
Witango Studio 5.5 User Guide

OS X

August 2003

With Enterprise Pty Ltd

Level 1,

44 Miller Street,

North Sydney, NSW, 2060

Australia

Telephone:+612 9460 0500

Fax:+612 9460 0502

Email:info@witango.com

Web: www.witango.com

http://www.witango.com

Table of Contents
Table of Contents
1 Table of Contents . 1

Introduction 1
Using Witango Studio 3

2 Witango Studio Basics . 5
Witango Studio Interface Components . 6

Viewing Interface Components . 7
Contextual Menus . 7
Properties Window . 8
HTML Editing Window . 9
<@INCLUDE> in HTML Editing Windows . 16
Working With Multi-column Lists . 19
The SQL Query Window . 22
Finding and Replacing Text . 27
Keyboard Shortcuts . 34
Windows Menu Shortcuts . 34
Expanding and Collapsing Parent Objects . 35
Witango Actions . 36
Working With Actions . 39
Adding an Action . 40
Naming an Action . 41
Deleting an Action . 42
Editing an Action . 42
Moving an Action . 43
Copying an Action . 43
Contextual Action Menu . 45
Action Properties . 45
Assigning Attributes to Actions . 46
Adding HTML (Results Action) . 52
Presentation Action . 52

Using Witango Application Files . 55

XML Format . 55
Application File Window . 56
Creating an Application File . 57
Saving an Application File . 58
Saving a Witango Application File or Witango Class File as Run-Only . . 59
Executing Application Files . 60

Debugging Files . 61

Turning Debug On . 61
11

Table of Contents

2

Viewing Debug . 62

3 Using Projects and Source Control 65
Basics of Witango Projects . 66

Understanding the Project File . 67
Using the Project Workspace . 67
Creating a New Project . 68
Adding a Folder to a Project . 70
Adding Files to a Project . 71
Removing Files and Folders From a Project . 72
Opening and Closing a Project . 72
Editing HTML and Text Files . 73

Additional Features of Witango Projects . 74

Working With Project Dependencies . 74
Working With Application Files . 75
Working With Presentation Pages . 77
Working With Project Data Sources . 78
Working With Project Objects . 79
Working With Project FTP Sites . 79
Application-Specific Witango (AST) Signatures for Projects 79
Project Root Properties . 81

4 Using Data Sources . 83
About Data Sources . 84

The Data Sources Workspace . 85

Using Primary Key Columns . 87

Data Source Operations . 88

Creating a Data Source . 88
Modifying a Data Source . 98
Deleting a Data Source . 99
Reloading a Data Source . 99
Handling Unknown Data Sources . 100

Assigning Data Sources to Actions . 101

Setting Up Deployment Data Sources . 103

Setting Deployment Data Source Properties . 103
Meta Tags and Deployment Data Sources . 105

Setting Data Sources for Actions . 106

Using the Data Source Selection Dialog Box . 106
Using the Action Properties Dialog Box . 107

Disabling the Use of Meta Tags in Data Sources . 109

Working With Data Source Properties . 110
2

Table of Contents
Data Source Properties . 110
Table Properties . 112
Column Properties . 112

Connecting to Data Sources . 113

Connecting to Large Data Sources . 113
Editing and Executing Files on Different Computers 114

5 Using Snippets . 117
About Snippets . 118

The Snippets Workspace . 118

Working With Snippets . 120

Inserting Snippets . 120
Creating and Editing Snippets . 121
Managing Snippets and Snippets Folders . 124
Copying, Moving, and Deleting Snippets . 126

Column Snippets . 128

6 Setting Preferences . 129
Using the Preferences Dialog Box . 130

Selecting Options . 131

General . 131
Text . 133
Objects . 137
Compile . 138

Witango Building Blocks 141

7 Working with Meta Tags . 143
About Meta Tags . 144

Where You Can Use Meta Tags . 145

Combining Meta Tags . 146

Quoting Attribute Values . 147

Inserting Meta Tags . 148

8 Working With Variables . 155
Assigning Variables With the Assign Action . 156

Editing Variable Assignments . 156

Shortcuts to Configuration Variable Assignments: Snippets 160

Witango Builders 163
33

Table of Contents

4

9 Building Actions Using Witango Builders 165
Adding a Builder to an Application File . 166

Page Format Table Settings . 167

Building the Actions . 169

10 Configuring the Search Builder 171
About the Search Builder . 172

What Users See in Their Web Browser . 172
How You Create These Web Pages . 174
Main Steps to Use the Search Builder . 176

Setting Search Options . 178

Search Columns List . 178
Column Options . 179
Fixed Value . 184
Summary: Setting Column Options . 185

Formatting the Search Form . 186

Customizing Your Search Form and Response Messages 187

Header, Footer, and No Results HTML . 187
Changing Button Titles . 188

Setting Record List Options . 189

Display Columns . 189
Order By . 190
Column Options . 190
Maximum Matches . 193

Formatting the Record List Web Page . 195

Customizing Your Record List Web Page . 196

Header and Footer HTML . 196

Setting Record Detail Options . 197

Display Columns . 197
Column Options . 198
Record Maintenance Options . 200

Formatting the Record Detail Web Page . 201

Customizing Your Record Detail Web Page and Response Messages 202

Header, Footer, Update Response, and Delete Response HTML 202
Button Titles . 203

Simplified Steps to Use the Search Builder . 204

Defining Joins . 205

Actions Built by the Search Builder . 206

HTML Snippets . 208
4

Table of Contents
11 Configuring the New Record Builder 209
About the New Record Builder . 210

Main Steps to Use the New Record Builder . 211

Setting New Record Options . 212

Summary: Setting Column Options . 216

Formatting the New Record Entry Form . 217

Customizing Your Form and Response Messages . 218

Header, Footer, and New Record Response HTML 218
Changing Button Titles . 219
Actions Built by the New Record Builder . 220
HTML Snippets . 222

Witango Actions 223

12 Using Actions . 225
About Actions . 226

Working With Actions . 229

Adding an Action . 229
Naming an Action . 230
Deleting an Action . 231
Editing an Action . 232
Moving an Action . 232
Copying an Action . 232
Context-Sensitive Action Menu . 234
Action Properties . 234

Assigning Attributes to Actions . 236

Results HTML . 237
No Results HTML . 239
Error HTML . 240
Push . 241
Debug File . 241

Adding HTML (Results Action) . 242

Presentation Action . 243

Uses of the Presentation Action . 243
How the Presentation Action Works . 243
Setting Up a Presentation Action . 244

13 Grouping Actions . 245
About Grouped Actions . 246

Working With Action Groups . 247

Adding an Action Group . 247
55

Table of Contents

6

Adding an Action to a Group . 247
Removing an Action From a Group . 247
Ungrouping Actions . 248
Deleting an Action Group . 248
Effects of Editing an Action Group . 248
Branching to an Action Group . 248

Executing Grouped Actions . 249

14 Using Basic Database Actions 251
Searching a Database . 252

Setting Up a Search Action . 252
Executing a Search Action . 264

Adding Records to a Database . 266

Setting Up an Insert Action . 266
Executing an Insert Action . 267

Modifying a Database Record . 268

Setting Up an Update Action . 268
Executing an Update Action . 269

Removing a Database Record . 270

Setting Up a Delete Action . 270
Executing a Delete Action . 271

Adding Custom Columns to Database Actions . 272

15 Using Control Actions . 273
Jumping to a Designated Action (Branch Action) . 274

Branch Action Destination Rules . 274
Executing a Branch Action . 276
Branch and Return . 276
Setting Up a Branch Action . 277
Branch Action Destination Navigation . 278

Deciding Course of Actions (Conditional Actions) . 280

Example: Sports Fan Web Site . 280
General Forms of Conditional Actions . 280
Nested Conditional Actions . 282
Performing Operations on Conditional Actions 282
Setting Up Conditional Actions . 283

Repeating a Set of Actions (Loop Actions) . 288

Example: Music Store . 288
General
Forms of
Loop Actions . 288
6

Table of Contents
Nested Loop Actions . 290
Setting Up Loop Actions . 290
Executing Loop Actions . 292
Performing Operations on Loop Actions . 293

Exiting a Loop (Break Action) . 294

Ending File Processing (Return Action) . 295

16 Extending Witango Functionality 297
Executing JavaScript . 298

Setting Up a Script Action . 298
Executing a Script Action . 299

Using an External Action . 301

Setting Up an External Action . 301
Configuring a DLL Call . 301
Using a Command Line . 302
Configuring a Java Action . 304
Assigning Attributes . 305
Deleting Parameters . 306
Executing an External Action . 306

Disabling JavaScript, Java and External Actions . 308

17 Sending Electronic Mail From Witango 309
Setting Up a Mail Action . 310

General Tab . 310
Options Tab . 312
Attachments Tab . 313

Disabling Mail . 315

18 Reading, Writing, and Deleting Files 317
Setting Up a File Action . 318

Setting Up Read Options . 319
Setting Up Write Options . 319
Setting Up Delete Options . 321

Handling File Security . 323

19 Using Advanced Database Actions 325
Using Database Transactions . 326

Setting Up a Transaction Action . 326
Executing a Transaction Action . 329

Using SQL Directly . 330
77

Table of Contents

8

Setting Up a Direct DBMS Action . 330
The Direct DBMS Action Editing Window . 331
Executing a Direct DBMS Action . 334

Joining Database Tables . 336

Working With Joins . 337
Creating a Join in a Search Action . 338
Inserting a Join . 340
Editing a Join . 340
Deleting a Join . 340
Creating a Join in the Search Builder . 341

Witango and Objects 343

20 Understanding Objects in Witango 345
What are Objects? . 346

Objects as Black Boxes . 346
Object Interface: Methods . 347
Method Elements: Parameters . 348
Class, Object, and Object Instance . 348
Creating Object Instances . 349
Using Available Object Instances . 350
Calling Methods . 350
Example 1: Investment Scenarios . 351
Example 2: More Investment Scenarios . 352

Benefits of Using Objects in Witango . 354

When to Use Objects . 354

Object Types Supported in Witango . 355

Object Type Independence . 355
COM Objects . 355
JavaBeans . 356
Witango Class Files . 356
General Requirements . 357

Understanding Data Types . 358

Setting up Security for Executing Objects . 359

21 Using Objects . 361
Preparing to Use Objects in Witango . 362

Planning to Use an Object . 362
Installing an Object . 362

Overview of Using Objects in Witango . 364

Adding an Object to the Objects Workspace . 365

COM Objects in the Objects Workspace . 365
8

Table of Contents
JavaBeans in the Objects Workspace . 367
Witango Class Files in the Objects Workspace 369

Removing an Object From the Objects Workspace 371

Viewing Object Information in the Objects Workspace 372

Attributes Folder . 373
Object Properties . 374
Caching and Refreshing of Object Information . 375

Adding a Create Object Instance Action . 377

Shortcut to Adding a Create Object Instance Action 378

Completing the Create Object Instance Action . 379

Object Name . 380
Object Instance Variable . 380
Instance . 380
Expiry URL . 382

Adding a Call Method Action . 383

Shortcut to Adding a Call Method Action . 384

Completing the Call Method Action . 385

Object/Method Name . 386
Object Instance Variable . 386
Result Variable . 386
Parameter List . 387

Using the Objects Loop Action . 391

Example of Using an Objects Loop . 391
Using an Objects Loop . 392

22 Witango Class Files . 395
What are Witango Class Files? . 396

Benefits of Using Witango Class Files . 397

When to Develop and Use Witango Class Files 398

Using Witango Class Files . 399

Developing Witango Class Files . 400

Method List Pane . 401
Method Editing Pane . 402
Instance Variables List Pane . 404
Method Definition Window . 405

Creating a Witango Class File . 408

Editing a Witango Class File . 409

Adding a New Method . 410
Renaming a Method . 410
Deleting a Method . 411
99

Table of Contents

10
Copying a Method . 411
Modifying a Method . 412
Setting Return Values and Parameters . 412
Method Properties . 414

Debugging Methods . 415

Setting Search Paths for Witango Class Files . 416

Witango Studio . 416
Witango Server . 416

Witango Compiler 419

23 Compiling Witango Application Files 421
The Compilation Process . 422

 . 422

Syntax Checking . 423

Creating a Syntax Check Report . 423
Filtering the Syntax Check Report . 426
Understanding a Syntax Check Report . 426
Correcting Issues located in a Syntax Check Report 428
Rechecking the Syntax . 429

Compiling you Witango Application . 431

Executing a compile for J2EE . 431
Glossary of Terms 437

24 Index . 453
10

1
C H A P T E R O N E

Introduction

An overview of this User Guide
The User’s Guide introduces you to Witango and tells you how to perform
the tasks necessary to create your applications. It is your main source of
information on how to use the Witango Studio. Topics covered include
Witango basics, including using application files, data sources, snippets,
and action builders. This User Guide should be used in conjunction with
the Witango Programmers Guide which provides all detail relating to the
Witango Meta Tags, Configuration Variables, Custom Meta Tags, DOMs
Error Codes and Expression Operators .
What is
Witango
Witango is a powerful yet easy-to-use tool for creating dynamic,
intelligent Web sites that integrate with popular database systems. With
Witango’s actions and builders, you build solutions by using Witango’s
intuitive point-and-click, drag-and-drop interface. You can create simple
applications in minutes—without ever writing any code. You can
customize your application files by adding your own HTML, database
queries, and control flow, and by accessing external programs. You can
send data to and retrieve data from external objects.
Witango
Components
Witango consists of two main programs: Witango Studio and Witango
Application Server, hereafter known simply as Witango Server.

• Witango Studio is the development environment, featuring a
complete graphical user interface in which to develop and compile
Witango application files (or simply, application files).

• Witango Server is an application server that executes Witango
application files created with Witango Studio. It works in conjunction
with an HTTP (Web) server to return HTML to a Web browser.

For definitions of terms used throughout the document, see Appendix A.
1

22

S E C T I O N I

Using Witango Studio

How to Use Witango Studio
This section of the Witango User’s Guide gives details on the basics of
Witango Studio, including the Witango Studio environment, working with
Witango application files, Witango projects (including source control and
deploying and downloading projects), working with data sources,
snippets, and setting Witango Studio preferences.

This section contains chapters on the following topics:

• Chapter 2, Witango Studio Basics on page 5

• Chapter 3, Using Projects and Source Control on page 65

• Chapter 4, Using Data Sources on page 83

• Chapter 5, Using Snippets on page 117

• Chapter 6, Setting Preferences on page 129.

Chapter 2, the applicable parts of Chapter 3, and Chapters 4–5 in this
section are strongly recommended for new users of Witango.

44

2
C H A P T E R T W O

Witango Studio Basics

Introducing the basics of the Witango Studio Interface and
Witango Application Files
This chapter helps you orient yourself to the Witango Studio interface
and some of the common operations available to you, looks at how
Witango actions work and describes Witango application file operations.

The topics covered in this chapter include:

• Witango Studio interface components

• overview of the Witango Studio interface

• using contextual menus

• using HTML editing windows

• using Word Wrap

• working with multi-column lists in action editing windows

• using the SQL Query window

• finding and replacing text or regular expressions

• keyboard shortcuts.

• Working with actions:

• the Actions palette

• working with actions

• assigning attributes to actions

• the Results action

• the Presentation action.

• Using Witango application files

• XML file format details

• the Witango application file window

• creating and saving Witango application files

• debugging Witango application files

• executing Witango application files
5

Witango Studio Interface Components

6

Witango Studio Interface Components
6

When you double-click the Witango Studio icon, the main Witango
interface components appear.

