you can edit it any way you want to suit your purpose.
After you include a Witango class file in a Witango application file, you
are restricted in what you can do with the interface of the Witango class
file.

You can think of the interface of a Witango class file as a contract
between the Witango class file and the Witango application file that uses
the Witango class file. Once the contract is in effect, you can no longer
change the terms of the contract.

When you incorporate a Witango class file into a Witango application file,
the latter treats the former as a “black box” and interacts with it only
through its interface. Both the Witango class file and the application file
honor the interface like a contract. Thus, you have to be cautious when
altering the interface of a Witango class file once a Call Method action is
used on that Witango class file.

CautionDo not alter the parameters or variables of a method, or the
names of the Witango class file and the method, after using a Call
Method action on that method. Witango Server cannot execute the
Call Method action when these elements are altered; it returns an
error.

You can generally add new methods, parameters and variables without
affecting existing Call Method actions. In many cases, you can modify the
actions within a method, as long as you do not change the existing
parameters and variables.

The following windows and dialog box are used for editing Witango class
files:

* Witango class file window. This is where you do most of the
editing, with the exception of return values and parameters.

* Method Definition window. This is where you edit the return
value and parameters for each method.

* Method Properties dialog box. This is where you edit comments
of a method.

All the procedures in this section require you to start with an open
Witango class file window. To open a Witango class file window, choose

427

428

Editing a Witango Class File

Open from the File menu, then locate and open the Witango class file
you want to edit.

Adding a New To add a new method
Method

I Do one of the following:

* From the Edit menu, select New Method.
* Right-click anywhere in the Method List pane and choose New
Method from the context-sensitive menu that appears.

The new method appears at the bottom of the Method List. The
default name is new_method.

Note Witango resolves name conflicts automatically. If new_method
already exists, the name becomes new_methodX, where X is an
integer.

2 If you want, change the name of the method to one that is more
meaningful.

Tip You can also drag the method to anywhere you want in the list.
The only restriction is that On_Create and On_Destroy are always
at the top of the list.

Renaming a The default name of a method is new _method or new methodX, where
Method X is an integer. It is recommended that you change the method name to
one that is more meaningful.

To rename a method

I From the Method List, select the method you want to rename.

Note Although the name of a method also appears as the root item in
the Method Editing pane, you cannot change the name there.

2 Click the name of the method, or from the Edit menu, choose
Rename.

3 Type the new name.

The rules for assigning method names are the same as those for
naming variables.

Deleting a
Method

Copying a
Method

Editing a Witango Class File

You can delete a method from a Witango class file if you no longer need
it, provided that no Witango application file is including this method in its
Call Method actions.

Cautionlf a Witango application file calls a method that no longer
exists, Witango Server returns an error when attempting to execute
that Call Method action.

To delete a method
I From the Method List, select the method you want to delete.
2 Do one of the following:

¢ From the Edit menu, choose Delete.
¢ On the main toolbar, click the Delete icon.

¢ Press Delete.

Note You cannot delete the two default methods, On_Create and
On_Destroy. To prevent Witango from using either of these default
methods, delete all its actions.

3 When a dialog box appears, asking you to confirm the deletion,
choose OK.

You may want to create a method that performs a task similar to one
performed by an existing method in the current Witango class file or
another Witango class file. Instead of having to re-create the method—
along with all its actions and parameters—you can copy an existing
method to a new location, and then modify the newly created method.

To copy a method
I From the Method List, select the method you want to copy.

2 Do one of the following:

* To copy to the same Witango class file, press Ctrl and drag the
method to the location you want on the same Method List.

* To copy to a different Witango class file, drag the method to the
location you want in the Method List of that Witango class file.

Tip Alternatively, you can copy and paste the method using the Edit
commands. Edit commands are available from the Witango Studio Edit

429

Editing a Witango Class File

For more information, see
“Renaming a Method” on
page 428.

For more information, see
Modifying a
Methodpage 430 and
Setting Return
Values and
Parameterspage 430
on this page.

Modifying a
Method

For more information, see
“Method Editing Pane” on
page 420.

Setting Return
Values and
Parameters

For more information, see
“Method Definition
Window” on page 423.

For more information, see
“To edit a parameter” on
page 431.

menu and from the context-sensitive menu.

Witango resolves name conflicts automatically. If you want,
change the name of the new method to one that is more
meaningful to you.

3 Where appropriate, edit the actions in the new method (in the
Method Editing pane of the Witango class file window) and edit the
return value and parameters (in the Method Definition window) for
the new method.

To modify the actions in a method
I From the Method List, select the method you want to modify.

2 Edit the actions in the Method Editing pane, similar to the way you
edit a Witango application file.

For each selected method, you can specify where you want Witango
Server to put the return value; you can also insert, delete, or edit its
parameters.

In all cases, open the Method Definition window first.

To assign a return value

I Select either Results HTML or Method Variable, using the
appropriate radio button.

2 If you select Method Variable, enter a name for this variable (the
default is returnvalue), and select the data type for this variable
from the Type drop-down menu (the default is Any).

To add a parameter

I Right-click anywhere on the Parameter List and choose Insert from
the context-sensitive menu that appears.

2 Enter the required information in the new parameter.

To delete a parameter

I Right-click the parameter you want to delete. (You can select more
than one parameter for deletion by pressingXTPA or ZHI®T, and
then right-click.)

2 Choose Delete from the context-sensitive menu that appears.

Editing a Witango Class File

To edit a parameter

I Click in the In/Out column of the parameter you want to edit. Select
In, Out, or In/out from the drop-down menu that appears.

2 Click in the Name column of the same parameter and edit the
parameter name.

3 Click in the Type column of the same parameter. Select the Witango
data type you want to use, from the drop-down menu that appears. If
you want the parameter to accept all Witango data types, select Any.

4 If you want, edit the comments in the Comments column.

5 Repeat steps | to 4, for each parameter you want to edit.

Getting and Setting Parameters Within a Witango Class
File Method

Inside a method, you must get the values of parameters and set the values
of parameters, if your method uses them.

To get parameter values within a Witango class file method

Do one of the following:

* Use <@GETPARAM NAME=myparams> to return the value.

<@GETPARAM> retrieves the value of a parameter within a Witango
class file. This tag is similar to <@VAR>, but performs error checking
to ensure that only parameters in the current method can be
retrieved.

¢ Use <@VAR NAME=myparam SCOPE=methods> to return the value.

Parameters are always method variables.

To set parameter values within a Witango class file method
Do one of the following:

. Use <@SETPARAM NAME=myparam VALUE=myvalues.

<@SETPARAM> sets the value of a parameter within a Witango class
file. This tag is similar to <@ASSIGN>, but performs error checking to
ensure that only Out and In/Out parameters in the current method
can be set.

. Use <@ASSIGN NAME=myparam SCOPE=method
VALUE=myvalue> to set the value.

431

432

Editing a Witango Class File

For more information, see
“Assigning Variables With
the Assign Action” on
page 182.

Method
Properties

* Use the Assign action to set a parameter (method scope).

Parameters are always method variables.

The Method Properties dialog box displays the name of the method you
selected. It allows you to enter or edit comments on this method.
To view method properties

I Select a method (either the name on the Method List or the root
item in the Method Editing pane).

2 Do one of the following:

* From the Windows menu, choose Properties.

* Right-click the name of the method and choose Properties
from the context-sensitive menu that appears.

The following is an example of the Method Properties dialog box:

General |

Method Mame: Good_Method
Comments:

Thiz iz a method to produce good results. ;I

Debugging Methods

Debugging Methods

For more information, see
“Debugging Files” on

page 65.

B

This feature allows you to see useful information about the execution of a
method. The debug mode applies to an entire Witango class file, not a
particular method or a particular action within a method.

In general, debugging a method works in a way similar to debugging a
Witango application file. The following characteristics are specific to
debugging methods:

* When you enable or disable the debug mode for any method in a
Witango class file, it applies to all the methods in the Witango class
file.

* The debug mode for a Witango class file operates independently
from the debug mode for an application file. If an application file
includes a method from a Witango class file and you want to debug
both the application file and the method, you have to enable the
debug mode in both files.

To set the debug mode in a Witango class file

Do one of the following:

* From the Attributes menu, choose Debug File.

* Right-click the Method Editing pane and choose Debug File from
the context-sensitive menu that appears.

* Type CTRL-D.

When the debug mode is enabled, the debug icon appears in the
Attributes column of the Method Editing pane. You can repeat this
procedure to alternate between enabling and disabling the mode.

433

434

Setting Search Paths for Witango Class Files

Setting Search Paths for Witango Class Files

Setting search paths for Witango Studio and Witango Server are two
separate tasks. You need to do both.

Wi itango Studio The list of search paths for Witango class files is stored on your machine
and displayed in the Objects section of the Preferences dialog box.
Witango uses this list to locate Witango class files when a Witango
application file refers to them.

Adding Paths to the List

For more information, see ~ VWhen you add a Witango class file to the Objects Workspace, Witango

“Objects” on page 161. Studio automatically adds the absolute path to that object to the list of
search paths. You can view this list in the Objects section of the
Preferences dialog box.

In a team development environment, there may be Witango class file
libraries on other machines that you want to use; you can manually add
the paths to these libraries to your list.

Setting the Search Order

When searching for a Witango class file, Witango Studio starts from the
path at the top of the list and moves down the list. Because Witango
identifies Witango class files by names, the search stops as soon as
Witango finds the first Witango class file with that name.

If you have more than one version of a Witango class file in your system,
you may want to order the paths so that Witango finds the one you want
to use for a particular purpose. Re-ordering of the paths is important if
you want to use one version for development and another for
deployment.

Witango Server When locating Witango class files in Witango Server, a configuration
variable called TCFSearchPath defines the search path for Witango
application files. This variable is valid in all scopes: local, user, application,
cookie, domain, and system.

The TCFSearchPath configuration variable contains a semi-colon
separated list of web root relative paths in which to look for the Witango
class files. Witango Server’s treatment of this configuration variable is the
same as all others; that is, it uses the narrowest scope in which the
variable is first defined to do its search.

Setting Search Paths for Witango Class Files

Because Witango class files are stored on the Web server, the paths in
the TCFSearchPath configuration variable are always relative to the
Web root, as mentioned. For example, a valid TCFSearchPath is:

TCFSEARCHPATH=MyApp/TCFs/Logon/ ; M\yApp/TCFs/
GuestBook/ ;
FoneList/Objects/;DouglApp/OtherStuff/MyObjects/

If the object is not found in the Witango class file search path, Witango
Server tries to find the object in the Web server document root folder as
a last resort.

435

436

Setting Search Paths for Witango Class Files

SECTION VI

Witango Compiler

How to Configure Witango Server

This section contains details on the operation of the Witango compiler
operations which are available in Witango Studio Professional Edition.
This functionality has been built to allow Witango applications to be
deployed to J2EE environments. This section contains a single chapter:

* Chapter 23, Compiling Witango Application Files on page 439.

CHAPTER TWENTY-THREE

Compiling Witango 23
Application Files

Compiling taf files for deployment on J2EE

About Witango Witango Compiler For Java compiles Witango application files into java

Compiler For servlets which can be executed on J2EE compliant application servers.
Java Witango Compiler For Java is written in java language and consists of two
parts:

* A compiler which is contained by Witango Studio 5.5 Professional. It
can compile Witango application files (.taf files and .tcf files) into java
servlet files (.class files).

* A runtime library which resides in the J2EE compliant application
server you choose. It can execute compiled java servlet files.

This chapter takes the user through the process of syntax checking the
Witango application file (taf and tcf files), compiling a Witango web
application for deployment on J2EE servers, and cleaning the files created
during a compilation process.

Before you Before you will be able to compile your Witango Application Files you

start will need to have the Java 2 Runtime Environment (at least JVM 1.4.1)
installed on your machine. This can be downloaded from http://
java.sun.com. For more information, see “To create an JDBC data
source” on page | 17.

440

The Compilation Process

The Compilation Process

The compilation process works around 3 main steps being conducted on
a source directory which contains a Witango web application. The steps
are:

I Syntax Checking - which checks all the taf and tcf files which
are located in the specified source directory (and sub-directories
contained therein) to ensure that all Witango meta tags exhibit
correct syntax.

2 Compiling for J2EE - which takes all the taf and tcf files that are
located in the specified source directory (and sub-directories
contained therein) and compiles them into java class files and
javabeans. The files that are created are located in a destination
directory as specified by the user.

3 Cleaning the Project - which removes all of the machine
generated files, created during the compilation process, from the
destination directory as specified by the user.

Note Step 2 includes step |, however, it is recommended that as a
matter of good practice, step | is performed prior to step 2.

Syntax Checking

Syntax Checking

Creating a
Syntax Check
Report

Witango Studio Professional has syntax checking functionality. This
function checks all the taf and tcf files which are located in the
specified source directory (and sub-directories contained therein) to
ensure that all Witango meta tags exhibit correct syntax. A report is
generated for the user.

Note Witango Syntax checking only reviews taf and tcf files in the
source directory and sub-directory, .thtml, .tml and . inc files are
NOT checked by this function.

I Select Build/Compile from the Project menu, a sub-menu of
compiling options as shown below will appear.

Project

Mew. ..
Open...
Zose

Build{Compile

Source Control k Clean L

Iiew Folder
Add Files. ..
Remowve

Madify Froject A5T Signature. .,

Add Site, .,
Deploy:

Deploy T,
Dawnlead
Davwnlead Fromm...
Browse Site

2 Select the Syntax Check option and the Syntax Check window will
appear:

441

442

Syntax Checking

x

—Location

Source Directary:

I Bromvse, .. |

Custom tags Directary:

I Bromvse, ..

—PReport
v Show Infomation

I Show Warnings

¥ Show Errors

Check Cancel |

3 Complete the following information in the Syntax Check Window
and select the CHECK button.

Location Information
* Source Directory

Use the BROWSE button to locate the source directory for
your syntax check. That is, the directory which contains the
taf and tcf files you wish to check.

Note You cannot specify just one taf file, all taf and tcf files in the
directory and sub-directories will be syntax checked.

Notelf the taf or tcf files reference include files using

<@INCLUDE> or Presentation action or File action, these include files
will not be syntax checked.

¢ Custom Tags Directory

Use the BROWSE button to locate the directory which
contains custom meta tag definition files (.xml files). All .xml
files under this directory and sub-directories will be validated
against Witango ctags.dtd.

Syntax Checking

Report Information

e Show Information

&
|

Check this checkbox if you want the Syntax Report to show
information such as the status of the syntax check, ie, which file
it is currently working on.

N ¢ Show warnings

Check this checkbox if you want the Syntax Report to show
warnings.

’E e Show Errors

Check this checkbox if you want the Syntax Report to show
errors.

Note These checkboxes will not prevent you accessing the information
once in the syntax report, they only affect which part of the report is
immediately visible to the user.

The default values for the 4 The Syntax Check window as pictured below will appear.
settings can be customised
in user preferences.For

more Information, ses T
“Compile” on page 162. S [=[ES

Location

Source Directony: I\\Fny\WFUUt\impUﬂS\

Destination Directory: I

Report
Custom Tags Directony: I o) F::
ption
o Buttons
B
Witango Compiler for Java 1.0.8 iljla*

[T The meta tag <@HTTPREDIRECT is notan internal meta tag. |t is assumed & custc «
FILE: Freswwawroothimponsiwwwrootidesignymaintenance debug taf 1
ACTION: Fedirect
OUTPUT: Results HTHL
LIME:1
FOSITION: Openthe corresponding outputicon in Witango Development Studio an

KD wicampiler.compiler WitangoParseException: Taf Parser token matching etror: exp

FILE: %} Fresywawwrootimpaortswwwrootidesignymaintenance’ products taf

ACTION: Show_Product_Details_Footer

OUTPUT: Results HTHL

LIME: 14

FOSITION: Openthe coresponding outputicon in Witango Development Studio an

-

< | | »

- Start | & Print |

443

Syntax Checking

The above report shows a Syntax Report which has been run
with the error and warning reporting option checkboxes
checked. The Report can also be filtered to assist the processing
of the results by selecting the appropriate report option button,
see the above picture.

Filtering the The Syntax Check Report can be filtered to show any combination of the
Syntax Check three reporting options available.

Report To filter the Syntax Check Report, the user simply presses the Report
Option Buttons which toggle on/off the information.

The image below shows the report being filtered to show only errors:

EIEE

Location

Source Directary I\\Frey\wwwroot\impons\

Destination Directary: I

Custom Tags Directony: I

Witango Compiler for Java 1.0.8

B wicornpiler.compilerWitangoParseException: Taf Parser token matching error: expech
FILE: Y\Freywwwrootiimports wwwrootydesignimaintenance\products taf

ACTION: Show_Product_Details_Footer

OUTPUT: Results HThL

LIME: 14

FOSITION: Open the carrespaonding output icon in ‘Witango Development Studio and cf

Syntax Check Unsuccessful
A Syntax Check has resulted in 1 error and 1 warning.
These will need to he correctad prior to this source being compiled.

< |]
P Start | & Frint |

The Syntax Report can be similarly filtered on errors and warnings, or,
any combination of the three reporting options.

444

Understanding
a Syntax Check
Report

Syntax Checking

The Syntax Report lists a series of entries detected in the Syntax Check
followed by an overall report summary.

Report Entries
Report Entries have the following information contained in them:

* An icon which graphically represents to the user the type of entry
this is. It can be either an information entry, a warning entry or an
error entry.

* A description which outlines the issue detected by the Syntax
Checker;

* Where appropriate, a full path of the taf or tcf file to which this
entry relates.

* Where appropriate, the action where this entry issue is located, the
output option (Results HTML, No ResultsHTML or Error HTML)
and the line number in that output HTML which causes the issue.

For entry in the example pictured below:

Description

Icon \
€3 wicompiler.compiler WitangoParseException: Taf Parser token matching errar: expect
Flle P FILE:\iFreyiwwwiootimportsiwawrootidesignimaintenance\products tat
//'ACTION Show_Product_Details_Footer
OUTPUT: Results HTML
LINE: 14
Output FOSITION: Open the corresponding output icon in Witango Developrnent Studio and of

Action

————— Syntax Check Unsuccessful
A Syntax Check has resulted in 1 errorand 1 warning
These will need to be corrected prior to this source being compiled

Line of Output

The error would be located on line 14 of the Results HTML of the action
Show_Product_Details_Footer in products.taf.

Note Some entries will not be able to be tied to a specific action, when
this happens, no information relating to line number or action will
appear.

The entry in the example pictured below demonstrates that some errors
may not be linked directly to an action and will therefore not include
specific location information.

445

446

Syntax Checking

Correcting
Issues located
in a Syntax
Check Report

wicormpiler.compilerWitangoParseException: The TCF file C:hDocuments and Setting:

————— Syntax Check Unsuccessful
A Syntax Check has resulted in 1 error.
These will need to be corrected prior to this source being caompiled.

Overall Summary Report

The report is finished with an overall summary at the end, this summary
briefly states the outcome of the Syntax Check. This summary identifies:

Status of the Syntax Check
* Successful: it is considered that the Syntax Check was successful
and no errors or warnings were encountered.

* Successful with warnings: it is considered that the Syntax Check
was successful and no errors were encountered. However issues
were encountered which may cause execution time errors.

* Unsuccessful: it is considered that the Syntax Check was
unsuccessful and issues were encountered which will definitely cause
errors upon execution.

Summary of the Syntax Check

* count on the number of errors and the number of warnings
detected.

For example, in the entry pictured below:

Syntax Check Unsuccessful
A Syntax Check has resulted in 1 error and 1 waming.
These will need to be corrected prior to this source being compiled.

Where a syntax issue is located in the output HTML of an action, the
syntax report will identify the location of the issue. For more information,
see “Understanding a Syntax Check Report” on page 445. In these cases
the Syntax Check Report allows the user to double-click on an issue to
open the corresponding taf or tcf file at the location of the issue.

The image below shows an error which has been selected. By double
clicking on this error Witango will open the associated taf file at put the
cursor at Line | of the Results HTML screen of action Redirect.

Syntax Checking

5, Syntax check

Lacation
Source Directony: I\'\FFEV\WWWI’DDT\WPDHS\
Double Destination Directany: I
Click Custom Tags Directany: I
Here

YWitango Compiler for Jawa 1.008

POSITION: Open the corr
k3 wicompiler.cormpiler WitangoParseException: Taf Parser token
FILE: Y\ Fresdvwwwrootiimponswewroot,designimaintenancehp

Rechecking the Once a syntax issue has been fixed and saved within your taf or tcf file

Syntax you can simply push the start button to execute the Syntax Check again.
il
Location
Source Directony hEreywewrootiimports',

Destination Directary:

Custom Tags Directony

Witango Compiler for Jawa 1.0.8

FILE: W\ Freswewroothimporshwewroot,designimaintenanceproducts taf
ACTION: Show_Product_Details_Footer

OUTPUT: Results HTML

LIME: 14

POSITION: Open the corresponding outout icon in Witango Development Studio an

Start Button

N

=

P Start & Print

447

448

Syntax Checking

Printing a To print your Syntax Report simply push the Print button.
Syntax Report

_iol>

Location

Source Directory: I\\Frey\wrout\mﬂpms\

Destination Directony: I

Custom Tags Directory: I

‘“Witango Compiler for Jawa 1.0.8

d aut in Development Studio an|
wicompiler.compilerWitangoParseException: Taf Parser token matching error: exp
FILE: W\ Frestwwwroothimportswewwroot, designimaintenanceproducts taf
ACTION: Show_Product_Details_Footer
OUTPUT: Results HTML
LINE: 14

Print Button

P Start & Print

-

(10 pen the corresponding output icon inWitango Development Studio an

Compiling you Witango Application

Compiling you Witango Application

Witango Studio Professional has the functionality to compile your
Witango applications for deployment on J2EE compliant web servers.
This function compiles all the taf and tcf files which are located in the
specified source directory (and sub-directories contained therein) into
java servlets which can be executed on J2EE compliant web servers which
have the Witango runtime library installed.