To start Witango Studio double-click the Witango Studio icon.

The main Witango Studio window appears:

Witango
Studio

Menu Bar

Main Window Area

WorkspaceActions Bar
Attributes Bar

Title Bar
1 The title bar displays the name of the current (front most) Witango
application file or the SQL Query window.

2 The menu bar contains pull-down menus for Witango Studio
commands. Click a menu title to open it, then click a command to
select it. Commands appearing in gray are disabled and do not apply
to the operation you are trying to perform.

3 Click icons on the Actions bar and drag them into an open
Witango application file to add them to the file.

4 Click icons on the Attributes bar to assign attributes to selected
actions.

5 The Workspace includes tabs for Data Sources, Objects, Snippets,
and Projects, if any exist. You switch among the four sections of the

Witango Studio Interface Components
Workspace by clicking the corresponding tab. The four sections are
called Data Sources Workspace, Object Workspace, Snippets
Workspace, and Project Workspace, respectively.

6 The Main Window Area displays one or more Witango application
file windows, action editing windows, attribute editing windows, or
the SQL Query window.
Viewing
Interface
Components
You can choose to show or hide the Workspace window and any of the
palettes by enabling the component’s name from the Windows menu. A
check mark beside the name indicates the component is visible in the
interface. Uncheck the name to hide the component.
Contextual
Menus
In many Witango Studio interface components, you can position the
cursor on a particular area and control+click the mouse to display a
contextual menu of commands. The commands that appear relate to the
77

Witango Studio Interface Components

88
item you click. Grayed-out commands are not applicable to the current
item.
Properties
Window
The Properties window allows you to view information about and add
comments to a selected item. Selectable Witango items include data
sources (including tables and columns), application files, and actions. In
general, the Properties window changes to show the properties of the
currently selected item.

The following is an example of an Application File Properties window for
a taf file:

To open any Properties window

1 Select the item you want to view information about.

Witango Studio Interface Components
2 Do one of the following:

• From the Windows menu, choose Properties.

• control+click the item, and choose Properties from
the contextual menu that appears.

The Properties window can be left open. Clicking an item with properties
updates the window to show information about that item.
HTML Editing
Window
Most actions in an application file can have HTML associated with them.
Whenever you select an action and an attribute option, the HTML editing
window appears. This example shows the HTML editing window for the
Results HTML:

The title of the window follows the form:

<Document> : <Action> : <HTML>
99

Witango Studio Interface Components

1010
Witango Studio supports the standard editing commands. The Edit menu
displays the following commands:

Witango Studio Interface Components
Contextual Menu

You can also control+click in the HTML editing window to display a
similar menu at the cursor position in the window.

The following table lists the commands in the contextual menu:

Command Function

Help Accesses HTML help files.

Undo Undoes the last change made to the text.

Cut Removes the selected text from the window and
places it on the clipboard.

Copy Copies the selected text to the clipboard.

Paste Pastes text on the clipboard at the cursor position.

Clear Clears the selected text.

Select All Selects all text within the HTML editing window.

Insert Meta Tag Displays the Insert Meta Tag dialog box. For more
information, see “Inserting Meta Tags” on
page 148.
1111

Witango Studio Interface Components

1212
Closing the window automatically saves any changes you make. To cancel
any changes, you can choose Undo from the Edit menu or the
contextual menu, or close the file without saving it.

Syntax Coloring

Open Selected
<@INCLUDE>

Opens the file which the selected <@INCLUDE>
tag points to. The file is opened with either
Witango Studio or the application used to create
the file, as specified in the Preferences dialog box.

Open Selected
<@INCLUDE>
with...

Opens the file which the selected <@INCLUDE>
tag points to. The file is opened with the
application specified in the External Editor field
in the Preferences dialog box.

Command Function
To make editing of your files easier and clearer, many of the HTML and
text components that appear are color-coded—HTML, Witango meta
tags, attributes, default text, and comments. You can change the specified
colors.

You can enter any amount of text in an HTML editing window. You can
also drag and drop text from elsewhere, for example, from other editing
windows.

Word Wrap

Word wrap is also available in the HTML editing window. From the
Windows menu, choose Word Wrap to enable and disable it. A
checkmark indicates that word wrap is enabled as well as many other
windows. See Word Wrap page 12 for further details.

Indenting and Selecting Text

You can position text using tab characters. Tabs are stored as tab
characters and are not converted to spaces. Tabs have no effect on the
display of HTML in the Web browser; they are used to make the HTML
you enter more readable.
For more information on
the Preferences dialog box,
See “Setting Preferences”
on page 129.
You specify the number of space characters that equal one tab character
in the Tab size field of the Preferences dialog box. You can also specify
whether you want Witango to insert tab characters to start a new line at
the same indent level as the previous line by enabling or disabling Auto-
indent in the Preferences dialog box.
For more information, see
<@INCLUDE> in HTML
Editing Windows on
page 16.

Witango Studio Interface Components
HTML Editing Window and Attributes

The HTML editing window allows you to easily access any of the HTML
attributes that may be assigned to an action: Results HTML, No Results
HTML, and Error HTML. Not all attributes may be assigned to all actions:
the applicable attribute tabs for the selected action appear enabled at the
top of the window; unavailable tabs are grayed.

Within the HTML editing window, you can switch between the different
HTML attributes by clicking the appropriate tab.

You can also open the attribute HTML associated with an action by doing
one of the following:
For information on new
keyboard shortcuts, see
Keyboard Shortcuts on
page 34.
• Select an action icon/name, and choose the attribute type from the
Attributes menu.

• control+click the action icon/name, and choose the attribute
type from the contextual menu.
1313

Witango Studio Interface Components

1414
• Double-click the attribute icon beside the action in the application
file window.

The corresponding HTML editing window opens.
For more information on
customizing page and
response HTML for the
Search Builder, see
Configuring the Search
Builder on page 171.
The Search Builder also uses HTML editing windows so you can
customize page HTML (Header and Footer) and response HTML (Update
Response, Delete Response, and No Results) for the Search, Record List,
and Record Detail pages.

For example, the following HTML editing window shows the Header
HTML for the Search Builder’s Record List page in the Untitled3.taf
application file.

Creating a New HTML or Text File

In addition to editing the HTML associated with an action or a builder,
you can use Witango’s editing capabilities to create and edit HTML and
text files. The editing capabilities and window settings described for
HTML action attributes also apply to HTML and text files opened for
editing with Witango Studio.

Witango Studio Interface Components
To create a new HTML or text file

• From the File menu, choose New, then HTML or Text File.

A blank editing window opens:

The default window name is “untitled”, until you save it under another
name. Subsequent new windows are named “untitledn”, where n is the
next number in the series; that is, the second window opened is
“untitled2”, and so on.

To save a new HTML or text file

1 From the File menu, choose Save or Save As.

The Save As dialog box appears.

2 In the File name field, type the name of your file.

When you save a new text file and a project is open, Witango asks if
you want to add the saved file to the open project.
1515

Witango Studio Interface Components

1616
To open an HTML or text file

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the file to open.

3 Click Open.

Tip You can also open a file of a supported type simply by dragging it
from the Finder onto the Witango Studio icon, whether or not
Witango Studio is already open.
<@INCLUDE>
in HTML
Editing
Windows
HTML editing windows in Witango can contain <@INCLUDE> meta tags,
which, when executed by Witango Server, return the contents of a
specified file. When you edit text and HTML in the HTML editing
window, you can open files referenced with <@INCLUDE> by selecting
one of the commands Open Selected <@INCLUDE> or Open
Selected <@INCLUDE> with.

Note In order for the Open Selected <@INCLUDE> and Open
Selected <@INCLUDE> with commands to function correctly, the
application file and the included file you want to access must be in the
current project, or they must both be located in the same folder.
Otherwise, Witango Studio will be unable to find the file.

Open Selected <@INCLUDE>

Open Selected <@INCLUDE> causes Witango to open the file
referenced by <@INCLUDE> according to the preferences you have set in
the Preferences dialog box. For example, if you have set the Open text
files using option to Witango Studio, the included file opens in
Witango Studio. If you have set this option to Application used to
create the file, the included file opens in the application with which it is
associated. If you have set this option to Selected external editor, the
included file opens in the application you have specified in the External
editor field in the Preferences dialog box.

To open an included file using Open Selected <@INCLUDE>

Select the <@INCLUDE> tag that you want to open, and do one of the
following:
For more information, see
Setting Preferences on
page 129.

Witango Studio Interface Components
• CONTROL+click in the HTML editing window and, from the
contextual menu that appears, choose Open Selected
<@INCLUDE>.

• From the File menu, choose Open Selected <@INCLUDE>.
For more information, see
Setting Preferences on
page 129.
The included file opens in either Witango Studio or an external editor,
depending on your preference settings.
1717

Witango Studio Interface Components

1818
If there is more than one included file with the same name in the project,
the Multiple Matching Files dialog box appears:

Select the included file you want to open and click OK.

Tip You can open multiple included files simultaneously by selecting all
the tags and choosing Open Selected <@INCLUDE>.

Open Selected <@INCLUDE> with

Open Selected <@INCLUDE> with causes Witango to automatically
open the selected included file in the application you have specified in the
External editor field of the Preferences dialog box. Even if you have
your preferences set to open the file automatically in Witango Studio or
the application used to create the file (that is, Witango Studio or
Application used to create the file is selected in the Open text files
using section of the Preferences dialog box), Witango still uses the
application which appears in the External editor field to open the
included file.

You can open a selected <@INCLUDE> tag with this command in the
same way as Open Selected <@INCLUDE>; see the previous section.

Witango Studio Interface Components
Working With
Multi-column
Lists
Many Witango actions include multi-column lists for entering
parameters—the criteria list in the Search action, for example. This
section describes basic techniques for working with these lists.

To select an entire row

Click the row’s Column cell.
1919

Witango Studio Interface Components

2020
To move a row

Select the row and drag it to the desired location.

Pop-up Menus

Various columns have pop-up menus in each cell. Place the cursor in the
cell and click the mouse. A downward-directional arrow appears. Click
the arrow and the pop-up menu appears.

From a cell’s pop-up menu, you can select from preset values.

Witango Studio Interface Components
To resize a column

Click the edge of the column in the list’s header, and drag.

To resize a column to fit the data in it, double-click its right edge in the
header.

To delete a row

1 Select the row to delete.

2 Do one of the following:

• From the Edit menu, choose Clear.

• Press Delete.

Dragging Columns

When creating or modifying a Witango application file and actions, you
must specify which database columns to use in various places. To do this,
you drag the columns from the Data Sources Workspace to the
appropriate place in the file.

To see the Data Sources Workspace, click the Data Sources tab. A
workspace appears, containing information about data sources, such as

To ... Do This ...

Select contiguous columns Click the first column you want to select and
Shift+click the last one.

Select discontiguous columns Click the first column you want to select and
+click the additional columns.

Select all columns in a table Drag the table name into the file.

A double-headed arrow appears when
you move your cursor between column.
Drag to resize the column.
2121

Witango Studio Interface Components

2222
the currently defined data sources and all tables and columns. If no data
sources are set up yet, only the data source types appear.

If word wrap is disabled, a horizontal scroll bar is available to view text
outside the boundaries of the window.
The SQL Query
Window
The SQL Query window gives you a convenient way of performing simple
SQL queries within Witango Studio, for example, to test your Direct
DBMS actions or to check database values.
The SQL Query window displays the following components:

SQL query text
area

Area showing either
the results of the
SQL query or the
log of queries

Data Source
Max. Matches list

Connect
Disconnect

Commit
Rollback

Click the Log tab to see the
log of executed queries

Execute
If you want to resize the
query and results areas,
place the cursor over the
area separator to display
the resizing icon.
Then click and drag it up or
down to change the sizes
of each area.

Witango Studio Interface Components
Setting Up a SQL Query

The components and functions of the SQL Query window are as follows:

• Data Source button allows you to specify the data source you want
to perform query operations against. When you first open the SQL
Query window, the data source is set to None.

If you change the data source assigned to the window, any existing
connection closes.

You cannot perform SQL queries on FileMaker data sources.

• Max. Matches displays the maximum number of records you want
the SQL query to return. You can select from 1, 10, 25, 50, or 100.
The default is 10.
For more information on
SQL COMMIT and
ROLLBACK operations,
consult your SQL
documentation.
• Commit and Rollback buttons allow you to perform a SQL
COMMIT or ROLLBACK operation on the assigned data source.
COMMIT causes any changes made to the data source by the query to
be saved. ROLLBACK causes any changes made by the query to be
discarded.

These buttons are disabled when you are not connected to a data
source.

• Connect and Disconnect buttons allow you to connect to or
disconnect from the current data source.

When you try to connect without first assigning a data source, the
Data Source Selection dialog box appears; you must select a data
source.

• Execute button allows you to execute the SQL query in the query
text area. If you are not connected to the data source when
Execute is selected, the connection is made automatically.

Any data returned by the SQL query appears in the Results area of
the SQL Query window. If the Results area contains data and the
current query returns no data, the Results area is cleared of any
data.

After execution, the connection to the data source remains open.

To cancel an executed query, press esc or +. (period). If results
are being returned when a cancel request is made, the Results area
shows all the data returned to that point.
• Query Text Area displays the SQL query text to be executed.
2323

Witango Studio Interface Components

2424
The query text area supports standard cut, copy, and paste
operations, including drag and drop. You can drag and drop tables
and columns into the SQL Query text area from the Data Sources
Workspace.
You can also drag any database action (except Transaction) from an
application file to the SQL Query window to see the SQL Witango
generates for it.

If you select only part of the SQL when executing the query, only
that part is sent to query the database.

• Results tab displays in columns and rows the results of the SQL
query.

• Log tab displays the log of executed queries.

• Status Area shows the current status of the SQL query. The status
messages appear as follows:

Status Description

Not connected No connection is established.

Connecting... Appears during connection to the data
source.

Connected Connection is established.

Executing... Appears during execution of query.

Rolling back changes... Appears during rollback operation.

Committing changes... Appears during commit operation.

Witango Studio Interface Components
Dragging Actions into SQL Query Text

You can drag any database action, except a Transaction action, which does
not generate SQL, from an application file into the SQL Query window.

When you do this, some SQL Query window attributes are set based on
the contents of the action. The following attributes are automatically set:

• Max. Matches (for a search action) is set to the action's maximum
matches value; otherwise, it is set to unlimited.

• The data source is set to the action's data source, and closes any
existing database connection (if the data source is different from the
current data source).

• The SQL text is the data source-specific SQL that Witango Server
generates when the action is executed.

Note Any meta tags from the action are placed in the text as-is. The
SQL text also does not include any text automatically added to the
action’s SQL by the server (such as a $maxrows assignment with DAM
data sources).

• The Results area is cleared of the currently displayed results.
2525

Witango Studio Interface Components

2626
Performing a SQL Query

To perform a SQL query

1 Choose the SQL Query command by doing one of the following:

• From the Windows menu, choose SQL Query.

• control+click the application file window or an open action
window, and choose SQL Query from the contextual menu
that appears.

An empty SQL Query window appears.

2 Click Data Source.

When you first open the SQL Query window, the data source is
None.
The Data Source Selection dialog box appears:

3 Select the data source you want to perform SQL Query window
operations against, and click OK to load the tables and columns of
that database. A Log In dialog box appears, allowing you to type your
user name and password:

Witango Studio Interface Components
1 Enter your user name and password into the respective fields, and
click OK.

1 From the Max. Matches menu, select the maximum number of
records to return from a SQL query: 1, 10, 25, 50, or 100.

2 Click Connect to connect to the current data source.

3 In the SQL Query text area, enter the SQL query text to be
executed.

4 Click the Execute icon.

If you select part of the SQL in the SQL Query text area, only that
part is executed when you click the button.

5 If you want to perform a COMMIT or ROLLBACK operation on the
assigned data source, click the corresponding Commit or Rollback
button.

The results of the SQL query, if any, appear in the Results area.

The following is an example of SQL query text and the returned
results:
Finding and
Replacing Text
In Witango Studio, you can perform operations to find, or to find-and-
replace text in application files. Witango Studio can perform both normal
searches and searches using regular expressions.
2727

Witango Studio Interface Components

2828
Performing Find Operations

For the purpose of this discussion, the term string refers to both
character strings (that is, text) and regular expressions. You specify that
the search is to treat the string in the Find field as a regular expression
by selecting the Regular expression option in the Find & Replace dialog
box.

If you want to find or replace a certain string, you specify that string in the
Find & Replace dialog box

You can find any string that can be entered in any non-modal Witango
Studio window. This includes values in criteria lists, action parameters
you have entered—such as for the Limit to field in a Search action’s
Results window, custom SQL, If action conditions, External action
parameters, custom column definitions, and HTML. Witango Studio
cannot find a string you did not explicitly enter, for example, data source
names, user names or passwords entered by users, column names in
Select lists, and join information.

You can perform find-and-replace operations in open application files,
action editing windows, HTML editing windows, and projects. Unless
specified otherwise, Witango Studio begins searching at the insertion
point indicated by the cursor and continues to the end of the search
range specified in the Find In section of the dialog box.

To find or find-and-replace a string

1 Do one of the following:

• Choose Find & Replace from the Edit menu.

• Press +F.

Witango Studio Interface Components
The Find & Replace dialog box appears.

2 Specify your find or replace options as follows:

• Find. Enter the string you want to find.

• Replace with. Enter the string that you want to replace
the string in the Find field with.

• Match case. If you want to perform a case-sensitive search,
select the Match case option; otherwise, Witango Studio
searches for a match irrespective of letter case. For
example, a search for “customer” would find all instances of
“customer”, “Customer”, and “CUSTOMER”.

• Regular expression. If you want to search for the string as
a regular expression, you must select the Regular
expression option. Otherwise, a normal search is
performed.

• Find in. You specify the search range in this area of the
dialog box.

• Current window. Select this option to perform the find or
replace operation in the window active at the time you
choose the Find or Replace command. If you have a string
selected in the active window, it automatically appears in the
Find field.

• File filename. Select this option to perform the find or
replace operation in the file specified by filename. The name
of the currently active file automatically appears as filename.

• All files in project. If you have a project open, this option
is checked. Select this option to perform the find or replace
operation in all the files of the active project. If you have
another application file open at the same time, which is not
2929

Witango Studio Interface Components

3030
part of the project, Witango Studio excludes it from the find
or replace operation.

• Start at top. Select this option to start the find or find-
and-replace operation at the top of the search range
specified in the Find in section.

Tip To start your search at the top of your project, check All files in
project and Start at top in the Replace dialog box.

If this option is not selected, Witango Studio performs the
search starting from the current cursor position.

Note If the current cursor position is not within that range, the
current cursor position is ignored and the search starts at the top of
the specified range.

• Find. Click to start the search for the string specified in the
Find field from the specified starting position.

• Replace. Click to replace the string specified in the Find
field with the string specified in the Replace with field.
Following the replace operation, Witango Studio
automatically searches for the next instance of the find
string.

• You can undo the last replace performed by choosing Undo
from the Edit menu.

• Replace All. Click to replace automatically all instances of
the string specified in the Find field with the string specified
in the Replace with field.

The following dialog box appears, indicating the number of

Witango Studio Interface Components
replacements made:

Note You cannot undo the Replace All operation. You can, however,
choose to close a file without saving the changes to return it to its
former state.

If the search range involves several items, those items in which
replacements are made are opened so you can save or discard
the changes.

• Cancel. Click to end the find or find-and-replace operation
and to close the dialog box.

You can also choose Find Again from the Edit menu or press +G,
which searches again for the string or regular expression previously
entered in the Find and Replace dialog box.

Using Regular Expressions

A regular expression is formed by one or more special characters that
represent a string of text.

Note To find a special character, precede it with a backslash, for
example, * finds the asterisk (*) character.

To find any single character

A period (.) finds any character except a newline character.

To repeat expressions

Repeat expressions with an asterisk (*) or a plus sign (+).

Expression ... Finds ...

.use fuse but not house
3131

Witango Studio Interface Components

3232
A regular expression followed by an asterisk finds zero or more
occurrences of the regular expression. If there is any choice, Witango
Studio chooses the longest, left-most matching string in a line.

A regular expression followed by a plus sign finds one or more
occurrences of the one-character regular expression. If there is any
choice, Witango Studio chooses the longest left-most matching string in a
line.

To group expressions

If an expression is enclosed in parentheses, (), Witango Studio treats it as
one expression and applies an asterisk or plus sign to the whole
expression.

To choose any character from many

A string of characters enclosed in square brackets, [], finds any one
character in that string. If the first character in the brackets is a caret (^),
it finds any character except those in the string.

A minus sign (-) within square brackets indicates a range of consecutive
ASCII characters. For example, [0-9] is the same as [0123456789].
The minus sign loses its special meaning if it is the first character (after an
initial caret, if any) or last character in the string.

If a right square bracket is immediately after a left square bracket, it does
not terminate the string; however, it is considered to be one of the

Expression ... Finds ...

a+b ab and aab but not a or b

a*b b, ab, and aab but not baa

.*use use, mouse, and paint the house, but
not chair

Expression ... Finds ...

(ab)*c abc, ababc, and c, but not aabbcc

(.a)+b xab, xaxab, but not b

Expression ... Finds ...

[abc] a, b, or c, but not x, y, or z

[^abc] x, y, or z, but not a, b, or c

Witango Studio Interface Components
characters to match. If any special character—such as the backslash (\),
asterisk (*), or plus sign (+)—is immediately after the left square bracket,
it does not have its special meaning and is considered to be one of the
characters to match.

To find the beginning or end of a line

• You can specify that a regular expression finds only the beginning or
end of the line.

• If a caret (^) is at the beginning of the entire regular expression, it
finds the beginning of the line.

• If a dollar sign ($) is at the end of the entire expression, it finds the
end of the line.

• If an entire expression is enclosed by a caret and dollar sign (for
example, ^the end$), it finds an entire line.

To re-use a regular expression in the Replace field

Witango extends the regular expression functionality and allows you to
remember and recall a part of a regular expression. Enclose the part to
remember with parentheses. To recall it, use \n, where n is a digit that
specifies which expression in parentheses to recall. Determine n by
counting occurrences of “(” from the left. You can only use this feature
in the Replace field of the dialog box.

Tip For more information on constructing POSIX regular expressions,
ask your local UNIX guru, consult the FreeBSD regex man page, or try
doing an Internet search for the term “POSIX 1003.2“.

Expression ... Finds ...

[aeiou][0-9] a9 but not ae

[^bm]ate date but not bate or mate

END[.] END. but not END;

Expression... Finds...

^(the house).+ the house guest but not paint the house

.+(the house)$ paint the house but not the house guest
3333

Witango Studio Interface Components

34
Keyboard
Shortcuts
34
The keyboard shortcuts, as they appear in Witango Editor menus, are as
follows:

Menu Command Shortcut

File New Witango Application File
New Witango Class File
New HTML or Text File
Open
Close
Save
Quit

+N
+L
+T
+O
+W
+S
+Q

Edit Undo
Cut
Copy
Paste
Insert
Select All
Find & Replace
Find Again
Replace & Find Again
Insert Meta Tag
Preferences

+Z
+X
+C
+V
+I
+A
+F
+G
+H
+M
+;

Attributes Results HTML
No Results HTML
Error HTML
Debug File

+R
+U
+E
+D

Windows Workspace
Actions Palette
Attributes Palette
Properties
Cycle Workspace

+1
+2
+3
+\
+`(single back quote)
Windows Menu
Shortcuts
To view the Workspace, Actions palette, or Attributes palette, use the
Windows menu commands.

Witango Studio Interface Components
For example, to view the Actions palette, either choose Actions
Palette from the Windows menu, or press +2. If the palette is
already visible, choosing the command or pressing the shortcut hides it.

The Cycle Workspace command enables you to move consecutively
from one Workspace window to the next. For example, if you are
currently viewing the Project Workspace, pressing +` (the single back
quote character located to the left of the “1” key on most keyboards), or
choosing Cycle Workspace from the Windows menu shows you the
Data Sources Workspace. If you are currently viewing the Snippets
Workspace, pressing +` or choosing Cycle Workspace shows you
the Project Workspace.
Expanding and
Collapsing
Parent Objects
When working in the Project, Data Sources, Snippets, or Object
Workspaces, or in the application file window, you can expand and
collapse any parent object by one level using the left and right keyboard
cursor keys.

A parent object is any object denoted in the view by the disclosure
triangles: , expandable; and, , collapsible.

• To expand the selected parent one level, press (right cursor key).

• To collapse the selected parent one level, press (left cursor key).

You can also use keyboard shortcut keys in an open application file
window to expand and collapse the parent object through all levels at one
time.

• To expand the selected parent, press + .
3535

Witango Studio Interface Components

3636
• To collapse the selected parent, press + .

+

+

Witango
Actions
Witango Actions are icon based representations of the logic within a
Witango application file. Actions exist to deal with all strands of required
logic to build a web application. Actions can be categorised into 4
different groups:

• Business Logic

• Database Logic

• Presentation Logic

• Extenal Data Acquisition Logic.

Witango Studio Interface Components
Actions dealing with Business Logic

The Business Logic Actions control how the application flow. They are
listed in the table below:The menu bar shows the menus and commands

applicable to Witango.

Actions dealing with Database Acquisition Logic

The Database Acquisition Actions control the interaction with available
databases including SELECT, UPDATE, INSERT and DELETE. Witango
actions also exist to allow a developer to carry out ad hoc SQL
statements or stored procedure calls with the Direct DBMS action. They

Icon Action Function

Assign Makes specified value
assignments to a variable.

Group Groups related actions
together.

IF, ELSE IF, ELSE Executes an expression, and,
based on the result of that
expression affects the control
of flow within the file.

While Loop, For Loop Repeats a set of contained
actions: until an expression
evaluates to true of for a
specified number of loops.

Break Terminates processing within a
loop.

Branch Causes a jump to another
action or action group.

Return Ends execution of an
application file and returns the
accumulated Results HTML to
the browser.
3737

Witango Studio Interface Components

3838
are listed in the table below:The menu bar shows the menus and

commands applicable to Witango.

Actions dealing with Presentation Logic

The Presentation Actions control how the results appear on the end
user’s browser. They are listed in the table below:The menu bar shows

the menus and commands applicable to Witango.

Actions dealing with External Data Aquistion Logic

The External Data Acquisition Actions control the interaction with back
office systems, this is typically achieved with actions such as MAIL,

Icon Action Function

Search Retrieves records from a
database.

Insert Adds records to a database.

Update Changes records in a database.

Delete Removes records from a
database.

Direct DBMS Executes SQL statements.

Begin Transaction
End Transaction

Begins a transaction and ends a
transaction with a rollback or
commit.

Icon Action Function

Results Performs no special function of
its own, this action allows
HTML to be appended to the
Results HTML.

Presentation Allows user to reference
presentation pages.

Witango Studio Interface Components
OBJECT, FILE and EXTERNAL. They are listed in the table below:The

menu bar shows the menus and commands applicable to Witango.

Icon Action Function

Mail Sends out electronic mail.

File Reads, writes and deletes files
on the filesystem.

Script Used to specify server side
JavaScript code to execute
such as Shellscript.

External Calls an external code module
to perform a function and
return results.

Create Object Instance Creates object instances for
COM, Java Beans, and Witango
Class File Objects.

Call Method Calls methods on the object
instances that are created.

Objects Loop Loops over collection objects
Working With
Actions
The application file window shows the actions that you want Witango
Server to execute. Generally speaking, Witango Server executes actions
sequentially, from top to bottom, until it encounters a control action.
Control actions make decisions and cause execution to jump to another
action or action group.
3939

Witango Studio Interface Components

4040
The following is an example of the application file window:

An action icon in the Action column indicates the type of action. Each
action must have a name that is unique in the application file.

An action can have attributes. Action attribute icons in the Attributes
column indicate which attributes are associated with the action on that
row.

Some actions require database operations. The Object/Data Source
column indicates which data source an action is associated with.

Unique action name Actions and action groups

Attributes assigned to
the action

Data source for
the action

Additional comments
about the action
Adding an
Action
To add an action to an application file

Do one of the following:

Witango Studio Interface Components
• Drag an action icon from the Actions palette into the application file
window (the cursor changes to a closed hand and a box outline), and
drop it where you want to add the action.

• Click an action icon, move the cursor into the application file
window (the cursor changes to a closed hand), and click where you
want to add the action.

In either method, a gray line indicates where the new action is to be
placed.

If the action has an editing window, it opens automatically.

Tip To prevent the action’s editing window from being opened
automatically, hold down the OPTION key while dragging the new action
into the document window.
Naming an
Action
Each action in an application file must have a unique name. Witango
Studio gives actions a unique name automatically.

The default name for an action is its action type. When you add an action
that already exists in the application file with its default name, Witango
appends the default name with a numeric starting at “1”; for example,
“Search1”.

Tip To make your application files more readable, you should always
replace default action names with more meaningful ones.

To rename an action in an application file

1 Click the action’s name in the application file window.
4141

Witango Studio Interface Components

42
You can also
control+click the
name, and choose
Rename from the
contextual menu that
appears.
42
2 Enter the new name.

Note Action names can contain only letters, numbers, and
underscores. No spaces, punctuation, or other characters are allowed.
Adding spaces automatically adds underscores.

When you rename an action, Witango automatically updates any Branch
actions in the same application file referring to the action. If you rename
an action that is the destination for branches from other application files,
the Branch actions in other application files are not updated.

Witango does not automatically update action results references for
renamed actions.
Deleting an
Action
To delete an action from an application file

1 Select the action you want to delete.

2 Do one of the following:

• From the Edit menu, choose Clear.

• Press Delete.

• control+click and choose Clear from the contextual
menu that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Tip You can bypass the confirmation dialog box by holding down the
option key when choosing Delete or Clear.
Editing an
Action
All of the actions—except Return, Group, and Break actions—have
associated attributes and parameters. You can set these parameters in the
action’s editing window.

To edit an action in an application file

• Double-click the action icon in the application file window.

The action’s editing window opens.

If the action is associated with a data source, the Data Sources
Workspace opens, listing the tables and columns for the data source. If
Witango Studio has not loaded the data source yet, it is loaded first.

Witango Studio Interface Components
Moving an
Action
Witango executes the actions in an application file sequentially, from top
to bottom; however, you can use control actions to modify this sequence.

If you want the actions to be performed in a different order, you can
rearrange them. Move them to another location in the application file by
dragging them to the position you want.

To move an action to a new location

• Select the action you want to move, and drag the action to its new
position.

When you move an action, Branch actions referring to it continue to
branch to the action, even though its position has changed.
Copying an
Action
You may want to create an action that performs a task similar to one
performed by an existing action in another application file. Instead of
having to recreate the action and specify all its parameters again, Witango
Studio allows you to duplicate an action.