Executing a I Select Build/Compile from the Project menu, a sub-menu of
compile for compiling options as shown below will appear.

J2EE
Project

Mew,..
Cpen...
Cose

BuildCompile Syntax Check Chrl+kK
Campile For J2EE - Cerl+1

Source Control

Clean Chrl+L

My Folder
Add Files. ..
Remoye

[odify Froject B5T Signature.. .

fdd|site, .,
Dep|ay

Deplay T, .,
Download
Davmlaad Fromm. ..
Browse Site

2 Select the Compile for J2EE option and the Compile for J2EE
window will appear.

449

450

Compiling you Witango Application

Compile for JZEE

X

—Location
Source Directory:

Destination Directory:

Browse..,

Custom tags Directory.

Browse..,

Browse...

Pl

—PReport
v Show Infomation

¥ Show Warnings

¥ Show Errars

—Compile
v Compile All

[Retain Intermediate Files

Compile

Cancel |

3 Complete the following information in the Compile for J2EE Window

and select the BUILD button.
Location Information

* Source Directory

Use the BROWSE button to locate the source directory you
wish to compile to J2EE. That is, the directory which contains
the taf and tcf files you wish to compile.

Note You cannot specify just one taf/tcf file, all taf/tcf files in
the directory and subdirectories will be compiled.

Notelf the taf or tcf files reference include files (images, .html,
thtml, .inc .tml etc), these files will NOT be included in the compile.
They will be included at execution time, and will therefore need to be
manually deployed to the deployment directory before execution.

¢ Destination Directory

Use the BROWSE button to locate the destination directory

&
n

The default values for the
settings can be customised
in user preferences.For
more information, see
“Compile” on page 162

Compiling you Witango Application

you wish Witango to place the resulting servlets in. If such a
directory does not exist it will be created on behalf of the
current user.

Custom Tags Directory

Use the BROWSE button to locate the directory which
contains definition files (.xml files) of any custom meta tags
which may be referenced in the taf and tcf files you are
compiling.

Report Information - prior to the source being compiled a
syntax check is run against them. This syntax check results in a
syntax report. The syntax report can be filtered to show any
combination of general information, warnings and errors.

Show Information

Check this checkbox if you want the Syntax Report to show
information such as the status of the syntax check, ie, which
file it is currently working on.

Show warnings

Check this checkbox if you want the Syntax Report to show
warnings. Warnings are issues which will not stop the
compile process but may cause issues when the resulting
servlets are executed.

Show Errors

Check this checkbox if you want the Syntax Report to show
errors. Errors are issues which will definitely cause
problems during runtime, therefore, if errors are
encountered during the syntax check, the compile process
does not continue.

Note These checkboxes will not prevent you accessing the information
once in the syntax report, they only affect which part of the report is
immediately visible to the user.

Compile Information - the compile information settings allow
the user to customise the compile function such that.

Compile All

Check this checkbox if you want the entire directory of source
files to be compiled. If the checkbox is not checked, then only
those files which have been modified since the last compile was
run will be compiled.

451

452

Compiling you Witango Application

The default values for the
settings can be customised
in user preferences.For
more information, see
“Compile” on page 162.

¢ Retain Intermediate Files

Once a successful syntax check is run on the source directory,
there are two steps which the compile facility undertakes to
generate the servlets. The first step is to take the .taf and
.tcft files to .java files. The second step is to take the
.java files to .class files. If the user wishes to retain the

. java files, this checkbox should be checked. The more usual
approach would be to run the compile without this option
checked.

4 The Compile for J2EE window as pictured below will appear.

Location
Source Directory: I\\FrEy\mwrom\lmpms\

Destination Directany: ChyCompiledApps

Custom Tags Directory:

& BN
' The meta tag <@HTTPREDIRECT is not an internal meta tag. Itis assumed a custom meta tag. Make sure i
FILE: \WFrevhwwwrootiimponswwwrootidesignimaintenancel debug taf
ACTION: Redirect
QUTPUT: Results HThL
LINE: 1
POSITION: Open the coresponding output icon in Witango Development Studio and check syntax carefully
3 wicompiler compiler WitangoParssExcaption: Taf Parsat token matching aror espected: (]3] adtual: [</@F
FILE: \WFrevhwwwrootiimportswawroot,designimaintenance’ products taf
ACTION: Show_Product_Details_Footer
OUTPUT: Results HTML
LINE: 14
POSITION: Openthe corresponding output icon in Witango Development Studio and check syntax carefully.

Witango Compiler for Java 1.0.8

Compile Unsuccessful
Your source files were not compiled because 1 errorand 1 waming encountered.
Please correct the error/warning and press "Start" buttion below,

1 | 2l
> Start & Print

You will receive a report as to whether the compile process was
successful. There are 3 possible outcomes:

I Successful compilation - this is where no issues were
encountered and the resulting servlets will now exist in your
destination directory ready for deployment.

2 Successful compile with warnings - this is where the compile
process is complete, but issues have been flagged to the user. These
issues may result in errors when executed and should therefore be
carefully reviewed by the user. See Correcting Issues located in a
Syntax Check Reportpage 446 for more information on how to
correct these issues.

3 Unsuccessful compile - this is where the compile process was not
completed because errors were encountered in the source file which

Compiling you Witango Application

would definitely cause runtime errors . See Correcting Issues
located in a Syntax Check Reportpage 446 for more information on
how to correct these issues.

453

454

Cleaning after a compile

Cleaning after a compile

Many files are created during the compile process under the destination
directory. The Clean function allows a user to trigger the clean of the
destination directory.

To clean your I Select Build/Compile from the Project menu, a sub-menu of
destination compiling options as shown below will appear.
directory

Project

Tew, ..
OpEn. ..
Close

Build)Compile Syntax Check Crl+K
Compile for J2EE Ctrl+]
[Chrl+L

Source Conkrol

Llzan

[y Folder
Add Files. ..
Remave

Madify Project A5T Sianature, ..,

add Eite, .,
Deplay

Deplay Ta, ..
[ranload
Davwnload Eran, ..
Briowse Site

2 Select the Clean option and the Clean window will appear.

x

Location

Destination Directory:

I Browse... |
Cancel |

Clean

Cleaning after a compile

3 Use the BROWSE button to locate the destination directory you
wish Witango to clean.

4 Press the CLEAN button to trigger the clean function. All machine
generated files made by the Witango compiler will be removed.

Note This function will only work on a directory which has been the
destination directory of a compile request.

Note There is no requirement for a destination directory to be
cleaned prior to deployment, this is a matter of choice for the user.

455

456

Cleaning after a compile

CHAPTER A

Glossary of Terms

An Alphabetical Reference of Common Witango and Internet Terms

action This is short for Witango action. Witango Studio has a suite of actions
which do many different tasks, including: getting data from or sending data
to a database, invoking external actions (such as reading and writing files
and sending email), and controlling application file execution. Actions
form the basis of an application file in Witango Studio.

applet A small Java program that can be embedded in an HTML page. Applets
differ from full-fledged Java applications in that they are not allowed to
access certain resources on the local computer, such as files and serial
devices, and are prohibited from communicating with most other
computers across a network. The current rule is that an applet can only
make an Internet connection to the computer from which the applet was
sent.

application In the software industry, an application generally means a program for
end-users. In Witango, application has specific meanings depending on the
context. See also scope, Witango application and Witango application file.

application file See Witango application file.

ASCII American Standard Code for Information Interchange
This is the de facto world-wide standard for the code numbers used by
computers to represent all the upper- and lower-case Latin letters,
numbers, punctuation, and related data. There are 128 standard ASCII
codes each of which can be represented by a seven-digit binary number.

AST Application-Specific Witango
An AST is a Witango Server that you can distribute with a branded
Witango application. This gives an end-user the ability to execute your
solution without having to purchase a full Witango Server for that single

457

458

attribute

CGl

class

client

COM object

application. All files that are accessed this way must have an AST
signature. Other Witango application files can not be run with an AST.

In the context of an HTML window, an attribute is the Results HTML, No
Results HTML, or Error HTML. These windows allow you to enter
messages for the various outcomes.

In the context of meta tags, an attribute is a name/value pair that specifies
certain required or optional criteria.

Common Gateway Interface

A set of rules that describes how a Web server communicates with
another piece of software, often on the same machine, and how the
other piece of software (the “CGl program”) talks to the Web server.
Any piece of software can be a CGl program if it handles input and output
according to the CGl standard.

Usually a CGl program is a small program that takes data from a Web
server and does something with it, like putting the content of a form into
an e-mail message, or turning the data into a database query.

You can often see that a CGl program is being used when “cgi-bin”
appears in a URL.

The most common name of a directory on a Web server in which CGlI
programs are stored.

The “bin” part of “cgi-bin” is a shorthand for “binary”, because once
upon a time, most programs were referred to as “binaries”. In real life,
most programs found in cgi-bin directories are text files—scripts that are
executed by binaries located elsewhere on the same machine.

A category of objects defined by all the common properties of the
different objects that belong to that category.

A software program that is used to contact and get data from a server
software program on another computer, often across a network or the
Internet. Each client program is designed to work with one or more
specific kinds of server programs, and each server requires a specific kind
of client. A Web browser is a specific kind of client.

Component Object Model object
Objects that conform to the COM objects specifications developed by
Microsoft. COM objects can run only on the Windows platform. Witango

configuration
variables

cookie

data source

data type

DCOM object

Studio and Witango Server support the use of COM objects on
Windows.

Special values that control aspects of Witango behavior. System variables
affect system wide settings. They apply to all users of Witango Server.

The most common meaning of cookie on the Internet refers to a piece of
information sent by a Web server to a Web browser that the browser
software is expected to save and to send back to the Web server
whenever the Web browser makes additional requests from the Web
server.

Depending on the type of cookie used and the Web browser’s settings,
the Web browser may accept or not accept the cookie, and may save the
cookie for either a short time or a long time.

Cookies might contain login or registration information, on-line shopping
cart information, or user preferences.

When a Web server receives a request from a VWeb browser that
includes a cookie, the Web server is able to use the information stored in
the cookie. For example, the Web server might customize what is sent
back to the user, or keep a log of particular users’ requests.

Cookies are usually set to expire after a predetermined amount of time
and are usually saved in memory until the Web browser software is
closed down, at which time they may be saved to disk if their expire time
has not been reached.

An abstraction or description of the database that Witango Studio and
Witango Server are referencing.

In programming, a data type is a classification of data based on certain
characteristics. You normally do not have to be concerned with data
types when you develop Witango application files. However, you
encounter data types when you use objects because object vendors often
specify data requirements for using their object. Witango facilitates the
use of COM objects (Windows-only), JavaBeans, and Witango class files
with the same application file by converting the various data types to
Witango data types, whenever possible.

Distributed COM object
The DCOM environment deploys COM objects on machines other than

459

460

document
instance

DOM

domain name

DNS

the one running Witango Server. Witango supports the DCOM
environment on Windows.

An XML document represented using DOM. Once an XML document
has been converted to a document instance, you can manipulate the
document instance using Witango meta tags.

Document Object Model
A World Wide Web Consortium (W3C) standard for the manipulation
of structured data, including XML.

DOM, as the name implies, allows Witango developers to manipulate the
elements of a structured document (for example, XML) as if they were
objects. Developers can build document instances, navigate their
structure, and add, modify, or delete elements and content. DOM creates
a representation of an XML document that is an object tree, and gives
you the tools to create and manipulate the object tree in Witango using
Witango variables and meta tags.

The unique name that identifies an Internet site. Domain names always
have two or more parts separated by dots. The part on the left is the
most specific, and the part on the right is the most general. A given
machine may have more than one domain name, but a given domain name
points to only one machine. For example, the domain names

example.com
training.example.com
mail.example.com

can all refer to the same machine, but each domain name can refer to no
more than one machine.

Usually, all of the machines on a given network share the right-hand
portion of their domain names (example.com in the examples above). It
is also possible for a domain name to exist but not be connected to an
actual machine. This is often done so that a group or business can have an
Internet e-mail address without having to establish a real Internet site. In
these cases, some real Internet machine must handle the mail on behalf of
the listed domain name.

Domain Name Server
A machine on the Internet that converts (“resolves”) domain names to |P
address numbers.

DTD

firewall

FTP

gateway

hit

HTML

Document Type Definition

SGML and XML specifications require a DTD, which defines the structure
of the various elements that make up an XML document, and ensures
that all applications that read from and write to it do so in a consistent
way. It is, in effect, the schema of the document.

A combination of hardware and software that separates a LAN into two
or more parts for security purposes. See also proxy server.

File Transfer Protocol

A standard method for transferring files between machines or between a
client machine and a file server on the Internet. FTP allows a client
machine to log in to a server machine to send or retrieve files.

Within a Witango project, you can define an FTP site and deploy (upload)
files defined in your project to another computer while preserving the
hierarchy structure of your project files. You can also download files from
a remote site to replicate a project or share projects with other
developers.

A hardware or software setup that translates between two dissimilar
protocols. For example, Prodigy has a gateway that translates between its
internal, proprietary e-mail format and Internet e-mail format. Another
meaning of gateway is to describe any mechanism for providing access to
another system, for example, AOL might be called a gateway to the
Internet.

Each time a Web server sends a file to a Web browser, it is recorded in
the Web server log file as a hit. Hits are generated for every element of a
requested page (including graphics, text and interactive items). If a page
containing two graphics is viewed by a user, three hits are recorded (one
for the page itself and one for each graphic).

Hits are often used as a rough measure of load on a Web server, such as
300,000 hits per month. Because each hit can represent anything from a
request for a tiny document (or even a request for a missing document)
all the way to a request that requires some significant extra processing
(such as a complex search request), the actual load on a machine from
one hit is almost impossible to define.

HyperText Markup Language
The coding language used to create hypertext documents for use on the
World Wide Web. HTML looks a lot like old-fashioned typesetting code,

461

462

HTTP

HTTP header

HTTP method

HTTP request

HTTP response

HTTP result
code

where you surround a block of text with codes that indicate how it
should appear. Additionally, in HTML you can specify that a block of text,
or a word, is linked to another file on the Internet. HTML files are meant
to be viewed using a World Wide Web client program, such as Netscape
Navigator or Microsoft Internet Explorer.

HyperText Transfer Protocol

The protocol for moving hypertext files across the Internet. Requires a
HTTP client program on one end (Web browser), and an HT TP server
(VWeb server) program on the other end. HTTP is the most important
protocol used in the World Wide Web.

Header fields in HTTP requests and responses. A request header
contains information about the request and about the client itself (such as
e-mail address, Web browser type, and platform). A response header
contains information about the Web server and the HTML document
returned to the client. Headers can also contain cookies.

HTTP methods are used by Web browsers to request and submit
information on the World Wide Web (WWW). Web browsers request
information from a Web server when they want to display information
(such as pages). Web browsers can submit information as well. For
example, a visitor may fill out a form on a Web site and submit this
information to the Web server. Common methods include:

* GET, which is used to retrieve a page from a Web server
* HEAD, which is used to check whether a page has been changed

e POST, which is used to submit form data.

Sent by a client, typically a Web browser, to a Web server asking the Web
server to retrieve some unit of content (for example, HTML pages,
images, or files).

Sent by a Web server in response to a request by a client, typically a Web
browser. For example, a Web server may return HTML pages, images,
sound files or video files to a client.

HTTP result codes indicate whether a Web transaction is successful.
Transactions occur whenever visitors request information from a Web
server and the Web server returns this information. For example, a
typical transaction occurs when a visitor clicks on a link to access a Web
page and the Web server returns that page to the visitor.

intranet

IP address

ISDN

JAS

Java

Every transaction has a result code. If the transaction is successful, the
visitor never sees the result code. If there is an error, the visitor may see
the result code, however. A common result code seen by visitors is “404
Page Not Found”. HTTP success codes begin with 2 or 3, and error
codes begin with 4 or 5.

A private network inside a company or organization that uses the same
kinds of software that you would find on the public Internet, but that is
only for internal use.

As the Internet has become more popular many of the tools used on the
Internet are being used in private networks, for example, many
companies have Web servers that are available only to employees.

Internet Protocol Address

A unique number consisting of four parts separated by dots, such as
207.107.95.106. Each of the four sections is a number from 0 to 255.
Every system connected to the Internet has a unique IP address. Most
people use domain names in addition to IP addresses, and the resolution
between domain names and IP addresses is handled by Domain Name
Servers.

It is difficult to use IP addresses to accurately identify visitors. IP
addresses are reused and redistributed to visitors who use Internet
Server Providers and dial-up servers to access the Internet. This is called
dynamic IP addressing. However, visitors can be recognized persistently
with cookies even if they use different IP addresses.

Integrated Services Digital Network

A way to move more data over existing regular phone lines. It can provide
speeds of roughly 128,000 bits per second over regular phone lines. In
practice, most people will be limited to 56,000 or 64,000 bits per second.

Java Application Server

A JAS is an application that accepts requests from Witango to execute
Java class files, and returns the results of that execution back to Witango.
Witango comes with a JAS.

Java is a network-oriented programming language invented by Sun
Microsystems that is specifically designed for writing programs that can
be safely downloaded to your computer through the Internet and
immediately run without fear of viruses or other harm to your computer

463

464

JavaBean

Java class

JRE

JVM

link

Linux

load-splitting

or files. Using small Java programs (called applets), VWeb pages can include
functions such as animations, calculators, and other fancy tricks.

A component technology for Java that lets developers create reusable
software objects. These objects can be shared. A database vendor can
create a Java bean to support its software, and other developers can
easily drop the bean into their own projects. You can incorporate
JavaBeans in Witango application files on all platforms.

In Java, a type that defines the implementation of a particular kind of
object. A class definition defines instance and class variables and methods,
as well as specifying the interfaces the class implements and the
immediate superclass of the class. If the superclass is not explicitly
specified, the superclass will implicitly be Object.

Java Runtime Environment
A type of virtual machine, a JRE allows the running of Java classes or
JavaBeans. See also JVM and virtual machine.

Java Virtual Machine

An interface between the Java language and the hardware platform
processing the data. Once a specific platform has a JVM, it can run any
Java program. In Witango, a JVM is an environment where you can run
Java classes or JavaBeans. See also virtual machine.

Any text on a Web site that can be chosen by a visitor and which causes
another document to be retrieved and displayed. Also known as a “hot
link” or “hypertext link”.

A freely-distributed implementation of UNIX that runs on a number of
hardware platforms.

Windows- and Unix-only: Splitting a Web site amongst two or more
Witango servers in order to improve processing speed and performance
as the site’s size and traffic volume increase.

Witango is scalable; it allows you to do load-splitting without having to
alter your Witango application files. As your Web site grows, you do not
have to go through another cycle of development and testing of your
applications every time you add a Witango Server.

meta tag

method

MIME

object

object instance

ODBC

The basic component of a tag language unique to Witango Server. Meta
tags communicate with Witango Server in the same way that HTML
communicates with a Web server.

The interface of an object consists of one or more methods. A method
allows you to tell the object to input data, get data, or carry out any
other action.

Multipurpose Internet Mail Extensions

A standard for attaching non-text files to standard Internet mail
messages. Non-text files include graphics, spreadsheets, formatted word-
processor documents, sound files, and most other files.

An e-mail program is said to be MIME Compliant if it can both send and
receive files using the MIME standard.

Generally speaking, the MIME standard is a way of specifying both the
type of file being sent (for example, a Quicktime video file), and the
method that should be used to turn it back into its original form.

Besides e-mail software, the MIME standard is also universally used by
Web Servers to identify the files they are sending to Web clients. In this
way, new file formats can be accommodated simply by updating the Web
browsers’ list of pairs of MIME-types and appropriate software for
handling each type.

A reusable software component. Witango supports the use of objects in
Witango application files. The use of objects can simplify the development
process and reduce development time.

Witango supports different object types:
* COM objects (Windows-only)

* JavaBeans

* Witango class files.

When Witango Server executes a Call Method action in a Witango
application file, it creates an object instance (or simply, instance) for a
class—such as a COM object—as soon as it encounters a Call Method
action associated with that class.

Open Database Connectivity
A standard set by Microsoft that allows applications to communicate with
a variety of databases from different vendors. An ODBC client application

465

parameter

plug-in

port

proxy server

scope

search
argument

466

talks to the ODBC driver manager, which in turn talks to a database
driver for a specific type of database.