To copy an action in the same application file

• Select the action you want to copy, hold down the option key, and
drag the action to where you want the new action to appear.

The copied action is given a new, unique name, which you should change
to a more descriptive name.
4343

Witango Studio Interface Components

4444
To copy an action into another application file

• Select the action you want to copy, and drag the action into another
application file.

Be careful when copying database actions. For an action to work
correctly in the new application file, the data source must be the same as
in the original one.

Alternatively, you may assign another data source to the action in the new
application file.

Witango Studio Interface Components
Contextual
Action Menu
When you control+click an action icon in the application file window,
or anywhere in the file window with an action selected, a contextual
menu of action commands appears:

• Help accesses the HTML help files.

• Open opens the action editing window for the selected action.

• Clear performs the standard window editing function.

• Rename allows you to edit the current name of the action.
• Results HTML, No Results HTML, Error HTML, and Push are
attributes you can assign to actions which support them.

• Debug File is an attribute of the entire application file or Witango
class file.
Action
Properties
When you select an action and choose Properties from either the
Windows menu or the contextual menu, the Action Properties window
for that action appears.

This window displays current information about the selected action and
the assigned data source.
4545

Witango Studio Interface Components

46
 46
Using this window, you can change some of the action’s properties.

Note The Data Source and Deployment Logon tabs are disabled when
the action is not a database action.
Assigning
Attributes to
Actions
In addition to the parameters specific to each action type, which are
edited using the action’s editing window, actions can also have the
following attributes:

• Results HTML applies to all actions, except control actions (other
than Branch). After the action is executed, this HTML is added to the
results returned.

• No Results HTML applies only to Search, Direct DBMS, Script,
File, and External actions. When the action does not return data, this
HTML is returned instead of the Results HTML.

• Error HTML applies to most action types except certain control
actions (including Return and Break). In the event of an error in the
action’s execution, this HTML is returned immediately.

• Push causes the Results HTML accumulated so far to be sent back
to the Web browser when the action to which it is assigned finishes
executing. Execution then continues normally.

• Debug File lets you see useful information about your application
file or Witango class file execution in your Web browser application.
This attribute applies to the entire application file, not a particular
action. For more information, see Debugging Files on page 61.

To assign Results HTML, No Results HTML, Error HTML, or Push

Do one of the following:

• Select the action in the application file window, then select an
attribute from the Attributes menu or from the Attributes palette.

Witango Studio Interface Components
• control+click the action in the application file window and
choose the attribute that applies to the selected action from the
contextual menu that appears.

Action attribute icons appear beside the action name in the Attributes
column of the application file window..

A check mark
appears beside Push
and Debug File
when they are
selected. The HTML action attributes in the Attributes

menu have corresponding buttons on the
Attributes bar.
.
 You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the top of the
HTML editing window.

Results HTML

Many actions in an application file can have HTML associated with them.
This HTML is stored in the Results HTML attribute. If Results HTML
contains any text, the Results HTML icon appears in the attributes
column of the application file window; otherwise, it does not.

As Witango Server executes the actions in a file, the Results HTML
associated with each is accumulated. When execution of the file is
complete, the HTML is returned.

Results HTML can also contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is interpreted by the
user’s Web browser and returned as is (via the Web server), Witango
Server first substitutes meta tags with other values.
The <@COLUMN> meta tag causes a database value to be placed in the
HTML. There are many others, including tags for referencing form field
and search argument values, and conditional tags for displaying HTML
only if the result of a given comparison is true.

To create or edit the Results HTML for an action

1 Select the action in the application file window.

2 Do one of the following:

• From the Attributes menu, choose Results HTML.
4747

Witango Studio Interface Components

4848
• Click the Results HTML icon on the Attributes palette.

• control+click the action and choose Results HTML
from the contextual menu that appears.

The Results HTML editing window appears:

3 Type the Results HTML into the HTML text area. The text can
include any valid HTML1 or Witango meta tags.

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the top of the
HTML editing window.
.
 You can add column values (for Search actions only) and any HTML
snippets you have defined to the Results HTML editing window from the
Snippets Workspace. As well, you can add from the list of standard
Witango snippets that allow for easy entry of many of the meta tags.

To include any of these items in your Results HTML, select the snippet
and either drag it, or copy and paste it into the desired location in your
text.

For HTML snippets that have placeholders for the current selection,
select the text and drag the snippet over the selected text. The snippet is
wrapped around the selection. For example, “Title” becomes
“<H1>Title</H1>”.
1 Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible. If you use other content types, you are responsible for setting the
HTTP header appropriately.

Witango Studio Interface Components
You can also easily add many of the common Witango meta tags.

To add a meta tag

1 Click the editing area where you want to add a meta tag.

2 Do one of the following:

• From the Edit menu, choose Insert Meta Tag.

• control+click, and choose Insert Meta Tag from the
contextual menu that appears.

The Insert Meta Tag dialog box appears. For information on using the
Insert Meta Tag dialog box.

No Results HTML

You can associate No Results HTML text with Search, Direct DBMS,
Script, and External actions. If the action execution does not return any
data, this text is added to the application file’s accumulated HTML instead
of the Results HTML. This is useful when you want to display a special
message to users when their queries do not return data.

Note If both Results HTML and No Results HTML appear as
attributes, Witango accumulates one or the other, but never both.

After Witango Server processes the No Results HTML, execution of the
application file continues normally to the next action.

No Results HTML can contain any of the Witango meta tags used in
Results HTML, except for those related to displaying result data items,
such as <@ROWS>, <@COLUMN>, and <@COL>.

To create or edit the No Results HTML for an action

1 Select the appropriate action in the application file window (Search,
Direct DBMS, Script, and External actions).

2 Do one of the following:

• From the Attributes menu, select No Results HTML.

• Click the No Results HTML icon on the Attributes palette.

• control+click the action and choose No Results
HTML from the contextual menu that appears.

The No Results HTML editing window appears.

3 Type the No Results HTML into the HTML text area. The text can
include any valid HTML or Witango meta tags.
4949

Witango Studio Interface Components

5050
Error HTML

Error HTML allows you to specify your own error messages in HTML
format, instead of having Witango Server produce them. The other
alternative is to modify the Error.htx file.

You can associate Error HTML with most actions. If an action fails for any
reason, execution ends and the Error HTML for the action is returned
immediately to the user.

Error HTML can contain all the Witango meta tags used in Results HTML,
except for those related to displaying result data items.
There are also special Witango meta tags for displaying error information.

If no Error HTML has been assigned to an action and an error occurs in
that action, Witango returns a default error message using the following
HTML:

<h3>Error</h3>

An error occurred while processing your request:<p>
<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1>

<@ifequal <@ERROR PART=NUMBER2> 0>
<@else>

Secondary Error Number: <@ERROR
PART=NUMBER2>

</@ifequal><p>
<i>
<@ERROR PART=MESSAGE1>

<@ifequal @ERROR PART=MESSAGE2> "">
<@else>

@ERROR PART=MESSAGE2>

</@ifequal><p>
</i>
</@ERRORS>

To create or edit the Error HTML for an action

1 Select the action in the application file window.

2 Do one of the following:

• From the Attributes menu, select Error HTML.

• Click the Error HTML icon on the Attributes palette.

• control+click the action and choose Error HTML
from the contextual menu that appears.

Witango Studio Interface Components
The Error HTML editing window appears.

3 Type the Error HTML into the HTML text area. The text can include
any valid HTML or Witango meta tags.

To specify your own custom default error message

1 Create a text file containing the desired HTML and meta tags.

2 Name the file error.htx.

3 Save or copy it to the Misc Files folder under the root folder of
your Witango server.

If Witango Server finds this file, it processes and returns it instead of the
built-in default Error HTML. Error HTML assigned to an action is used if
it exists.

The name and location of this file is determined by the
defaultErrorFile configuration variable, which can be modified using
the Administration Application config.taf. The values when Witango
is first started are given above. If you modify the path or name of the
error file, place the file in the directory you specified instead.

Push

The Push attribute causes the Results HTML accumulated so far to be
sent back to the Web browser, when the action to which the Push
attribute is assigned finishes executing. Execution then continues.

Normally, Witango waits until all execution is finished before returning
the results at one time. If you want the user to see some of the results
while Witango continues with the rest of the execution, set the Push
attribute of the action.

Note Some Web browsers may not display table HTML immediately if
you use the Push attribute to return an unclosed table.

Debug File

For more information, see Debugging Files on page 61.
5151

Witango Studio Interface Components

52
Adding HTML
(Results Action)
52
The Results action adds HTML to an application file’s results.

Results HTML can contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is returned as is to
your Web browser (via the Web server), any meta tags are first
substituted with other values by Witango Server. You can also associate
Error HTML with the Results action.
Presentation
Action
Uses of the Presentation Action

The main benefit of using the Presentation action is to facilitate the
separation of the business logic from the presentation logic when you
develop your Witango application.

Business logic involves the use of Witango actions and meta tags to access
the appropriate Web pages and data sources. Presentation logic involves
the use of HTML to display the Web pages.

Because developing the business logic and the presentation logic generally
require different skill sets, setting up independent teams to work on these
two areas can improve the effectiveness and efficiency of the project.
Furthermore, changing the business logic—for example, accessing a
different data source—often does not affect the presentation logic, or
vice versa. Keeping the two areas separate simplifies the maintenance of
your project.

A Presentation action in your application file points to an HTML page. It is
the link between the business logic and the presentation logic of your
project.
Results Action

Witango Studio Interface Components
The Document Object Model (DOM) allows you to create your own
complex data structures in XML, and return them into presentation
pages.

How the Presentation Action Works

The Presentation action allows you to include individual presentation pages
in your Witango application file. The presentation page—the file the
Presentation action points to—can contain HTML, Witango meta tags, or
any other sort of document markup. When Witango Server executes
your application file and arrives at a Presentation action, it processes the
presentation page associated with the Presentation action.

The Presentation action performs an operation similar to that of including
an HTML or other file in a Witango application file using the
<@INCLUDE> meta tag.

The file referenced by the Presentation action is part of the current
project, and can be opened and edited by double-clicking on the file icon
within the Presentation Pages folder in the Project section of the
Workspace.

You can also designate files in your project as presentation pages, and
manage files within the Presentation Pages folder.

Setting Up a Presentation Action

When you drag the Presentation action from the Actions bar into an
application file, the Presentation dialog box appears:

Do one of the following:

• In the Presentation Page field, enter the name of the presentation
page, or if you have previously specified a presentation page in the
current Project, choose a file name from the pop-up menu.

• Click Choose to navigate to the location of the presentation page.
5353

Witango Studio Interface Components

5454
If the file is not in your current project, you are prompted to add it to the
project, where it appears in the Presentation Pages folder and in the
Files folder of the Project tab of the Workspace.

In the Path to page on server area, select Same as this file if the
presentation page is located in the same folder as the current application
file, or select Other.

If you choose Other, you specify the path to the presentation page. This
value is a slash-separated path from the Web server document root, and
may include literal text, meta tags, or both. To insert a meta tag in this
field, control+click in the text field and choose Insert Meta Tag...
from the contextual menu that appears.

For example, you could enter the following into the text field:

Witango/MyDirectory/

This example includes the specified file residing in the MyDirectory
folder within the Witango folder in the Web server document root
folder.

<@APPFILEPATH>

This example includes the specified file residing in the same folder as the
currently-executing application file.

Using Witango Application Files
Using Witango Application Files
A Witango application file (or simply, application file) provides a powerful
and flexible means for you to construct dynamic applications that run on
your Web server and that interact with databases, other applications, and
users running Web browsers. They are like programs or scripts in that
they determine what operations Witango Server performs. Witango
Server provides the brains, but it does nothing without the specific
instructions you provide in the form of application files.

You add actions to an application file. When Witango Server runs the
application file, it generates the HTML that is used by the Web browser
to display the forms required to allow interaction with databases and
other applications.

You can use the Search Builder and New Record Builder to have Witango
Studio build search and insert record applications for you.

An application file is a file containing a series of Witango actions that,
when executed by Witango Server, generates HTML and controls
interaction with databases and other applications.

(You can also create Witango class files, which are reusable software
components that you can incorporate in Witango application files.
XML Format
 Witango application files and Witango class files are stored in an
Extensible Markup Language (XML) format, which means they are
structured text based on a specific document type definition. This is a
substantial change from the binary formats of files in previous versions of
Witango.

What is XML?

XML is a text-based and widely-endorsed standard markup language,
similar to HTML, but much more flexible and robust. It is a subset of
SGML (Standard Generalized Markup Language), an ISO standard. Its goal
is to enable generic SGML (that is, structured documents) to be served,
received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.
For details about the XML
file format, see
www.w3.org/xml/.
Witango XML file formats give Witango users the following advantages:

• XML files are human-readable.
5555

Using Witango Application Files

5656
• Text-processing tools can be used on Witango application files to
perform file differences, complex searches involving regular
expressions, and so on.

• The Witango XML file format is now public and exactly specified, so
other applications can create Witango application files and Witango
class files.

SGML and XML specifications require a document type definition (DTD).
The DTD defines the structure of the various elements that make up an
XML document. It ensures that all applications that read and write the
XML document do so consistently way. In effect, it is the schema of the
document.
For more information
about document type
definitions and how to read
them, see www.oasis-
open.org/cover/
sgml-xml.html.
The Witango DTD for Witango application files and Witango class files is
specified by the file Witango.dtd. This file is located in the XML folder
inside the folder where Witango is installed.
Application File
Window
In Witango Studio, whenever you open an application file, the Witango
application file window (or simply, application file window) shows you the
following information:

• action icons and names, including those for builders, in the order
Witango Server executes them (unless a control action redirects the
flow of the execution)

• attributes assigned to an action, if any

• data sources for all database actions

• any associated comments.

Using Witango Application Files
The application file window also includes icons for attributes, objects, and
data sources. The following diagram shows a typical application file
window and its components:Unsaved Changes Indicator

Whenever you change a Witango application file or class file, and the file
has not been saved, an asterisk appears beside the file name in the title
bar of the window and beside the filename in the window. This is called a
dirty (unsaved changes) indicator.

Once you save the application file, these indicators disappear.

Collapsible/expandable
view showing all actions
and builders in the named
application file

Icons of the attributes
assigned to an action

The data source for the
action to be performed on

Comments associated
with the action

Unsaved changes indicators
Creating an
Application File
To create a new application file

• From the File menu, choose New, then Witango Application
File.
5757

Using Witango Application Files

5858
An untitled application file opens:
Saving an
Application File
To save an application file

1 From the File menu, choose Save.

If the application file has never been saved, the Save As dialog box
appears.

If it has been saved previously, Witango Studio saves it using the
existing name and location.

2 Navigate to the desired location for the application file.
For Witango Server to execute the application file, it must be located
in or below the Web server’s document root folder.

3 Name the Witango application file.

4 Witango application file names end in .taf. This is the standard
suffix used to identify files that Witango Server should execute. Click
Save.

Tip To save all open Witango application and text files with their
current name and location, choose Save all from the File menu, or
click the Save All icon on the Witango Toolbar. The Save As dialog box
appears for new, unnamed files.

Using Witango Application Files
Saving a
Witango
Application File
or Witango
Class File as Run-
Only
Run-only Witango application files and Witango class files can be
executed by Witango Server, but they cannot be opened by Witango
Studio.

Saving an application file or Witango class file as run-only allows you to
create and distribute packaged Witango solutions while preventing users
from editing the actual application file.