The basic data elements of a method. A parameter defines what the
object takes as input, output, or both. Each method consists of one or
more parameters.

A (usually small) piece of software that adds features to a larger piece of
software. A common example of a plug-in is for the Netscape Navigator
Web browser and Web server. The idea behind plug-ins is that a small
piece of software is loaded into memory by the larger program, adding a
new feature, and that users need only install the few plug-ins that they
need, out of a much larger pool of possibilities. Plug-ins are usually
created by people other than the publishers of the software the plug-in
works with.

In TCP/IP and networks, it is an endpoint to a logical connection. The
port number identifies what type of port it is. For example, port 80 is
generally used for HTTP traffic.

A server that sits between a client application, such as a Web browser
and a real server. It intercepts all requests to the real server to see if it
can fulfill the request itself. If not, it forwards the request to the real
server. Witango allows you to route files through a TIS (Trusted
Information Server) proxy server. See also firewall.

In Witango, a scope refers to a characteristic of variables that determines
where they are valid. The following scopes are available for variables in
Witango application files and Witango class files: local, user, cookie,
application, domain, system, and custom. In addition, the following scopes
are available for variables in Witango class files only: method and instance.
See Chapter 8 for details.

A search argument is the part of a URL used when a set of arguments are
sent to an executing program, such as a CGl, or Web server. Search
arguments are commonly used for forms and searches. The search
argument follows a question mark (?) in the URL and can be used to
track dynamic content or CGl variables being passed between client and
server.

For example, in this URL:

http://www.example.com/test.taf?function=form

security
certificate

server

server push

Server Watcher

SGML

the search argument is function=form.

Information (often stored as a text file) that is used by the SSL protocol
to establish a secure connection.

Security certificates contain information about who it belongs to, who it
was issued by, a unique serial number or other unique identification, valid
dates, and an encrypted fingerprint that can be used to verify the
contents of the certificate.

For an SSL connection to be created, both sides must have a valid
Security Certificate.

A computer, or a software package, that provides a specific kind of
service to client software running on other computers. The term can
refer to a particular piece of software, such as a Web server, or to the
machine on which the software is running. A single server machine could
have several different server software packages running on it, thus
providing many different servers to clients on the network.

A way to deliver information from a Web server to a Web browser. The
information is sent to the Web browser without a client request; for
example, a site that automatically updates a Web browser with the latest
news.

A watching process that works with Windows- and UNIX-based Witango
Servers to ensure that Witango is always running. While Witango
attempts to recover from a fatal error automatically, it does not always
succeed for various reasons. When this happens, the watching process
provides a simple and robust external process to relaunch Witango
automatically.

Standard Generalized Markup Language

The International Organization for Standardization (ISO) chose SGML as
the tool used to organize and tag elements (for example, titles, sections,
and paragraphs) of a document. SGML specifies the rules for tagging
elements, but not the formatting of documents. These tags can then be
interpreted to format elements in different ways.

SGML is useful for managing large documents that are subject to frequent
revisions and that need to be printed in different formats.

467

468

SMTP

Solaris

SQL

SSL

Witango
application

Witango
application file

Simple Mail Transfer Protocol

The main protocol used to send mail on the Internet. SMTP consists of a
set of rules for how a program sending mail and a program receiving mail
should interact.

Almost all Internet mail is sent and received by clients and servers using
SMTP, thus if one wanted to set up an e-mail server on the Internet one
would look for e-mail server software that supports SMTP.

A UNIX-based operating system developed by Sun Microsystems.
Originally developed to run on Sun’s SPARC workstations, Solaris now
runs on many workstations from other vendors.

Structured Query Language

A unified language for defining, querying, modifying and controlling the
data in a relational database. Most industrial-strength relational databases
and many smaller database applications are addressed using SQL. Each
specific application has its own version of SQL implementing features
unique to that application, but all SQL-capable databases support a
common subset of SQL.

Secure Sockets Layer
A protocol designed by Netscape to enable encrypted, authenticated
communications across the Internet.

SSL is used mostly (but not exclusively) in communications between Web
browsers and Web servers. URLs that begin with “https” indicate that an
SSL connection will be used.

SSL provides three important features: privacy, authentication, and
message integrity.

In an SSL connection each side of the connection must have a Security
Certificate, which each side’s software sends to the other. Each side then
encrypts what it sends using information from both its own and the other
side’s Certificate, ensuring that only the intended recipient can decrypt it,
and that the other side can be sure the data came from the place it claims
to have come from, and that the message has not been tampered with.

A group of Witango application files in a particular application folder that
can share variables in an application scope.

Witango application files are written using Witango Studio and are
composed of one or a series of actions that are executed by Witango

Witango CGI

Witango class
file

Witango client

Witango Server

TCP/IP

Unix

URL

Server. Each action’s reaction or response from a database, server,
external program, and so on, can be posted in HTML. When a Witango
application file is completed, the results are returned to the client.
Witango application files are sometimes called application files. They
generally have a . taf file extension.

The CGl that links Witango Server and your Web server. Not necessary
if you use one of the Web server plug-ins.

Reusable software components that you can incorporate in Witango
application files. You can create and edit Witango class files using Witango
Studio. Witango class files generally have a . tcf file extension.

The Witango client receives requests made by a Web browser, then
redirects the request to a specified Witango Server. This allows your
Witango configuration to perform load-splitting. The Witango client is
either a CGl or a plug-in, and is located on the Web server machine. See
also load-splitting.

Executes and serves up the application files by which clients can interact
with HTML pages to perform a variety of tasks; for example, querying the
data source.

Transmission Control Protocol/Internet Protocol

This is the suite of protocols that defines the Internet. Originally designed
for the UNIX operating system, TCP/IP software is now available for
every major kind of computer operating system. To be truly on the
Internet, your computer must have TCP/IP software.

A computer operating system (the basic software running on a computer,
underneath programs such as word processors and spreadsheets). Unix is
designed to be used by many people at the same time (it is multi-user)
and has TCP/IP built-in. It is the most common operating system for
servers on the Internet.

Uniform Resource Locator

The “address system” used by the World Wide Web (WWW). A URL is
the address of a piece of information stored on a Web server. This
information can include HTML pages, graphics, multimedia files, Java
classes, downloadable files or any other type of file you have stored.

For example, this URL:

469

470

virtual hosting

virtual machine

Web browser

Web server

Web Server
document root

Web site

XML

http://www.example.com/path/subdir/file.htm

specifies the resource file.htm located on the server
www.example.com.

With virtual hosting, one physical host is actually many virtual hosts. With
hardware virtual hosting, a single machine can act like multiple machines
(with multiple domain names and IP addresses). With software virtual
hosting, a single machine can act as multiple servers, but only use one IP
address.

A virtual machine acts as an interface between a code and
microprocessor. It is program that functions as a machine without having
any physical properties. The machine is an abstract, as opposed to a
physical, entity. A Java Virtual Machine (JVM) is an example of a virtual
machine.

A software program that can request, load and display documents
available on the World Wide Web. Web browsers are typically operated
by people, but can also be run by robots, such as Web crawlers and
intelligent agents.

A computer that stores the files comprising a Web site. It sends
information to, and accepts information from, Web browsers.

All files that are served on the Web server must be placed in the Web
Server document root. When the files are needed, the Web Server looks
in the root or its subfolders to access them. A Witango 2000 folder is
created inside the Web server document root when Witango is installed
on your machine.

The collection of elements (such as HTML files, images, video or audio
files) the comprise an entity on the Internet. A Web site is equivalent to a
Web domain. It is identified by its domain name, for example

www . example . com. One or more Web sites can run on a physical
machine under one Web server process.

Extensible Markup Language

XML is a text-based and widely-endorsed standard markup language,
similar to HTML, but much more flexible and robust. It is a subset of
SGML. Its goal is to enable generic SGML (that is, structured documents)
to be served, received, and processed on the Web in the way that is now

possible with HTML. XML has been designed for ease of implementation
and for interoperability with both SGML and HTML.

472

Index

Index

Symbols

@and /@ 167

¥ 147

absolutePathPrefix 327, 332, 337, 339, 343, |344, 345, 346
action

SEE ALSO Groupaction and builder
about 253, 254
adding 44, 257
assigning data source to 126, 140
attribute 44, 257
SEE ALSO results HTML, no results HTML, error HTML, and push
assigning 14, 50, 264
indicator icon 51, 265
copying 47, 260, 261
deleting 46, 259
dragging into SQL query text window 23
editing 46, 259
generated by builder 193, 233, 248
jumping to another
E E Branch action
moving 47, 260
multi-column list 18
naming and renaming 45, 258
nested 308, 316
organizing
E E Group action
properties 49, 132, 262
redirecting flow of
E E control action
repeating
E E loop action
setting development or deployment data source
action, name of
SEE ALSO THE NAMES OF THE SPECIFIC
ACTIONS
Assign 181, 255
Begin Transaction 254, 347
Branch 256, 300
Break 256, 320
Call Method 255, 370
conditional action 306

31

469

470

Index

control action 299
Create Object Instance 255, 369
database 279, 347
Delete 254, 297
Direct DBMS 254, 347
Else 255, 306
Else If 255, 306
End Transaction 254, 347
External 255, 323
File 255, 341
For Loop 255, 315
Group 255, 273
If 255, 306
Insert 254, 293
loop action 314
Mail 255, 333
Objects Loop 255, 410
Presentation 255
Results 255
Return 256, 321
Script 255, 323
Search 254, 280
transaction 347
Update 254, 295
While Loop 255, 315
ACTIONRESULT meta tag 177
actions bar 254, 256
alias
Oracle data source 139
and operator 286, 310
application file
SEE ALSO action, Group action, builder, and project
about I, 59
assigning AST signature to file 80
changed but not saved 61
creating 6l
debugging 50, 65, 264
dirty file indicator 61
dragging column into 20
inserting meta tag 172
run-only 63
saving 62
specifying URL of 64
window 43, 60, 257
XML format 59
ARG meta tag 173, 233, 248, 289
array
about 181
Assign action 182, 255
defining variable 181

Index

in Witango class file 421
ASSIGN meta tag 168, 18I
AST signature

for application file 80

for project 82, 85

overwriting 80, 83

valid characters 83
attribute, associated with action 14, 50, 264
attribute, associated with meta tag 168, 171
attribute, associated with object 392, 394, 403
automation server 375, 386
AVG function 282

beanpaths.ini 383, 388
Begin Transaction action 254, 347, 348
begins with operator 287, 288
BIND meta tag 356
Branch action 256, 300
destination rules 300
executing 302
in Witango class file 300, 420
selecting destination 304
setting up 303
to action group 276
to another application file 300, 302
Break action 256, 320
builder
SEE A LSO SearchBuilder and New Record Builder
about 191
adding to application file 192
behaving like action group 193
generating actions 195
naming 192
page format 155, 193
replacing existing actions 196
snippet 143
business logic 56, 271

C

cache
object information 395

CALC meta tag 312

Call Method action 255, 367, 370
adding 384, 402, 403
completing information for 404
nested method call 422

472

Index

object instance variable 405

parameter list 407

result variable 406

self-referencing in Witango class file 422

window, example of 405
CALLMETHOD meta tag 367, 370, 381, 412
CGIPARAM meta tag 176
class and object 368, 414
CLASSPATH environment variable 383, 388
COL meta tag 53, 267, 292

for non-ODBC data source 356
collection object 410, 412
column

SEE ALSDO Search action, Search Builder, Search page, Record List page, Record Detail

page, primary key, and join

custom 298

grouping 283

ordering 281, 283

properties 137

selecting 281, 282, 285

from multiple tables 359

snippet 143, 152
COLUMN meta tag 51, 53, 152, 168, 246, 265, 267, 292

for ODBC data source 356
COM object

about 368, 375

adding to workspace 385

automation server 375, 386

executing 382

initialization string 400

library 386, 392

licensing 376, 395

non-programmable 386

optional parameter 409

ProglD 394

referenced object 386

username and password 401

variant parameter 407
command, in menu 6

SEE ALSO menu
COMMIT command 348
Component Object Model

S E E COM object
component, Witango

S E E Witango component
conditional action 306

SEE ALSO If action, Else If action, and Else action

nested 308
configuration variable

snippet 143

Index

configuration variable, name of
absolutePathPrefix 327, 332, 337, 339, 343, 344, 345, 346
mailDefaultFrom 334
mailPort 338
mailServer 338
passThroughSwitch 128, 130, 134
stripChars 199
TCFSearchPath 383
contains operator 287, 288
context-sensitive menu 9
editing |11
for action 14, 49, 262
for action attribute 51, 264
for Branch action 304
project 72
showing Insert Meta Tag 169
control action 299
SEE ALSO conditional action, loop action, Branch action, Break action, and Return action
cookie
properties 185
setting up 185
cookie scope 184
COUNT function 282
Create Object Instance action 255, 366, 369
adding 384, 397
completing information for 398
initialization string 400
object instance variable 399
window, example of 398
CREATEOBJECT meta tag 366, 367, 369, 381, 394
CURRENTDATE meta tag 175
CURRENTTIME meta tag 175
CURRENTTIMESTAMP meta tag 175

D

data source
SEE A LSO development data source and deployment data source
about 111
assigning to action 126, 140
connecting 138
deleting 124
editing 136
handling unknown 125
icon 126
information stored in application file 139
logging on 127
modifying 123
properties 127, 135

473

474

Index

reloading 124
selecting column 20
selecting table 138, 155
types supported by Witango 112
using on different computers 139
workspace 20, 113, 135
data source, name of
SEE ALSO THE NAMES OF THE SPECIFIC
DATA SOURCES
JDBC 112
ODBC 112
Oracle 112
data type, of object
about 378
converting 378
in parameter list 407, 425
database
joining tables 347, 357
searching record and retrieving data 280
database action 279
SEE A LS O Searchaction, Insert action, Update action, Delete action, transaction action,
and column
advanced 347
commit 348, 351
rollback 348
database transaction
S E E transaction action
DCOM environment 376
debugging
application file 50, 65, 264
icon 66
Witango class file 433
default method, in Witango class file 419
Delete action 254, 297
executing 297
setting up 297
delete response HTML 228
dependencies
about 78, 85
referenced by application file 80
resolving 78
deploying Witango
via FTP 90
deployment data source 128
setting parameters for action 131
using meta tag 128, 130
development data source 127, 128
setting parameters for action 131
Direct DBMS action 254, 347, 352

Index

calling stored SQL procedure 356
executing 355
ODBC and non-ODBC sources 356
results HTML 356
setting result option 355
setting up 352
SQL encoding on meta tag value 354
using meta tags within 353
dirty file indicator 61
Distributed Component Object Model
S E E DCOM environment
DLL 326
calling with External action 323
document type definition
SEE DD
downloading via FTP 92
DTD 60
dynamic linked library
SEE DL

E
editing
commands 11|
file in project 77
finding and replacing 25, 77
indenting text 13
moving text |3
selecting text 12
selecting text editor 155
snippet
S E E snippet, editing
using context-sensitive menu |1
using tab character |1
window
SEE results HTML, no results HTML, and error HTML
word wrap |1
Else action 255, 306
Else If action 255, 306
setting up 309
e-mail address syntax 335
e-mail, sending from Witango
S E E Mail action
End Transaction action 254, 347
setting up 350
ending file processing
S E E Return action
ends with operator 287, 288
error HTML 14

475

Index

SEE ALSO error message, custom
associating with an action 50, 54, 264, 268
creating or editing 54, 268
using meta tag 54, 268
error message, custom 55, 269
ERROR meta tag 54, 268
ERRORS meta tag 54, 268
executing
application file, using plug-in and CGI application file
executing, using plug-in and CGl 64
Branch action 302
Delete action 297
Direct DBMS action 355
For Loop action 319
Group action 277
Insert action 294
JavaScript 323, 324
Script action 325
Search action 292
SQL statements 352
transaction action 35l
Update action 296
While Loop action 318
Witango class file 420
exiting loop
S E E Breakaction
expiry URL 401
Extensible Markup Language
S EE XML
External action 255, 323
assigning attribute 330
deleting parameter 331
enabling and disabling 332
error HTML 330
executing 331, 332
no results HTML 330, 331
results HTML 330, 331
setting up 326
command line 327
DLL call 326
Java 329

F

field properties
in New Record Builder 241
in Search Builder 206
file
reading, writing, and deleting
E E File action

Index

File action 255, 341, 342
adding 342
enabling and disabling 346
security 346
setting
for deleting 345
for reading 342
for writing 343
using meta tag 342
file transfer protocol
SEE FTIP
file, application
S E E application file
file, special
beanpaths.ini 383, 388
error.htx 55, 269
objects.ini 379
file, text or HTML
S EE textfie
file, under project
S E E project and presentation page
file, under source control
S E E source control
find and replace text or regular expression
S E E editing
folder, under project
S EE project
footer HTML
for New Record Builder 246
for Record Detail page 228
for Record List page 222
for Search page 213
For Loop action 255, 315, 317
executing 319

FTP
about 86
Passive Mode 87
proxy server 86
FTP site

about 86

adding to project 89
browsing with Web browser 95, 96
changing project default 90
defining 86, 88

deploying to 86, 90
downloading 86, 92
properties 87

sharing project 87
updating 88

uploading to

477

478

Index

S E E FTPsite, deploying to
function, name of
AVG, COUNT, MAX, MIN, SUM, and none 282

G

GETPARAM meta tag 431
getter method 392
greater than operator 287, 288, 310
greater than or equal to operator 287, 288, 3II
Group action 255, 274
adding action to group 275
adding group to application file 275
branching to 276
deleting group 276
executing 277
removing action from group 275
ungrouping actions 276

H

header HTML
for New Record Builder 246
for Record Detail page 228
for Record List page 222
for Search page 213

help, on-line 156

HTML
color-coding 11
editing window 9

HTML file
S EE textfie

HTTP

server
SEE Web server

If action 255, 306
parameter
logical operator 310
operator 310
setting up 309
specifying advanced parameters 311
specifying basic parameters 310
IF meta tag 168, 354
IFEMPTY meta tag 168, 354
IFEQUAL meta tag 168, 354

Index

include empty
optional parameter 409
search criteria 289
INCLUDE meta tag 169, 325
initialization string 400
Insert action 254, 293
executing 294
results returned 294
setting up 293
instance scope 421, 422
introspection of object 367
is empty operator 31l
is equal to operator 287, 288, 310
is in operator 287, 288
is not empty operator 3II
is not equal to operator 287, 288, 310
is not null operator 287, 288
is null operator 287, 288
item variable, Objects Loop action 412

J

Java 329
enabling and disabling 332
executing 331
Java action
configuring 329
Java class file
calling with External action 323
Java server 329
JavaBean
about 368, 376
adding to workspace 383, 387
executing 383
Java archive file 387, 388, 392
JavaScript 323
enabling and disabling 332
executing 324
object and variable scope 324
using meta tag 325
join
about 357
and data sources 359

creating 358
in Search action 359
in Search Builder 232, 362

deleting 361
editing 358, 361
standard and outer 347, 357

479

Index

join operator 360

K

keyboard shortcut 31

L

less than operator 287, 288, 31|

less than or equal to operator 287, 288, 31|

logical operator 286
SEE ALSO operator

loop action 314
SEE A LSO Forloop action, While Loop action, and Objects Loop action
nested 316

M

Mail action 255, 333
attaching file 337
enabling and disabling 339
setting up 334
specifying options 336
using meta tag 334, 337
mailDefaultFrom 334
mailPort 338
mailServer 338
MAX function 282
menu
SEE ALSO keyboard shortcut
Attributes 14
Edit 10
File 15
View 7, 18, 32
menu, context-sensitive
SEE context-sensitive menu
meta tag
about 167, 168
attribute 171
case sensitivity 168
category
action result item 176
current date/time value 175
form field or URL argument value 173
request parameter 176
variable value 174
color-coding 11
combining with other meta tags 170

480

Index

in data source 134
in deployment data source 130
in error HTML 54, 268
in External action 330
in JavaScript 325
in no results HTML 53, 267
in results HTML 51, 53, 265, 267
inserting 130, 172
using with Direct DBMS action 353
where to use 169
meta tag, name of
ACTIONRESULT 177
ARG 173, 233, 248, 289
ASSIGN 168, 181
BIND 356
CALC 312
CALLMETHOD 367, 370, 381, 412
CGIPARAM 176
COL 53, 267, 292, 356
COLUMN 51, 53, 152, 168, 246, 265, 267, 292, 356
CREATEOBJECT 366, 367, 369, 381, 394
CURRENTDATE 175
CURRENTTIME 175
CURRENTTIMESTAMP 175
ERROR 54, 268
ERRORS 54, 268
GETPARAM 431
IF 168, 354
IFEMPTY 168, 354
IFEQUAL 168, 354
INCLUDE 169, 325
POSTARG 168, 173
PURGE 369, 399
ROWS 53, 168, 267, 292, 356
SCRIPT 324, 325
SEARCHARG 173
SETPARAM 421, 43|
TOTALROWS 292

VAR 174

method
SEE A LS O objectand Call Method action
about 367

actions included 420

default and user-created 419

defining and editing 423, 428, 429, 430
getter 392

list of, in Witango class file 419
on_create 419

on_destroy 419

parameter

Index

SEE parameter, in method
properties 432
renaming 428
return value 424, 430
setter 393
method definition window 418, 423, 424
method scope 421
this, in Witango class file 422
MIN function 282
multi-column list 18