Run-only application files and Witango class files are executed and
referenced by Witango Server in the same way as editable files. Saving an
application file or Witango class file as run-only does not make its
execution any faster.

Caution You cannot edit a run-only copy of an application file or
Witango class file, and there is no way to make a run-only file editable.
Make sure you keep an editable copy of any run-only file.

To make an application file or Witango class file run-only

1 With an application file open in Witango Studio, choose Save As
Run-Only from the File menu.

The Save As dialog box appears.

You are saving a copy of your Witango application file or Witango
class file as run-only. Your original application file or Witango class
file is not changed.

2 Name the run-only Witango application file or Witango class file.

Tip You may want to give the run-only versions of your files a special
name to identify their type, such as CustomersRO.taf or
CustomerRO.tcf, where “RO” represents run-only.

3 Click Save.

A run-only version of the application file or Witango class file is saved
in the location you specified.

Note If you are distributing your Witango solution, your customers
need to purchase Witango Server. Alternatively, you can license
Witango Server for distribution with your solution. Contact
sales@witango.com for more information.
5959

Using Witango Application Files

60
Executing
Application
Files
60
Application files are executed in the same way HTML files are viewed—by
specifying the name of the file in a URL. For example:

http://localhost/shop/additem.taf

This example executes an application file called additem.taf, located in
the root directory of your local webserver. If you are using the Witango
CGI, you may need to include the Witango CGI in your URL, for
example:

http://www.example.com/witango.acgi$/additem.taf

You can pass parameters to the application file by using search arguments.
These are name-value pairs appearing after a question mark in the URL.
For example:

http://www.example.com/shop/additem.taf?item_num=80

In this example, the item_num search argument has a value of “80”.
There are other ways of passing values to Witango application files. Form
fields (post arguments) and cookies are two examples.

Debugging Files
Debugging Files
Setting the debug mode in Witango Studio lets you see useful information
about your application file or Witango class file execution in your Web
browser application.
Turning Debug
On
To set debug mode

1 Open the application file or Witango class file you want debug
information on.

2 Do one of the following:

• From the Attributes menu, select Debug File.

A check mark beside the command indicates the debug mode is
on.

• control+click the application file window, and select
Debug File from the contextual menu that appears:
6161

Debugging Files

6262
• From the Windows menu, choose Properties. Then
enable Debug Mode in the Application File Properties
dialog box that appears:

• Check the Debug Checkbox.

A debug icon appears beside the application file icon when Debug File is
checked.

Debug icon
Viewing Debug
 When you execute the application file, debugging information appears at
the bottom of the results returned. The debugging information shows
information such as:

• arguments passed in (search and post arguments)

• the actions executed

• values of variables

• SQL generated by database actions

• warnings (such as references to missing arguments).
The debug feature is extremely helpful in tracking the flow through a
.taf when the output of the file is not what the programmer is
expecting.

Debugging Files
6363

Debugging Files

6464

3
C H A P T E R T H R E E

Using Projects and Source
Control

The Basics of Witango Projects and Managing Files Using
Source Control
A project is a logical grouping of folders and files. Projects allow you to
organize your work in terms of like-sets of files, including application,
HTML, and text files—in fact, for any type of file. Projects exist in
Witango Studio only and do not interact with Witango Server.

This chapter covers the following topics:

• Working with Witango projects

• adding and removing project files and folders

• project dependencies

• application-specific Witango (AST) signatures for projects
65

Basics of Witango Projects

66
Basics of Witango Projects
66
When you create a new project or open an existing project, the Project
Workspace (Project section of the Workspace) displays the project name
and the folders included in the project. The project name is the file name
you assigned to the project prefixed to the word “Project”.

Note To see the Project Workspace tab you must first open or create
a Project.

The Project Workspace allows you to work with all files, data sources,
objects, and resources associated with your Witango project without
having to switch tabs in the Workspace.

The following five folders are always displayed at the root level in the
Project Workspace and cannot be deleted:

• Files

This folder contains all the files referenced in your project. The files
in this folder may be organized into a hierarchy of subfolders.
For more information, see
“Working With
Presentation Pages” on
page 77
• Presentation Pages

This folder contains all the files in your project that you want to
designate as presentation pages. Presentation pages are HTML,
graphic, or text files available for use with Presentation actions. All
the files listed under this folder are also listed under the Files folder.
For more information, see
“Working With Project
Data Sources” on page 78
• Data Sources

This folder lists the data sources used in your project.
For more information, see
“Working With Project
Objects” on page 79
• Objects

This folder lists the objects used in your project.

Basics of Witango Projects
For more information, see
“Working With Project
FTP Sites” on page 79
• Sites

This folder lists the FTP (file transfer protocol) sites associated with
the current project for the deployment of project files.
Understanding
the Project File
The project file contains information on your project, including a listing of
the project’s folders and files (in the Files folder).

The purpose of the project file is to help you manage your project. It
contains pointers to all the folders and files that you include in the
project; it does not contain the actual folders and files.

You perform operations on the project file separately from the folders
and files it contains; that is, deleting a file from the project removes it
from the project file, but does not actually delete the file.

Note Path names of files stored in the project file are stored relative to
the project file’s location; that is, if you move the project file, the files
within it will not be found.
Using the
Project
Workspace
Opening Files in the Project Workspace

You can open any file appearing in the Project Workspace simply by
double-clicking the file name.
For more information on
setting Witango Studio
preferences, see Setting
Preferences on page 129.
The file automatically opens and displays its contents in the application
defined by its Windows suffix mapping. Witango application files
automatically open in Witango Studio; if you set Witango Studio as the
default Studio in the Preferences dialog box, HTML and text files also
open in Witango Studio.
For more information on
files under source control,
see Using Source Control
in Witango on page 97 and
Modifying a File Under
Source Control on
page 109.
If you try to open an application file that is currently under source control
and not checked out, Witango Studio prompts you to check it out first.
6767

Basics of Witango Projects

6868
Using Context-sensitive Menus

You can also conveniently execute certain project commands directly in
the Workspace. Right-clicking a project, folder, or file displays a menu of
project, folder, and file commands and Workspace window commands.

Note Source control commands only appear in Witango Studio if you
have a supported source control system installed on your machine.

Moving Files and Folders in the Project Workspace

You can move folders and files within the Project Workspace by dragging
them to a new location within the Files folder.

Dragging a file to a folder adds that file to the target folder. Dragging a
folder to another folder makes it—and any files in it—a subfolder of the
target folder.

Project
CONTROL+clicking the project
name or icon displays a menu of
commands

Folder
CONTROL+clicking the
folder displays a menu of
commands

File
CONTROL+clicking a file
displays a menu of
commands
Creating a New
Project
To create a new project

1 Do one of the following:

Basics of Witango Projects
• From the Project menu, choose New.

• Click New Project on the main toolbar.

The Create a Project File dialog box appears:

2 Specify a project file name and location.

Project file names end in .tep. This is the standard extension
used to identify the file that lists the folders and files forming a
project.

3 Click Save.

The project name appears in the Project Workspace.
New Project
6969

Basics of Witango Projects

70
Adding a Folder
to a Project
70
You can add a new folder to the Files folder or Presentation Pages
folder of a project. You can also add an existing folder to the Files folder.
You cannot add a folder to the other Project folders.

To add a new folder to the Files folder or Presentation Pages folder

1 Select the Files folder or Presentation Pages folder.

2 Do one of the following:

• From the Project menu, choose New Folder.
• Right-click the Files or Presentation Pages folder of the

project, and choose New Folder from the context-sensitive
menu that appears.

When you add a new folder, the name New Folder appears
under the Presentation Pages or Files folder. Witango may
add a suffix to the default name (for example, New Folder 2)
to make the name unique. This default name is automatically
selected for easy renaming. A folder name must be unique at the
level you are adding the folder.

To add an existing folder to the Files folder

• From the Windows Explorer, drag an existing folder into the
Files folder or any of its subfolders.

Note You cannot drag a folder from the Windows Explorer into the
Presentation Pages folder or any of its subfolders.

All the subfolders and files within this existing folder are added to the
project at the specified location.

A folder name must be unique at the level you are adding the folder;
rename a folder if necessary.

Basics of Witango Projects
To rename a project folder

Do one of the following:

• Click the name of the folder; click the name again.

• Right-click the folder icon or name and choose Rename from the
context-sensitive menu that appears.
Adding Files to
a Project
You can add files to the Files folder from the Windows Explorer. You
cannot add a file to the Files folder if that filename already exists
somewhere within the Files folder; rename files if necessary.
For more information, see
“Working With
Presentation Pages” on
page 77
You cannot add files to the Presentation Pages folder from the
Windows Explorer; however, you can designate certain files in the Files
folder as presentation pages.

Filenames appear alphabetically in the Files folder. The order of
application files in this folder has no bearing on the order that Witango
Server executes them.
For more information on
setting source control
preferences, see Source
Control on page 159.
If you checked the Prompt to add files when inserted into a
project option in Witango Studio’s source control preferences, you are
prompted to add the files to source control. Click Yes to add the files, or
click No to cancel.

To add files to the Files folder or its subfolder

1 Select the Files folder or one of its subfolders.

2 Do one of the following:

• From the Project menu, choose Add Files.... Go to step 3.

• Right-click the File folder or its subfolder, and choose Add
Files to Folder... from the context-sensitive menu that
appears. Go to step 3.

• From the Windows Explorer, drag one or more files into the
Files folder or its subfolder. Go to step 4.

3 The Add Files into Project dialog box appears. The types of file
selection supported include the following:

Type File Extension

Witango Application Files *.taf

Witango Class Files *.tcf

Witango Application and
Query Files

*.taf, *.qry

Text Files *.txt, *.html, *.xml, *.dtd, *.inc, *.java
7171

Basics of Witango Projects

7272
Select the files you want to add to the project and click Open.

4 The added files appear in the Files folder or its subfolder.

Graphics Files *.gif, *.jpg

All Files *.*

Type File Extension
Removing Files
and Folders
From a Project
You can remove files and folders from the Files folder. When you remove
a folder, you remove it along with all its subfolders and files.

Removing a file from a project does not delete the file. The file remains
intact so you can use it again or add it to another project.

To remove files and folders from a project

1 Select the files or folder you want to remove.

2 Do one of the following:

• From the Project menu, choose Remove.

• Click the Delete icon on the Toolbar.

• Press Delete.

• Right-click the file or folder, and choose Remove from the
context-sensitive menu that appears.

A message appears, asking you to confirm that you want to
remove the selected item(s).

3 Click Yes.
Opening and
Closing a
Project
To open an existing project

1 From the Project menu, choose Open.

Only one project can be open at a time. If another project is already
open, Witango closes it and then opens the selected project. Any
changes that you made to the project being closed are automatically
saved.

When you open a project, the last view state is restored; that is,
folders appear expanded or collapsed as they did previously.

To close an open project

1 From the Project menu, choose Close.

Basics of Witango Projects
Any changes you make to an open project are automatically saved as
you make them.
Editing HTML
and Text Files
In addition to Witango application files and Witango class files, a project
file can include any other type of file. For HTML and text files, Witango
has built-in editing capabilities. (See HTML Editing Window on page 6.)
When you open any file included in a project that has a Witango
extension, Witango’s HTML editing window opens (if you check the
Open text files in projects using Witango Studio option in
Witango Studio’s source control preferences). Otherwise, Witango
launches the Opens with application you have specified in the Windows
Explorer for that file type.

If a project is open when you save an HTML or text file in Witango, you
are automatically asked if you want to add the file to the current project.
Click Yes to add the file to the project root or No to cancel.

Finding and Replacing Text in Projects

For more information, see
Finding and Replacing Text
on page 27.
One of the powerful editing features of Witango is its ability to find and
replace character strings in all files—Witango application files, Witango
class files, HTML, and text—of a project. The project must be open for
the find-and-replace operation to take place in the applicable files of the
project; all non-text files are ignored. If Witango finds the specified text
string, it automatically opens an editing window showing the
corresponding file or HTML attribute for an application file.
7373

Additional Features of Witango Projects

74
Additional Features of Witango Projects
Working With
Project
Dependencies
74
Dependencies are those data sources and objects that are used or
referenced by Witango application files and Witango class files in the
project. Witango Studio shows the data source and object dependencies
of your project, warns you of unresolved dependencies (if enabled), and
helps you resolve them.

To enable unresolved dependency notification

1 From the Edit menu, choose Preferences.

2 Select the General tab and check Warn me about unresolved
data sources and objects.

When Witango Studio detects an unresolved dependency (for example,
when Witango Studio tries to expand an unresolved item or open an
action that uses an unresolved item for the first time), the warning
message will appear.

An unresolved dependency has a grayed-out icon. Click OK to close the
Unresolved Dependencies dialog box.

Additional Features of Witango Projects
To resolve a dependency

1 In the Project Workspace, right-click the unresolved item and
choose Resource Dependency... from the context-sensitive menu
that appears.

2 Do one of the following:

• For a data source, Witango prompts you to resolve the
dependency. Clicking Yes opens the Create New Data Source
dialog box for the type of data source requiring resolution.
• For a JavaBean or Witango class file, Witango prompts you to
locate the object. Clicking Yes opens a File Open dialog box.
Navigate to the unresolved item and click Open.
Working With
Application
Files
The Files folder displays all the files used or referenced by your project.
You can organize files by creating new folders and moving files to
appropriate folders within the Files folder.

Application File Properties

The Application File Properties dialog box allows you to view information
about a selected application file. The Application File Properties dialog
box displays four tabs for a Witango application file in a project.

• General. This section displays the name of the application file and last
modified date. A check box allows you to select or deselect Debug
mode. Enter Title, Author, and Version information in the
appropriate fields.
7575

Additional Features of Witango Projects

7676
• Comments. This section allows you to enter comments about the
application file in the text field.

• Dependencies. This section displays the data sources and objects
referenced by the application file. Unresolved dependencies are
identified by grayed-out icons. This section cannot be modified.
For more information, See
“Modifying a Project’s AST
Signature” on page 79.
• Advanced. This section allows you to enter an AST signature for
the application file in the AST Signature field.

CautionAn AST signature assigned to a project application file’s
advanced properties will be overwritten by changes to the project’s
AST signature, which is assigned through the Advanced section of the
Project Root Properties dialog box. For more information, See
“Project Root Properties” on page 81.

Additional Features of Witango Projects
Working With
Presentation
Pages
The Presentation Pages folder separates presentation pages from
Witango application files, Witango class files and other HTML, graphic or
text files in the project, allows page-based editing, and makes these files
available to the interface of the Presentation action.

When you assign files to this folder, they are designated as presentation
pages, but also remain listed in the Files folder or its subfolders.
For more information
about the Presentation
action, see Presentation
Action on page 243.
To mark an HTML or text file as a presentation page

Do one of the following:

• Right-click on an HTML or text file in the Files folder of the Project
Workspace, and choose Properties from the context-sensitive
menu that appears. The File Properties dialog box appears.

Check the Presentation Page checkbox.
7777

Additional Features of Witango Projects

7878
• Right-click on an HTML or text file within the Files folder of the
Project Workspace, and choose Presentation Page from the
context-sensitive menu that appears.

A check mark appears next to Presentation Page.

Marking a file as a presentation page adds it to the Presentation Pages
folder.

• Select an HTML or text file in the Files folder of the Project
Workspace, and drag it to the Presentation Pages folder.

To remove a file from the Presentation Pages folder

Do one of the following:

• Right-click on a file in the Files folder of the Project Workspace, and
choose Properties from the context-sensitive menu that appears.

Uncheck the Presentation Page check box in the File Properties
dialog box that appears.

• Right-click on a file within the Files folder of the Project Workspace,
and deselect Presentation Page from the context-sensitive menu
that appears.

• Drag a file out of the Presentation Pages folder.
Working With
Project Data
Sources
The Data Sources folder contains an alphabetically-sorted list of data
sources that are used in your project. Unresolved dependencies are
identified by grayed-out icons. This folder cannot be modified directly.

Additional Features of Witango Projects
Working With
Project Objects
The Project Objects folder contains an alphabetically-sorted list of
objects that are used in your project. Unresolved dependencies are
identified by grayed-out icons. This folder cannot be modified directly.
Working With
Project FTP
Sites
The Sites folder lists the FTP (file transfer protocol) sites associated with
the current project for the deployment of project files. You associate an
FTP site with your project by defining a site in the Define Sites dialog box
and adding it to your project.

To view details about a particular site, right-click on a site icon in the
Project Workspace, and choose Properties from the context-sensitive
menu that appears. The details are presented in the Project Site
Properties dialog box.
Application-
Specific
Witango (AST)
Signatures for
Projects
Application-specific Witango Servers are available if you want to develop
a Witango application and distribute it with a Witango Server as an all-in-
one solution. This allows your end-user to execute your solution without
having to purchase a Witango Server for your single application.

The AST Server works only with the Witango application files in the
licensed application with the assigned AST signature. You must add this
signature to all Witango application files used in the application in order
for them to be executed by the AST Server. Witango application files
without an AST signature, or with a different AST signature, do not work
with the AST Server.

Contact sales@witango.com sales for information on purchasing an AST
license for your application.

Modifying a Project’s AST Signature

An application file may belong to more than one project, but it can have
only one AST signature. An application file added to a project will lose
any signature it previously had as a member of another project.

When you modify the AST signature for a project, the project AST
signature is assigned to all application files within that project. Application
files added to a project are automatically assigned the AST signature of
the project. If the project’s AST signature has not been assigned, the
application file’s existing AST signature, if present, is cleared.

To modify a project’s AST signature

1 Do one of the following:

• From the Project menu, choose Modify Project AST
Signature....
7979

mailto:sales@witango.com

Additional Features of Witango Projects

8080
• Right-click the project name in the Project Workspace, and
choose Modify Project AST Signature... from the
context-sensitive that appears.

• Right-click the project name, choose Properties, and click
Advanced tab to display advanced properties. Click
Modify....

• The Modify Project AST Signature dialog box appears:

2 Enter the project’s new AST signature in the Project AST
Signature field.

Valid AST signatures are three characters long and may contain
the characters A to Z (excluding I and O) and the digits 0 to 9.

3 Click OK to save the signature in the project and in every application
file associated with the project.

Witango warns you if an application file in the project is open
when you try to modify the project’s AST signature:

4 Click OK to update and save all project application files (including
open application files).

If one or more application files in a project cannot be opened or saved
(for example, files no longer exist, are not checked out from a source

Additional Features of Witango Projects
control system, or have “read-only” permission), Witango Studio displays
the following dialog box:

If this occurs, correct the problem (for example, check out the necessary
files), and repeat the steps, starting from step 1.
Project Root
Properties
The Project Root Properties dialog box allows you to view information
about your project.

To display the Project Root Properties dialog box

1 In the Project Workspace, highlight the project name by clicking on
the project root.

2 Do one of the following:

• From the View menu, choose Properties.

• Right-click the project root, and choose Properties from
the context-sensitive menu that appears.

The Project Root Properties dialog box displays three tabs.

• General. This section displays the name of the project, the number of
items contained in the project, and the last modified date.
8181

Additional Features of Witango Projects

82
For more information, See
“Working With Project
Dependencies” on page 74.
82
• Dependencies. This section displays the data sources and objects
referenced by the project. Unresolved dependencies are identified by
grayed-out icons. This section cannot be modified.
For more information, See
“Modifying a Project’s AST
Signature” on page 79.
• Advanced. This section allows you to enter an AST signature for the
project by clicking the Modify button beside AST Signature.

CautionModifying the project’s AST signature overwrites an
application file’s AST signature, which is assigned through the Advanced
section of the Application File Properties dialog box. For more
information, See “Application File Properties” on page 75.

4
C H A P T E R F O U R

Using Data Sources

Data Source Basics, Operations, and Properties
A Witango data source contains all the information needed to connect to
a particular database. You use data sources to tell your Witango
applications which databases to connect to. You use Witango Studio to
create and manage data sources.

Both Witango Studio and Witango Server need to have access to data
sources. Witango Studio uses a data source—via the Data Sources
Workspace—to show you the information in the form of tables and their
columns. Witango Server requires the same data source, or a data source
with the same name on the deployment machine, so it can access the
database tables and columns specified within the application file.

The data source properties show the information about the data source,
including information about its tables and columns.

This chapter covers the following topics:

• understanding Witango data sources

• the Data Sources Workspace

• using the primary column key

• using data sources, including creating, modifying, and deleting them

• setting up deployment data sources

• working with data source properties

• connecting to data sources

• assigning data sources to actions.
83

About Data Sources

84
About Data Sources
84
Witango supports the following types of data sources:
• ODBC (Open Database Connectivity), in conjunction with third-
party drivers, supports connections to a wide variety of database
types.

• JDBC (Java Database Connectivity), in conjunction with third-party
drivers, supports connections to a wide variety of database types.

• Oracle supports connections to Oracle databases.
ODBC & JDBC
Data Sources
OODBC and JDBC are standards developed to allow applications like
Witango to communicate with a wide variety of databases from different
vendors. An ODBC/JDBC client application talks to the ODBC/JDBC
driver manager that in turn talks to a database driver for a specific type of
database.

An ODBC/JDBC driver is a kind of translator. It converts the standard
ODBC/JDBC requests made by the application into a format that can be
understood by the target database system. ODBC drivers are available
for accessing many database management systems (DBMS).

Before creating a data source, you must set up your database server and
create or install a database on this server. Depending on the database
system, you may also need to install and configure additional software to
allow you to connect to the server. Consult your database software and
ODBC/JDBC driver documentation for specific instructions.
Oracle Data
Sources
Oracle is a high-performance client/server DBMS. To create and use
Oracle data sources, you must have Oracle’s SQL*Net installed. Witango
supports SQL*Net versions 7.1 and 7.3, and greater. For more
information, see the Witango Server Installation Guides for your chosen
platform.

The Data Sources Workspace
The Data Sources Workspace
You perform most data source operations in the Data Sources
Workspace (the Data Sources section of the Workspace). To display the
Data Sources Workspace, click the Data Sources tab in the Workspace
window.

When you open the Data Sources Workspace, you see a folder for each
type of data source that Witango supports.

• Expanding a folder shows the defined data sources for that type.

• Expanding a data source shows the tables in that data source.
Depending on the settings for the data source, you may need to
enter user name and password information before a connection can
be made.

• Expanding a table shows the columns in that table.

Folder for
data source
type.

Tables in the
data source.

Key symbol
identifies
primary key
column.
8585

The Data Sources Workspace

8686
The bolded data source name in the Workspace indicates the currently
active data source—that is, the data source assigned to the front-most
open action window. If no database actions are active, no data source
names are bolded.

Once a connection is made to a data source, the user name used for the
connection appears in parentheses after the data source name. This
avoids any confusion when different logins are being used for the same
data source.

Using Primary Key Columns
Using Primary Key Columns
A primary key column is a column (or combination of columns) whose
value uniquely identifies each record (row) in a table. For example, a
customer number might be the primary key in a customers table.

Primary key columns are identified in the Data Sources Workspace by the
column/key icon.

Witango builders rely on the primary key column values in various places
to identify specific records. When using the builders, it is important to
first check that the primary key for each table involved is set correctly. If
the specified column or columns do not uniquely identify each record in a
table, unexpected results can occur when executing the file. For example,
if you mistakenly set the primary key column for a customer table to the
“state” column (many customers likely share the same state), using the
resulting file to delete a particular customer deletes A L L the
customers in the same state.

When connecting to a data source, Witango Studio queries the database
for information to determine the primary keys. If there is no response,
Witango determines the default primary keys by scanning each table for
the first column with an appropriate data type (numeric or character).

To change or add a primary key column

Do one of the following:

• In the Data Sources Workspace, right-click the column and choose
Primary Key from the context-sensitive menu that appears. A
check mark in the menu identifies a primary key column.

• Right-click the column in the Data Sources Workspace, choose
Properties from the context-sensitive menu that appears, and
check or uncheck the Primary Key check box in the Properties
dialog box.

• Select a column in the Data Sources Workspace and choose
Primary Key from the Data Source menu. A check mark in the
menu identifies a column as a primary key.
Primary Key
8787

Data Source Operations

88
Data Source Operations
Creating a Data
Source
88
ODBC

Before you create an ODBC data source, make sure the required ODBC
drivers are installed and your database server is running (or, for drivers
that access local files, your database files are available).

To create an ODBC data source

1 Do one of the following:

• From the DataSource menu, select New, and then choose
ODBC.

• Right-click the Data Sources Workspace, and then select New
from the context-sensitive menu that appears.

The Create New Data Source dialog box appears:

Note The dialog box appearing may look different. The appearance
varies depending on the version of ODBC you have.

2 Select System Data Source from the list of data sources.

Note Witango only supports System data sources.

3 Choose Next.

Data Source Operations
See your ODBC driver
documentation for detailed
configuration instructions.
The Create New Data Source dialog box guides you through the
rest of the process. Follow the instructions that appear.

JDBC

To create an JDBC data source

Note Before you will be able to configure a JDBC data source you will
need to have the Java 2 Runtime Environment (at least JVM 1.4.1)
installed on your machine. This can be downloaded from http://
java.sun.com.

Note Before you will be able to configure a JDBC data source you will
need to have the JDBC driver for your chosen database on your
machine.

1 Add the JAR file for your database driver to the class path in your
environment variables.

• Right-click on ‘My Computer’ and select Properties from
the context sensitive menu that appears.

• The System Properties window will appear, move to the
Advanced tab and click the Environment Variables
button.
8989

Data Source Operations

9090
• The Environment Variables window will open, and in the
System Variables pane you should see an entry for
CLASSPATH. Select the CLASSPATH entry and click on
the Edit button.

Data Source Operations
• The Edit System Variable window will open, you will need to
edit the current variable value to include the path to all of
the JDBC drivers (JAR files) you wish to use, each path in
the list should be semi-colon separated.

For example:

c:\program files\witango\jdbcdrivers\mysql-
connector-java-2.0.14-bin.jar

• Click the OK button to confirm the changes.

2 Do one of the following:

• From the DataSource menu in the Witango Studio, select
New, and then choose JDBC.

• Click the JDBC folder in the Workspace of the Witango
Studio, and then right-click in the Workspace. Select New
from the context-sensitive menu that appears.
9191

Data Source Operations

9292
• The JDNBC Configuration dialog box appears:

3 Complete the details in the JDBC ConfigurationWindow:

Datasource is the name of the datasource being created.

Driver Class is the reference to the JDBC and exact text string will
be included in the documentation of your JDBC Driver
documentation. Common ones have been included in a drop down
menu for your convenience.

Note If you wish to add your common drivers to this drop down list,
this can be done by adding the correct entry to the following file:
C:\Program Files\Witango\Dev Studio
5.5\Configuration\JDBCDriverClass.ini

Data Source Operations
• URL is the connection string to the database server. This
will aslo be available in your driver documentation.
9393

Data Source Operations

9494
• Additional Properties required for the Connection can then
be added in the Properties table.

1 Open Witango Studio.

2 Open the Data Sources workspace by choosing Workspace from
the View menu or by clicking the Data Sources tab in the bottom
right corner of the Workspace window that appears.

3 From the DataSource menu, choose New, then choose JDBC...
from the submenu.

The JDBC Data Source window appears:

Data Source Operations
4 Complete the details in the JDBC Data Source Window:

Click the Add button:
9595

Data Source Operations

9696
5 Open the JDBC folder in the Workspace area. You should now see
a Music folder.

6 Open the Music folder. You will be prompted to login if you are not
already connected to the database..

7 Choose OK.

Data Source Operations
See your JDBC driver
documentation for detailed
configuration instructions.
The database should appear in the JDBC folder in your Workspace.

Oracle

Before creating an Oracle data source, make sure the correct Oracle
client software is installed and the database server you want to connect
to is available on the network.

To create an Oracle data source

1 Do one of the following:
9797

Data Source Operations

9898
• From the Data Source menu, select New, and then
choose Oracle.

• Right-click the Data Sources Workspace and choose New
from the context-sensitive menu that appears.

The Oracle Data Source dialog box appears:

2 In the Data Source Name field, type a name for the data source.

3 Type the SQL Connect string in the field provided.

With current versions of SQL*Net, this should be the name of a
database alias set up on your computer with the Oracle
EasyConfig application.

Note Witango only supports SQL*Net versions 7.1 and 7.3, and
greater.

4 Click OK.

The new data source is added to the Data Sources Workspace.
Modifying a
Data Source
To modify a data source

1 Select the data source you want to modify.

2 Do one of the following:

• From the DataSource menu, choose Modify....
• Right-click the Data Sources Workspace, and then choose

Modify... from the context-sensitive menu that appears.

• From the View menu, choose Properties, and click Modify....
in the Data Source Properties dialog box that appears.

Data Source Operations
3 Enter the required information in this dialog box and the subsequent
dialog boxes, until you have completed the data source modification
process.

Note The data source modification process depends on which driver
and which version you have installed on your machine. See your driver
documentation for detailed instructions.

If a modified data source is already loaded, the data source is
reloaded automatically using the new settings.

For Oracle data sources, modifying a data source does N O T affect
Witango application files already using that data source, even if they are
open when the modification is made. To update a document with the new
settings, you must reassign the data source to the document by choosing
Set Data Source from the Data Source menu.
Deleting a Data
Source
To delete a data source

1 Select the data source you want to delete.

2 Do one of the following:

• From the Data Sources menu, choose Delete.

• From the Edit menu, choose Delete.

• From the main toolbar, click the Delete icon.

• On the keyboard, press Delete.

• Right-click the Data Sources Workspace, and choose Delete
from the context-sensitive menu that appears.
To suppress the
confirmation dialog box,
hold down CTRL when
deleting.
A confirmation dialog box appears.

3 Click Yes.

The data source is deleted.
Reloading a
Data Source
If the structure of your database changes while Witango Studio is open,
you need to reload the data source.
9999

Data Source Operations

100100
To reload a data source

1 Select the data source you want to reload.

2 Do one of the following:

• From the Data Sources menu, choose Reload.

• Right-click the Data Sources Workspace, and then choose
Reload from the context-sensitive menu that appears.

The login information is as specified in the data source’s login properties.
Handling
Unknown Data
Sources
For Oracle data sources, actions do not rely on anything in Witango
Studio's list of data sources to connect to a data source. When
connecting, Witango Studio uses only the information stored in the data
source. For this reason, Witango Studio could connect to an action's data
source while not having a data source defined with matching parameters.
Such a data source is called an unknown data source.
For more information on
the default log in settings,
see Working With Data
Source Properties on
page 110.
When you open an action having an undefined data source in Witango
Studio, yet Witango Studio is able to connect to it, the unknown data
source is added automatically to the list in the Data Sources Workspace.
The login information for the new data source is set to the default.