N

naming
action 45, 258
builder 192

nested action
Call Method 422
conditional 308
loop 316
New Record Builder 59, 256
SEE ALSO buider
about 191, 237, 238, 240
adding to application file 240
customizing messages 246
formatting new record entry form 245
generating actions 248
including HTML snippet 250
relationship to Web browser 238
specifying columns 240
new record entry form 237, 238
SEE ALSO NewRecordBuilder
new record response HTML
for New Record Builder 246
no results HTML 14
associating with an action 50, 53, 264, 267
creating or editing 53, 267
Search action 292
Search page 213
using meta tag 53, 267

o

object
SEE A LS O method, Create Object Instance action, Call Method action, and workspace,
objects
about 366, 369, 375, 414
adding to workspace 384, 385
as black box 366

482

Index

attributes folder 392, 403

benefits of using 374

caching information 395

collection object 410, 412

example of using 371, 372

expiry URL 401

general requirements 377

installing 382

introspection 367

method

S EE method
object instance
E E objectinstance

properties 393

refreshing 395

removing from workspace 390

security 379

steps in using 384

thread safety 394

types supported in Witango 375

when to use 374
object instance

about 366, 368

availabilty 370

creating 369
object instance variable

for Call Method action 405

for Create Object Instance action 399

for self-referencing 422
Objects Loop action 255

about 410

collection object 412

item variable 412

using 411
objects.ini 379
ODBC data source

about 112

creating |16

information in application file 139
on_create method, in Witango class file 419
on_destroy method, in Witango class file 419
operator 287, 288

SEE A LS O logial operator and join operator
operator, name of

and 310

begins with 287, 288

contains 287, 288

ends with 287, 288

greater than 287, 288, 310

greater than or equal to 287, 288, 31|

483

Index

is empty 3II
is equal to 287, 288, 310
is in 287, 288
is not empty 3II
is not equal to 287, 288, 310
is not null 287, 288
is null 287, 288
less than 287, 288, 311
less than or equal to 287, 288, 3II
or 310
option, in using Witango Studio
S E E Witango Studio, setting preference
optional parameter 409
or operator 286, 310
Oracle data source
about 112
alias 139
creating 122
information in application file 139

P

parameter, in method

about 367, 368

adding, deleting, and editing 430, 431

data type 407, 425

getting and setting value 43I

input and output 392, 407, 424

list of

for Witango class file 424
in Call Method action window 407

optional 409

variable and value 408

variant 407
passThroughSwitch 128, 130, 134
PASV-FTP

S E E FTP, Passive Mode
POSTARG meta tag 168, 173
preference, in using Witango Studio

S E E Witango Studio, setting preference
Presentation action 255

about 57, 271

setting up 57, 272
presentation logic 56, 271
presentation page

about 57, 80, 271

adding file 80

in Presentation action 57, 272

removing file 82

484

Index

primary key
about 15
using to create new record 246
project
SEE A LS O workspace, project
about 69
adding
file 75
folder 74
FTP site 89
AST signature 82, 85
closing 76
context-sensitive menu 72
creating new 72
dependencies
S E E dependencies
deploying and downloading via FTP
E E FTPand FTP site
editing file 77
file type supported 75
find and replace text 77
opening 76
under source control 102
path name 71
project file 71
removing file or folder 76
renaming folder 75
workspace 32
properties
action 49, 132, 262
application file 79
column 137
cookie 185
data source 127, 135
file 8I
method 432
object 393
project FTP sites 82, 87
project root 84
snippet 149
snippet folder 149
table 137
window 9
proxy server, FTP 86
PURGE meta tag 369, 399
push
associating with an action 50, 55, 264, 269
disabled in Wltango class file 421

485

Index

R

record
adding to a table 293
deleting 225
modifying 295
removing 297
updating 224
Record Detail page
about 201, 223
customizing messages 228
formatting Record Detail Web page 227
record maintenance 225
relationship to Web browser 202
specifying columns 223
record detail Web page 199, 202
SEE ALS O RecordDetail page
Record List page
about 201, 215
customizing header HTML and footer HTML 222
formatting record list Web page 221
relationship to Web browser 202
specifying columns 215
specifying number of matches 219
record list Web page 199, 202
SEE ALSO Record List page
referenced object 386
regular expression 26, 27, 28
SEE ALSO edng
renaming
action 45, 258
method, in Witango class file 428
snippet 148
result
returned by Insert action 294
returned by Update action 296
returning to Web browser 55, 269
sorting 281, 283
Results action 255
SEE ALSO results HTML and no results HTML
adding HTML 56, 270
results HTML 14
associating with an action 50, 51, 264, 265
creating or editing 51, 265
Direct DBMS action 356
in Witango class file 420
Search action 292
using meta tag 51, 53, 265, 267
resultSet
for Mail action 338

Index

in External action 331

in File action 343, 344

in Script action 325
retrieving data

S E E Search action
Return action 256, 321
ROLLBACK command 348
row

S EE record
ROWS meta tag 53, 168, 267, 292, 356
run-only file, creating

application file 63

Witango class file 426

S

scope
SEE ALS O variable
about 181
for JavaScript 324
scope, name of
SEE ALSO THE NAMES OF THE SPECIFIC
SCOPES
instance 421
method 421
Script action 255, 323, 324
executing 325
setting up 324
SCRIPT meta tag 324, 325
Search action 254, 280
SEE ALSO columnandjoin
creating join 359
criteria
about 285
column 286
grouping 283
include empty 289
logical operator 286
operator 287
quote value 290
separator 287
value 289
executing 292
joining tables 359
no results HTML 292
result returning option 291
results HTML 292
search type 280
normal 28I
summaries of groups 282

487

Index

summary of all rows 284
using multiple tables
S EE join
Search Builder 59, 256
SEE A LS O builder Search page, Record List page, and Record Detail page
about 191, 197, 198
adding to application file 204
creating join 232, 362
generating actions 233
including HTML snippet 235
relationship to Web browser 202
using multiple tables
S EE join
using simplified steps 231
using standard steps 202
search form 198, 202
SEE ALSO Searchpage
Search page
about 201, 204
customizing messages 213
formatting search form 212
relationship to Web browser 202
specifying columns 204
SEARCHARG meta tag 173
security
in File action 346
object 379
self-referencing, in Witango class file 422
server, HTTP
S EE Webserver
SETPARAM meta tag 421, 431
setter method 393
simple mail transfer protocol

SEE sMTP
SMTP 333
SMTP server 338
snippet

about 41, 142
copying, deleting, duplicating, and moving 149

creating
folder 148
snippet 145

editable and non-editable 145
editing 145, 147

for New Record Builder 250
for Search Builder 235
inserting 144

organizing 148

placeholder or yen symbol 147
properties 149

488

renaming 148
workspace 142
snippet, name of folder
builder snippets 143, 145
column snippets 143, 145, 149, 152
configuration variables 143, 145, 149
my snippets 143, 145, 148, 149
standard snippets 143, 145, 149
source control
about 69, 97
adding file 100
checking in file 105
checking out file 104
getting latest file version 102
in project workspace 99
launching from Witango Studio 108

menu 97

opening
application file 109
project 102

refreshing file status 108
removing file from 101
undoing checked out file 107
SQL
calling stored procedure 356
SQL keyword
SEE A LSO operatorand function
COMMIT 348
DISTINCT 292
HAVING 283
ROLLBACK 348
SQL query
executing 352
performing 24
setting up 21
using meta tag 354
window 20
string, find and replace 25
studio, Witango
S E E Witango Studio
SUM function 282

T

tab, in editing text
S EE editing

table
SEE ALSO join
adding records to 293

Index

489

490

Index

filtering 139
modifying record in 295
page format used in builder 193
properties 137
removing record from 297
selecting from data source 138
setting primary key 115
TCF
S E E Witango class file
TCFSearchPath 383
text file
creating |5
font, size, and color option 157
opening and saving 16
text, editing
S E E editing
TIS (Trusted Information Server) proxy server 86
TOTALROWS meta tag 292
transaction action 347
SEE ALSDO Begin Transaction action, End Transaction action, and database action
commit and rollback 350
executing 351
impact on database connection 348

U

Update action 254, 295
executing 296
results returned by 296
setting up 295
update response HTML 228
uploading to FTP site
S E E FTPsite, deploying to
user-created method, in Witango class file 419

A\

value
of operator 288
search criteria 289
VAR meta tag 174

variable
SEE A LSO scope array, and configuration variable
about 181
adding variable assignment 183
assigning 182

deleting variable assignment 183
editing assignment 182
moving variable assignment 183

Index

selecting variable assignment 183

w

While Loop action 255, 315, 316
executing 318
pitfalls to avoid 316
window
application file 60
component 6
HTML editing 9
method definition 418, 424
properties 9
SQL query 20
Witango class file 418
Witango
about |
Witango builder
S E E builder
Witango application file
S E E application file
Wiltango application server
S E E Witango Server
Witango class file 59
SEE ALSO application file, method, and parameter, in method
about 368, 376, 414
adding to workspace 388
Assign action 421
benefits of using 415
Branch action 420
creating 426
debugging 433
developing 418
differences from application file 420
editing 427
error handling 421
executing 383, 420
list of actions 420
list of instance variables 422
push attribute disabled 421
recursion 421
results HTML 420
scope 421
setting search path 161, 383, 434
steps in using 417
when to use 416
window 418
Witango component
SEE A LSO Witango Studio,Witango Server, Witango CGl, and Witango plug-in

492

Index

Witango Server
about |

Witango Studio
about |

setting preference 153, 154

builder page format
on-line help 156

155

selecting table from data source 155

selecting text editor
text font. size, and co
window component 6
word wrap |1, 18
workspace
about 7
cycling 32
data sources 113, 135
floating and docking 8
objects
adding 384, 385
COM object 385
example of 391
JavaBean 387
removing 390
viewing information

155
lor 157

391

Witango class file 388

project 32, 70
FTP sites 86
moving file or folder
opening file 71

72

presentation pages 80

under source control
snippets 142

XML
SEE ALSO
about 59
DTD 60
folder 60
format 59
advantages 59

99

Document Object Model and document instance

	Witango Studio 5.5 User Guide
	Table of Contents

	Introduction
	Using Witango Studio
	Witango Studio Basics
	Witango Studio Window Components
	Viewing Interface Components
	Floating and Docking Interface Components
	Floating and Docking the Workspace Window
	Using Context- Sensitive Menus
	Properties Window
	HTML Editing Window
	Working With Multi-column Lists
	The SQL Query Window
	Finding and Replacing Text
	Keyboard Shortcuts
	Witango Actions
	The HTML Toolbar
	Working With Actions
	Adding an Action
	Naming an Action
	Deleting an Action
	Editing an Action
	Moving an Action
	Copying an Action
	Context- Sensitive Action Menu
	Action Properties
	Assigning Attributes to Actions
	Adding HTML (Results Action)
	Presentation Action