This happens even if there is a data source defined with the same
parameters, but with a different data source name. That is, all of the
pieces of data source information must match in order for an existing one
to be used.

Assigning Data Sources to Actions
Assigning Data Sources to Actions
To assign a data source to an action, do one of the following:

• Drag a table or column from the Data Sources Workspace to a
database action editing window or builder window:

From the Data Source menu, choose Set Data Source....

Dragging a table or column into an
action editing window assigns the
data source to the action.

The data source icon and data
source name appear next to the
assigned action
For more information, see
“Setting Data Sources for
Actions” on page 106.
The Data Source Selection dialog box appears. Use this dialog box to
set the data source for the action.

• Right-click on an action, and choose Set Data Source from the
context-sensitive menu that appears.

The Data Source Selection dialog box appears. Use this dialog box to
set the data source for the action.
101101

Assigning Data Sources to Actions

102102
The data source icon and data source name appear next to the assigned
action.

Tip You can also use the Set Data Source command to set data
sources and data source parameters for one or more actions. For more
information, see “Setting Data Sources for Actions” on page 106.
For more information, see
“Working With Data
Source Properties” on
page 110.
If Witango Studio has not yet connected to the data source, a login dialog
box may appear. This dialog box only appears if you have the Ask each
time option checked, which is the default, in the Development section of
the Data Source Properties dialog box.

Note Some actions (for example, Transaction actions) do not have
columns. If you drag a database action that has no columns, you are
prompted to select a data source.

If an action already has a data source assigned to it and you drag a column
into it from a different data source, you are asked if you want to cancel
the operation or to use the new data source instead.

Note If there are differences in the structures of the databases,
changing an action's data source may cause DBMS errors when the
action is executed.

If you use a new data source, Witango Studio scans the affected actions
and updates the table owner information to match the new data source.

Setting Up Deployment Data Sources
Setting Up Deployment Data Sources
Witango Studio allows you to specify deployment data source parameters
that are different from development data source parameters; you can use
meta tags in your application files to specify deployment data source
parameters. Using deployment data sources, you can:

• execute a Witango application file against multiple data sources

• deploy a Witango application file against a data source (ODBC, OCI,
JDBC) other than the one that you developed with.

You can specify deployment data source parameters for each Witango
action in an application file on a per-action basis; these can override the
default data source settings.

CautionDeployment data sources must point to either the same
database as the development data source or one with the same
structure and table owner names. Table owner names are stored within
the Witango application file and not within the data source, so the
development and deployment owner names cannot be different.

The following sections describe how to set the parameters of a data
source, and how to set deployment (or development) data sources for
actions using the Set Data Source command.
For more information, see
“Disabling the Use of Meta
Tags in Data Sources” on
page 109.
Note In order to use meta tags in deployment data sources, the
Witango administrator must set the Witango Server’s
passThroughSwitch configuration variable to on.
Setting
Deployment
Data Source
Properties
You can set deployment properties for data sources in the Deployment
section of the Data Source Properties dialog box. This allows you to
specify run-time data source parameters.

To view the Deployment section of the Data Source Properties
dialog box:

1 Select the data source in the Data Sources Workspace.

2 Do one of the following:

• From the View menu, choose Properties.

• Type Alt+Enter.
103103

Setting Up Deployment Data Sources

104104
• Right-click on the data source and choose Properties from the
context-sensitive menu that appears.

The Data Source Properties dialog box appears.

3 Click the Deployment tab.

If you check Same as development, the Type, Name, Database,
Username and Password fields are disabled; the default values of these
fields are transferred from the development data source to deployment
data source.

If you uncheck Same as development, specify the deployment data
source parameters.

Deployment Data Source Parameters

• Type. Specify the type of data source, or enter a meta tag that
evaluates to a data source type when the Witango application file is
executed (for example, <@VAR NAME=datasourcetype>).

The Type field must evaluate to one of the type strings shown in the
combo box drop-down menu:

• DAM (Macintosh-only)

• FileMaker (Macintosh-only)

• JDBC

• ODBC

• Oracle

• Name. This field must evaluate to a valid specifier, dependent upon
the data source type:

• DAM: DAM host name (Macintosh-only)

• FileMaker: path to the FileMaker Pro application, or the yen
symbol “¥” to indicate “Any” (Macintosh-only)

• JDBC: data source name

Setting Up Deployment Data Sources
• ODBC: data source name

• Oracle: connect string or database alias

The deployment data source name field for Oracle is NOT the
name you have given to a data source in Witango Studio.

You can also enter a meta tag that evaluates to a valid specifier when
the Witango application file is executed (for example, <@VAR
NAME=datasourcename>).

• Database (Macintosh-only). This field is used only for FileMaker Pro
and DAM data source types and must evaluate to a valid database
name.

You can also enter a meta tag that evaluates to a valid specifier when
the Witango application file is executed (for example, <@VAR
NAME=databasename>).

• Username and Password. These fields may contain meta tags that
are substituted when Witango Server executes the application file.
Username is not used for FileMaker Pro data sources.
Meta Tags and
Deployment
Data Sources
All fields may contain meta tags, which are substituted when Witango
Server executes the application file. When you right-click any text field, a
context-sensitive menu appears; it contains standard editing commands
and the Insert Meta Tag... option.
For more information, see
“Inserting Meta Tags” on
page 135.
Choose Insert Meta Tag... to open the Insert Meta Tag dialog box. You
can insert many of the commonly-used Witango meta tags.
For more information, see
“Disabling the Use of Meta
Tags in Data Sources” on
page 109.
Before connecting to a data source, Witango checks the data source
parameters for meta tags. If meta tags are found, and if the
passThroughSwitch configuration variable is set to on, the substitution
is performed, and the results are used to establish the connection. If no
meta tags are found, the data source parameters are passed as-is.

The following example shows a user name being obtained from the user
variable username. The user password is taken from the file whose name
corresponds to the user name, followed by the .pwd extension.

Username:<@VAR NAME=”username”>

Password: <@INCLUDE FILE=”<@VAR username>.pwd”>
105105

Setting Data Sources for Actions

10
Setting Data Sources for Actions
Using the Data
Source
Selection
Dialog Box
1066
You can use the Set Data Source command to set development and
deployment data source information independently for any selected
actions.

To set development and/or deployment data sources for one or
more actions

1 Select one or more actions by clicking on them. You can select a list
of actions by holding down the SHIFT key while selecting, or select
discontiguous actions by holding down the CTRL key while selecting.

2 Do one of the following:

• From the DataSource menu, choose Set Data Source.

• Right-click and choose Set Data Source from the context-
sensitive.

The Data Source Selection dialog box appears:

This dialog box opens with the following defaults:

• Both Set development data source and Set
deployment data source are selected, allowing you to
set both the development and deployment data sources of
the actions.

• The development data source for the first database action in
the selection is selected in the list.

Setting Data Sources for Actions
3 To set a development data source for the selected actions, make sure
the Set development data source is checked, and select a data
source from the list.

To set a deployment data source for the selected actions, make sure
Set deployment data source is checked, and select one of the
following:

• Use data source default. This option specifies that the
Deployment settings from the selected data source are applied
to all the selected database actions.

You specify the deployment settings for a data source in the
Deployment section of the properties of the data source. For
more information, see Working With Data Source Properties
on page 110.

• Specify. This option specifies that the deployment data source
settings in the text fields (Type, Name, and so on) are applied
to all the selected database actions.

If you choose Specify, you can check Same as development,
which causes the development data source to be used for
deployment, or you may enter specifications for the deployment data
source settings in the fields provided.

For more information, see “Deployment Data Source Parameters”
on page 104.
Using the
Action
Properties
Dialog Box
You can also use the Deployment tab of the Action Properties dialog
box to set data source parameters for actions.

To view the Deployment section of the Action Properties dialog box

1 Select the action.

2 Do one of the following:

• From the View menu, choose Properties.

• Type Alt+Enter.

• Right-click on the action and choose Properties from the
context-sensitive menu that appears.

The Action Properties dialog box appears.
107107

Setting Data Sources for Actions

108108
3 Click the Deployment tab.
For more information, see
“Setting Deployment Data
Source Properties” on
page 103.
4 Use the Deployment section of the Action Properties dialog box the
same way as the Data Source Properties dialog box.

Disabling the Use of Meta Tags in Data Sources
Disabling the Use of Meta Tags in Data Sources
The passThroughSwitch configuration variable allows you to specify
whether meta tags are substituted in data source parameters when
Witango application files are executed on Witango Server.
Passing through meta tags in deployment data sources is enabled in
Witango by default. If you want to disable (or enable) this feature, you
can do so by changing the options in the Witango Admininstrator
Application (config.taf application file), in the Feature Switches
screen:

passThroughSwitch
Check or uncheck the check box beside the option.
109109

Working With Data Source Properties

11
Working With Data Source Properties
1100
The Data Source, Table, and Column Properties dialog boxes allow you
to view information about selected data sources, tables, and columns.

In the Data Sources Workspace, right-click on one of these items (a data
source, a table under a data source, or a column under a table) and
choose Properties from the context-sensitive menu that appears.

Tip While the Properties dialog box is open, you can click on any
item in the Data Sources Workspace to display its properties. For
example, you can switch from a data source to a column, or one table
to another.
Data Source
Properties
The Data Source Properties dialog box contains three sections: General,
Development, and Deployment. Click a tab to display the corresponding
section.

• General. Clicking the General tab displays basic information about
the selected data source. The following example shows the General
Properties for an ODBC data source called “Activity Planner”.

Working With Data Source Properties
The data source name and type appear for all data sources, but the
information in the other fields depends on the type of data source.

To edit the selected data source, choose Modify.

The data source editing dialog box for the data source type appears.
When you close the dialog box, new settings appear on the General
tab of the Data Source Properties dialog box.

• Development. Clicking the Development tab shows the login
information required by Witango Studio for connection to the data
source:

The Development tab of the Data Source Properties dialog box asks
for a user name and password for the data source.

When the Ask each time option is checked, Witango asks for
connection information whenever the data source is expanded.
When you set up a new data source, this option is checked.

• Deployment. Clicking the Deployment tab allows you to specify
different login information to be used when Witango Server executes
the action the data source is assigned to. For more information about
this dialog box, see Setting Up Deployment Data Sources on
page 103.

Data Source
Type Other Information

JDBC [None]

ODBC [None]

Oracle Connection string
111111

Working With Data Source Properties

11
Table
Properties
1122
Table Properties shows the name, owner, and type of table.
Column
Properties
The Column Properties dialog box displays the name, title, data type,
length, whether nulls are allowed or not, and whether the column is a
primary key or not.
For more information, see
“Using Primary Key
Columns” on page 87.
The Column Properties dialog box allows you to edit the Title field and
select the Primary Key option. The title is used by the builders as the
default HTML display title for the column.

The Primary Key option is used by the builders to create actions affecting
a specific record (record detail display, update and delete).
.For more information, see
“Column Options” on
page 179.

Connecting to Data Sources
Connecting to Data Sources
When you expand a data source in the Data Sources Workspace you
have not connected to, the login information specified in the Data Source
Properties Development window is used for the connection. If you
checked the Ask each time option, the Log In dialog box appears,
allowing you to type your user name and password.
Connecting to
Large Data
Sources
When Witango Studio connects to a data source containing more than
25 tables, it displays the Select Tables dialog box, allowing you to select
which tables you want to work with.

You can also open the Select Tables dialog box by doing one of the
following:

• Select a data source; from the Data Source menu, choose Select
Tables.

• Right-click a data source and choose Select Tables from the
context-sensitive menu that appears.

The following is an example of the Select Tables dialog box:

Selecting Tables

The Available tables list in the Select Tables dialog box shows the
tables in the data source. Drag the tables you want to work with from
this list into the Tables to use list.

If you no longer want to use one or more tables, drag them from the
Tables to use list to the Available tables list.
113113

Connecting to Data Sources

114114
Filtering Tables

You can use the Owner and Type drop-down menus to filter the tables
shown in the Available tables list of the Select Tables dialog box.

For example, to show only tables owned by a specific user, select that
user from the Owner drop-down menu. To show only system tables,
select SYSTEM TABLE from the Type drop-down menu. (The
contents of these drop-down menus are determined by the data source;
only owners and types existing in the database are listed.)
Editing and
Executing Files
on Different
Computers
When connecting to a data source, Witango relies on configuration
information which may not included in the Witango application file itself.
This becomes an issue when Witango Studio and Witango Server reside
on different computers, and when editing a file created on a different
computer. Witango cannot connect to the data source unless the
computer is set up correctly.

The following sections explain which pieces of data source information
are stored in the application file, which ones are not, and how to ensure
an application file works on a computer other than the one it was created
on.

ODBC and JDBC Data Sources

Application files assigned ODBC and JDBC data sources have these
pieces of information stored in them:

• ODBC or JDBC data source name

• user name

• password.

For the data source connection to be made on another computer, a data
source with the same name pointing to the original database must exist.
The user name and password must also be valid for the server pointed to
by the data source.

Oracle Data Sources

Application files assigned Oracle data sources have these pieces of
information stored in them:

• SQL connect string or database alias name

• user name

• password.

Connecting to Data Sources
If you specified a SQL connect string (such as T:199.230.9.8:ORCL)
when defining the data source, your application file works on any
computer the string points to, provided that it has access to the Oracle
database server. This is because all the connection information is stored
right in the string.
115115

Connecting to Data Sources

116116

5
C H A P T E R F I V E

Using Snippets

Snippets Basics and Operations
Snippets are named pieces of text, such as Witango meta tags, HTML tags,
standard headers and footers, plain text, JavaScript, and SQL. Snippets are
a good way of saving text, HTML markup, or other commands that you
use frequently. You can insert snippets into most text fields and text
windows throughout Witango Studio.

Witango Studio comes with a large defined set of snippets and also lets
you create your own snippets.

This chapter discusses how to:

• use snippets

• create new snippets

• edit and organize snippets.

• search snippets.
117

About Snippets

11
About Snippets
1188
Snippets allow you to quickly access text, meta tags, and HTML that you
use often. You can insert snippets into an editing window by dragging
them or double-clicking on a snippet when you have an HTML editing
window open.

A special feature of snippets lets you surround a selection of text with
HTML tags or meta tags, in addition to putting text, HTML tags, or meta
tags at a particular place.

Your snippets are saved as XML files within theWitango folder inside your
user’s Documents and Settings folder.

C:\Documents and
Settings\<your_user>\Witango\MySnippets.xml

 You can edit Witango snippet files with a text editor or HTML editor, or
edit them within the Snippets Workspace.
The Snippets
Workspace
You manipulate and manage snippets in the Snippets Workspace.

To display the Snippets Workspace

1 From the View menu, choose Workspace.

2 Click the Snippets tab.

About Snippets
3 To view the contents of a folder, expand it by clicking the “+” sign.

Folders and snippets appear alphabetically.

Snippets are grouped in five folders:
For more information, see
“Column Snippets” on
page 128.
• Builder Snippets contains pre-installed snippets used by the Search
and New Record builders. These may be edited to change default
HTML used in various places in the builders.

• Column Snippets contains context-sensitive column snippets, used
in the Search action, the Search Builder, and the New Record Builder.

• Configuration Variables contains pre-installed snippets of the
Witango configuration variables. They are organized by category and
by variable scope.

• My Snippets contains snippets you create and edit.

• Standard Snippets contains pre-installed snippets, which are not
editable.

The following are examples of some of the snippet folders and snippets
available in the Snippets Workspace:
119119

Working With Snippets

12
Working With Snippets
Inserting
Snippets
1200
To insert a single snippet into an application file

Do one of the following:

• Drag the snippet to the text field you want (for example, the Results
editing HTML window).