	Using Witango Application Files
	XML Format
	Application File Window
	Unsaved Changes Indicator
	Creating an Application File
	Saving an Application File
	Saving a Witango Application File or Witango Class File as Run- Only
	Executing Application Files

	Debugging Files
	Turning Debug On
	Viewing Debug

	Using Projects and Source Control
	Basics of Witango Projects
	Understanding the Project File
	Using the Project Workspace
	Creating a New Project
	Adding a Folder to a Project
	Adding Files to a Project
	Removing Files and Folders From a Project
	Opening and Closing a Project
	Editing HTML and Text Files

	Additional Features of Witango Projects
	Working With Project Dependencies
	Working With Application Files
	Working With Presentation Pages
	Working With Project Data Sources
	Working With Project Objects
	Working With Project FTP Sites
	Application- Specific Witango (AST) Signatures for Projects
	Project Root Properties

	Deploying and Downloading Witango Projects via FTP
	FTP Using a TIS Proxy Server
	Passive Mode FTP
	Deploying and Downloading Projects
	Defining an FTP Site
	Adding an FTP Site to Your Project
	Deploying Files or Folders
	Downloading From Remote Sites
	Browsing a Project’s FTP Site with a Web Browser

	Using Source Control in Witango
	Adding Projects to Source Control
	Adding Files to Source Control
	Removing Files From Source Control
	Opening a Witango Project Already Under Source Control
	Getting the Latest Version of Files
	Checking Out Files
	Checking In Files
	Undoing Checked Out Files
	Refreshing File Status
	Launching Your Source Control System
	Modifying a File Under Source Control

	Using Data Sources
	About Data Sources
	The Data Sources Workspace
	Using Primary Key Columns
	Data Source Operations
	Creating a Data Source
	Modifying a Data Source
	Deleting a Data Source
	Reloading a Data Source
	Handling Unknown Data Sources

	Assigning Data Sources to Actions
	Setting Up Deployment Data Sources
	Setting Deployment Data Source Properties
	Meta Tags and Deployment Data Sources

	Setting Data Sources for Actions
	Using the Data Source Selection Dialog Box
	Using the Action Properties Dialog Box

	Disabling the Use of Meta Tags in Data Sources
	Working With Data Source Properties
	Data Source Properties
	Table Properties
	Column Properties

	Connecting to Data Sources
	Connecting to Large Data Sources
	Editing and Executing Files on Different Computers

	Using Snippets
	About Snippets
	The Snippets Workspace

	Working With Snippets
	Inserting Snippets
	Creating and Editing Snippets
	Managing Snippets and Snippets Folders
	Copying, Moving, and Deleting Snippets
	Searching Snippets

	Column Snippets

	Setting Preferences
	Using the Preferences Dialog Box
	Selecting Options
	General
	Text
	Source Control
	Objects
	Compile

	Witango Building Blocks
	Working with Meta Tags
	About Meta Tags
	Where You Can Use Meta Tags
	Combining Meta Tags
	Quoting Attribute Values
	Inserting Meta Tags
	Meta Tags with Help

	Working With Variables
	Assigning Variables With the Assign Action
	Editing Variable Assignments

	Shortcuts to Configuration Variable Assignments: Snippets

	Witango Builders
	Building Actions Using Witango Builders
	Adding a Builder to an Application File
	Page Format Table Settings

	Building the Actions

	Configuring the Search Builder
	About the Search Builder
	What Users See in Their Web Browser
	How You Create These Web Pages
	Main Steps to Use the Search Builder

	Setting Search Options
	Search Columns List
	Column Options
	Fixed Value
	Summary: Setting Column Options

	Formatting the Search Form
	Customizing Your Search Form and Response Messages
	Header, Footer, and No Results HTML
	Changing Button Titles

	Setting Record List Options
	Display Columns
	Order By
	Column Options
	Maximum Matches

	Formatting the Record List Web Page
	Customizing Your Record List Web Page
	Header and Footer HTML

	Setting Record Detail Options
	Display Columns
	Column Options
	Record Maintenance Options

	Formatting the Record Detail Web Page
	Customizing Your Record Detail Web Page and Response Messages
	Header, Footer, Update Response, and Delete Response HTML
	Button Titles

	Simplified Steps to Use the Search Builder
	Defining Joins
	Actions Built by the Search Builder
	HTML Snippets

	Configuring the New Record Builder
	About the New Record Builder
	Main Steps to Use the New Record Builder

	Setting New Record Options
	Summary: Setting Column Options

	Formatting the New Record Entry Form
	Customizing Your Form and Response Messages
	Header, Footer, and New Record Response HTML
	Changing Button Titles
	Actions Built by the New Record Builder
	HTML Snippets

	Witango Actions
	Using Actions
	About Actions
	Working With Actions
	Adding an Action
	Naming an Action
	Deleting an Action
	Editing an Action
	Moving an Action
	Copying an Action
	Context- Sensitive Action Menu
	Action Properties

	Assigning Attributes to Actions
	Results HTML
	No Results HTML
	Error HTML
	Push
	Debug File

	Adding HTML (Results Action)
	Presentation Action
	Uses of the Presentation Action
	How the Presentation Action Works
	Setting Up a Presentation Action

	Grouping Actions
	About Grouped Actions
	Working With Action Groups
	Adding an Action Group
	Adding an Action to a Group
	Removing an Action From a Group
	Ungrouping Actions
	Deleting an Action Group
	Effects of Editing an Action Group
	Branching to an Action Group

	Executing Grouped Actions

	Using Basic Database Actions
	Searching a Database
	Setting Up a Search Action
	Executing a Search Action

	Adding Records to a Database
	Setting Up an Insert Action
	Executing an Insert Action

	Modifying a Database Record
	Setting Up an Update Action
	Executing an Update Action

	Removing a Database Record
	Setting Up a Delete Action
	Executing a Delete Action

	Adding Custom Columns to Database Actions

	Using Control Actions
	Jumping to a Designated Action (Branch Action)
	Branch Action Destination Rules
	Executing a Branch Action
	Branch and Return
	Setting Up a Branch Action
	Branch Action Destination Navigation

	Deciding Course of Actions (Conditional Actions)
	Example: Sports Fan Web Site
	General Forms of Conditional Actions
	Nested Conditional Actions
	Performing Operations on Conditional Actions
	Setting Up Conditional Actions

	Repeating a Set of Actions (Loop Actions)
	Example: Music Store
	General Forms of Loop Actions
	Nested Loop Actions
	Setting Up Loop Actions
	Executing Loop Actions
	Performing Operations on Loop Actions

	Exiting a Loop (Break Action)
	Ending File Processing (Return Action)

	Extending Witango Functionality
	Executing JavaScript
	Setting Up a Script Action
	Executing a Script Action

	Using an External Action
	Setting Up an External Action
	Configuring a DLL Call
	Using a Command Line
	Configuring a Java Action
	Assigning Attributes
	Deleting Parameters
	Executing an External Action

	Disabling JavaScript, Java and External Actions

	Sending Electronic Mail From Witango
	Setting Up a Mail Action
	General Tab
	Options Tab
	Attachments Tab

	Disabling Mail

	Reading, Writing, and Deleting Files
	Setting Up a File Action
	Setting Up Read Options
	Setting Up Write Options
	Setting Up Delete Options

	Handling File Security

	Using Advanced Database Actions
	Using Database Transactions
	Setting Up a Transaction Action
	Executing a Transaction Action

	Using SQL Directly
	Setting Up a Direct DBMS Action
	The Direct DBMS Action Editing Window
	Executing a Direct DBMS Action

	Joining Database Tables
	Working With Joins
	Creating a Join in a Search Action
	Inserting a Join
	Editing a Join
	Deleting a Join
	Creating a Join in the Search Builder

	Witango and Objects
	Understanding Objects in Witango
	What are Objects?
	Objects as Black Boxes
	Object Interface: Methods
	Method Elements: Parameters
	Class, Object, and Object Instance
	Creating Object Instances
	Using Available Object Instances
	Calling Methods
	Example�1: Investment Scenarios
	Example�2: More Investment Scenarios

	Benefits of Using Objects in Witango
	When to Use Objects

	Object Types Supported in Witango
	Object Type Independence
	COM Objects
	JavaBeans
	Witango Class Files
	General Requirements

	Understanding Data Types
	Setting up Security for Executing Objects

	Using Objects
	Preparing to Use Objects in Witango
	Planning to Use an Object
	Installing an Object

	Overview of Using Objects in Witango
	Adding an Object to the Objects Workspace
	COM Objects in the Objects Workspace
	JavaBeans in the Objects Workspace
	Witango Class Files in the Objects Workspace

	Removing an Object From the Objects Workspace
	Viewing Object Information in the Objects Workspace
	Attributes Folder
	Object Properties
	Caching and Refreshing of Object Information

	Adding a Create Object Instance Action
	Shortcut to Adding a Create Object Instance Action

	Completing the Create Object Instance Action
	Object Name
	Object Instance Variable
	Instance
	Expiry URL

	Adding a Call Method Action
	Shortcut to Adding a Call Method Action

	Completing the Call Method Action
	Object/Method Name
	Object Instance Variable
	Result Variable
	Parameter List

	Using the Objects Loop Action
	Example of Using an Objects Loop
	Using an Objects Loop

	Witango Class Files
	What are Witango Class Files?
	Benefits of Using Witango Class Files
	When to Develop and Use Witango Class Files

	Using Witango Class Files
	Developing Witango Class Files
	Method List Pane
	Method Editing Pane
	Instance Variables List Pane
	Method Definition Window

	Creating a Witango Class File
	Editing a Witango Class File
	Adding a New Method
	Renaming a Method
	Deleting a Method
	Copying a Method
	Modifying a Method
	Setting Return Values and Parameters
	Method Properties

	Debugging Methods
	Setting Search Paths for Witango Class Files
	Witango Studio
	Witango Server

	Witango Compiler
	Compiling Witango Application Files
	The Compilation Process
	Syntax Checking
	Creating a Syntax Check Report
	Filtering the Syntax Check Report
	Understanding a Syntax Check Report
	Correcting Issues located in a Syntax Check Report
	Rechecking the Syntax
	Printing a Syntax Report

	Compiling you Witango Application
	Executing a compile for J2EE

	Cleaning after a compile

	Glossary of Terms
	Index