• Place your cursor where you want the snippet inserted, then double-
click the snippet (HTML editing windows only).

• Right-click on the snippet and choose Insert from the context-
sensitive menu that appears.

• Right-click on the snippet and choose Copy from the context-
sensitive menu that appears. Right-click in an editing window, and
choose Paste from the context-sensitive menu.

Tip The content of a snippet appears as a Windows tool tip if you
place your mouse cursor over the snippet.

To insert multiple snippets into an application file

1 Select the snippets you want to drag by doing one of the following:

• Click a snippet, hold down the SHIFT key, and click the last item
you want to select. All items in order between the first and last
snippet you clicked are selected.

• Click a snippet, hold down the CTRL key, and select additional
snippets (discontiguous selection).

2 Insert the snippets by doing one of the following:

• Drag the snippets into the text field you want.

• Place your cursor where you want the snippet inserted, then
double-click the snippets to insert them.

• Right-click on the snippets, and choose Insert from the
context-sensitive menu that appears.

• Right-click on the snippets, and choose Copy from the context-
sensitive menu that appears. Right-click in an editing window and
choose Paste from the context-sensitive menu that appears.

Working With Snippets
Note The Copy command copies the content of a snippet to the
Windows clipboard. The Insert command copies the content of the
currently selected snippet.
Creating and
Editing
Snippets
You can create your own snippets in the My Snippets folder to
automate repeated tasks. You can also edit snippets in the Builder
Snippets folder, or copy other snippets into the My Snippets folder to
customize them to your needs.

Editable and Non-Editable Snippets

• Editable snippets can be edited, copied, inserted, deleted and
renamed. You can also show their properties. Snippets in the
Builder Snippets and My Snippets folders are editable.

• Non-editable snippets cannot be edited, deleted, nor renamed. You
can copy their contents to the clipboard, and show their properties.
Snippets in the Column Snippets, Configuration Variables, and
Standard Snippets folders are non-editable.

To create a snippet with existing text

1 Drag text to a folder in the Snippets Workspace.

2 A snippet is created containing the text you dragged. The name of
the new snippet defaults to “Untitled” and is editable. Type in a new
name.

To create a snippet with new text

1 Do one of the following:

• From the Edit menu, choose Snippet, then choose New.

• Right-click in the My Snippets folder of the Snippets
Workspace, and select New Snippet from the context-
sensitive menu that appears.
121121

Working With Snippets

122122
The New Snippet window appears:

2 Fill in the window as follows.

Name. Assign a name to the new snippet.

Create in this folder. The My Snippets folder is shown by default.
Select where you want to create the new snippet.

3 Click OK.

The Snippet contents window appears:

4 Type in the content of your snippet or insert text from elsewhere.

Working With Snippets
Using Placeholders in Snippets

When you right-click the Snippet contents window, the Insert
Placeholder command is listed in the context-sensitive menu that
appears, in addition to the standard Witango editing commands.

Insert Placeholder inserts a special symbol—the yen symbol, ¥—into
the Snippet contents window. This placeholder character allows you to
create snippets that put HTML tags or meta tags around text you select
before inserting the snippet. For example, you can create a snippet of the
following text:

<H1>¥</H1>

To use this snippet while editing HTML, you select the text you want to
apply the <H1> format to, and then drag the snippet into the editing
window or double-click the snippet. The selected text is surrounded by
the <H1> and </H1> tags.

Editing Snippets

To edit the contents of a snippet

1 Do one of the following:
123123

Working With Snippets

124124
• Right-click the snippet you want to edit, and choose Edit from
the context-sensitive menu that appears:

• Hold down the Ctrl key and double-click the snippet.

The Snippet content window appears:

2 Edit the text.

You can edit multiple snippets. Choosing Edit from the context-sensitive
menu opens the contents window for all the selected snippets.
Managing
Snippets and
Snippets
Folders
You can create new folders to organize your snippets in the My
Snippets folder. This feature is useful if you want to categorize your
snippets by type (for example, meta tags, SQL, HTML, and text snippets).
Snippet Properties allows you to see the location and size of snippets
and snippet folders.

Snippets Folder

To create a new folder in the My Snippets folder

1 Do one of the following:

Working With Snippets
• Select the My Snippets folder. From the Edit menu, select
Snippet, and then choose New Folder.

• Right-click the My Snippets folder, and choose New Folder
from the context-sensitive menu that appears.

A folder called Untitled appears. The name is already selected
so you can change it.

2 Type in a different name.

To rename a snippet or snippet folder

1 Select a snippet or snippet folder, and do one of the following:

• From the Edit menu, choose Rename.

• Click the snippet or snippet folder again.

• Right-click the snippet or snippet folder, and choose Rename
from the context-sensitive menu that appears.

2 The name of the snippet or snippet folder becomes editable; type in
the new name

Note Snippet names must be unique inside a folder.

Snippet Properties

To see the properties of a snippet or snippet folder

1 Select the snippet or snippet folder.

2 Do one of the following:

• From the View menu, choose Properties.

• Type Alt+Enter.

• Right-click the snippet or snippet folder, and choose Properties
from the context-sensitive menu that appears.

The Snippet Properties or Snippet Folder Properties dialog box appears:
125125

Working With Snippets

126126
The Snippets Folder Properties and Snippets Properties dialog boxes
displays the name and location of the snippet folder or snippet; the
Snippets Properties dialog box also displays the size and last modified
date of the snippet.

Once you have the Properties dialog box open, clicking on different
snippets or snippet folders displays the properties of that snippet or
snippet folder.
Copying,
Moving, and
Deleting
Snippets
Snippets in the Standard Snippets, Configuration Variables and
Column Snippets folders are non-editable and cannot be edited within,
nor deleted from those folders. However, they can be copied into the My
Snippets folder to be edited and organized.

To copy a non-editable snippet to the My Snippets folder for editing

• Drag the snippet from the Standard Snippets, Configuration
Variables, or Column Snippets folders to the My Snippets
folder.

To move a snippet within the My Snippets folder

• You can move snippets to a different folder within the My Snippets
folder by dragging snippets to their new location.

To duplicate a snippet within the My Snippets folder

• Hold down the CTRL key, and drag the snippet.

To delete a snippet or snippet folder

1 Select the snippet or snippet folder.

2 Do one of the following:

• From the Edit menu, choose Delete.

• On the main toolbar, click the Delete icon.

• Press DELETE.

• Right-click the snippet or snippet folder, and choose Delete
from the context-sensitive menu that appears.

A dialog box appears, asking you to confirm that you want to
delete the snippet.

Working With Snippets
3 Click OK.

Note You can delete items from only the My Snippets and Builder
Snippets folders.

If you want to delete multiple snippets, select the snippets and choose
Delete from the context-sensitive menu.
127127

Column Snippets

12
Column Snippets
1288
The Column Snippets area of the Snippets Workspace becomes active
when the following are displayed:

• Results HTML of the Search action.

The Search action’s Select columns appear and the Columns
Snippets folder expanded, if necessary. (The Search action appears
in the actions generated by the New Record Builder and Search
Builder, as well as a separate action.)

• New Record Response HTML in the New Record Builder.

Shows all the columns from the table into which the new record is
being added.
The content of each snippet is <@COLUMN name>, where the column
name is the name from the Search action or New Record Builder you are
editing.

6
C H A P T E R S I X

Setting Preferences

Changing Your Witango Studio Preferences
The default preferences for Witango Studio are automatically set during
installation. If you want to change the various settings required by the
application, you can do so using the Preferences dialog box.

This chapter describes each of the following preference settings:

• Studio, data source, and online help dialog box options

• HTML and text options

• source control options

• compile options

• objects options.
129

Using the Preferences Dialog Box

13
Using the Preferences Dialog Box
1300
The Preferences dialog box is where you can view and change the many
options available in Witango Studio.

To use the Preferences dialog box

1 From the Witango menu, choose Preferences.

The Preferences dialog box appears. See page 131.

2 Set Witango preferences using the five tabs in this dialog box: the
first for general preferences, the second for options affecting text
editing windows, the third for source control the fourth for compile,
and the fifth for objects. Switch among preference sections by
clicking the appropriate tab to display the options available.

For more information, see “Selecting Options” on page 131

3 After setting your preferences, click OK to save your changes and
close the Preferences dialog box.

Any open editing windows are automatically updated with any new
settings.

Selecting Options
Selecting Options
General
 To display the General section of the Preferences dialog box, if not
already displayed, click the General tab.

• Studio options

Opening a text or HTML file in the Project Workspace by default
opens the file in Witango’s built-in editing window. If you want to use
the application defined for that file type in the Windows Explorer
instead, deselect the Open text files in projects using Witango
Studio option.

Check the Save last-used page format settings in the Builders and use
them as defaults for new Builders option to save and reuse page
formatting settings for the Search Builder and New Record Builder.
Page formatting settings are saved independently for each type of
builder.
131131

Selecting Options

132132
• Data source options

Select the Include system tables option to include a data source’s
system tables in the Data Sources Workspace. This option is disabled
by default. System tables contain meta-data; that is, information
about the database itself, users, and so on.

Set the maximum number of tables you want to appear. The default is
25. If a data source has more than the specified number of tables, the
Select Tables dialog box appears, allowing you to work with a more
manageable subset of tables.

• Help options

Select the Show help dialog option to show the Help Information
dialog box, which tells you about associating a Web browser with the
HTML help system when you choose an item from the Help menu.

Selecting this option is the only way to show the help dialog again if
you have previously selected Don’t show this dialog again in the
Help Information dialog box.

Check the Show TipWitango of the Day option to show the Tip
of the Day dialog box upon entering Witango Studio. The Tip of the
Day displays useful information about using Witango Studio more
effectively. It can be disabled by unchecking this option here or in the
Tip of the Day dialog box.

• Dependencies
For more information, see
“Working With Project
Dependencies” on page 74
Check the Warn if unresolved option to show a warning about
missing data sources or objects referenced by Witango application
files and Witango class files.

• Site Options
For more information
about FTP, For more
information, see “Working
With Project FTP Sites” on
page 79
When you deploy (upload) or download a project file to a remote
site via FTP, the File Transfer Status dialog box appears. Check the
Close file transfer progress dialog when operation
completes option to automatically close the File Transfer Status

Selecting Options
dialog box when the transfer is complete. Otherwise, you can close
it by clicking Close on the File Transfer Status dialog box. This
option is unchecked by default.
Text
 When you click the Text tab in the Preferences dialog box, the following
text options appear:

Text

Select the basic text attributes for the
text that appears in the editing
windows:

• Font. Select from the
monospaced fonts installed on
your machine, such as Terminal,
Fixdsys, Courier, Courier New, and Lucida Console.

• Size. Select from the point sizes available for the selected font,
such as 9, 10, 11, 12, 14, 16.

• Tab Size. Type the number of characters you want to equal one
tab character. The default is “3”.
133133

Selecting Options

134134
• Auto indent. This option, enabled by default, inserts a tab
character automatically at the start of a new line at the same
indent level as the previous line.

• Background

Color refers to the background color of the
HTML editing window.

You can select from the colors in the drop-down
menu: Black, Maroon, Green, Olive, Navy, Purple, Teal, Gray, Silver, Red,
Lime, Yellow, Blue, Fuchsia, Aqua, and White. The default is “White”.

If you select a different color, the background of the Category menu
changes to show you the selected font, size, and color against that
background.

• Syntax Coloring

In addition to setting a default font and size for text appearing in the
HTML editing window, you can also add color to the selected font
for certain categories of text.

Selecting Options

Coloring your text can make editing of your text, HTML, and meta
tags much faster and easier, and reduce the chances of making syntax
errors. Only valid HTML and meta tags appear in the specified color.

Note Meta tag attribute names are not currently checked for validity.

The default is to show the editing window text with syntax coloring
enabled. If you deselect the Show syntax coloring option, all text
in an editing window appears black on a white background.
135135

Selecting Options

136136
The following table describes each category and the default color for
the text in the category:

To assign a different color to a category, select the category in the list,
then select a color from the Color drop-down menu. The colors
available are the same colors listed for Background on page 134.

• Use Defaults

If you change text preferences and want to return to the defaults,
click Use Defaults.

Category Text Affected by the Setting Default Color

Text Text that is neither a meta tag nor HTML. Black

HTML Tag HTML tag names, for example, <BODY>
and </BODY>

Blue

Meta Tag Meta tag names without any attributes, for
example, <@POSTARG>

Green

Attribute Name Meta tag attribute name, for example,
NAME= in <@POSTARG NAME="Fred">

Purple

Attribute
Values

Meta tag attribute value, for example,
"Fred" in <@POSTARG NAME="Fred">

Red

Comment Any text enclosed within the <@COMMENT>
<@/COMMENT> meta tag pair, including the
<@COMMENT>

<@/COMMENT> meta tags. This category
also includes the <@!> meta tag and HTML
comments.

Gray
For more information, see
Using Source Control in
Witango on page 97.
• Add new projects to. To add newly created Witango projects to
source control automatically, select the name of your source control
system in the drop-down menu. The default is Don’t Add New
Projects To Source Control.

• Prompt to add files when inserted into project. If you check
this option, when you add new files to a Witango project, Witango
Studio asks if you want to add the new files to source control. Click
Yes to add the files or No to cancel.

• Use dialog for checkout. Check this option if you want the Check
Out File(s) dialog box to always appear when you check out files.
Otherwise, the selected files are automatically checked out without
displaying the dialog box. A checkmark in the check box () beside
the file name in the Project Workspace indicates the file is checked
out.

Selecting Options
Objects
 When you click the Objects tab in the Preferences dialog box, the
following objects options appear:

The Objects section allows you to view and edit search paths for
Witango class files. Because of the way Witango locates COM objects
and JavaBeans, it is not necessary to set up search paths to search for
them. This section applies only to Witango class files.

Directories

For more information, see
“Setting Search Paths for
Witango Class Files” on
page 416
This area displays the list of search paths that Witango uses to find
Witango class files whenever a Witango application file refers to them. If
you added Witango class files to the Object Workspace, the paths to
these Witango class files are automatically placed in this list. You can add
or delete paths in this list, using the following buttons:

• Add. If the path you want Witango to search is not in the list, click
the Add button. A Browse for Folder dialog box appears.

• Delete. If there is a path that you no longer need, you can delete it by
selecting it and clicking the Delete button.

When Witango searches for a Witango class file, it starts from the first
path specified in this list and continues from there. If two Witango class
files in different folders have the same name, Witango uses the Witango
class file in the first listed path.
137137

Selecting Options

138138
You can change the order in which the directories are searched by
changing the relative positions of the paths on this list, using the following
buttons:

• Up and Down. Move the paths on the list up or down by selecting
them and then using the Up or Down buttons, so that they appear in
the order you want.
Compile
 When you click the Compile tab in the Preferences dialog box, the
following objects options appear:

The Compile section allows you to preset your defaults when running,
syntax checking reports and compiling your applications to J2EE. These
settings are only relevant to users of the Witango Studio Professional
edition.

The Report Options

• Show Information

Check this checkbox if you want the Syntax Report to show
information as to the status of the syntax check, ie, which file it
is currently working on.

• Show warnings

Selecting Options
Check this checkbox if you want the Syntax Report to show
warnings, that is issues which may cause errors when a
compiled application is deployed. These warnings should be
reviewed by the user.

• Show Errors

Check this checkbox if you want the Syntax Report to show
errors. These errors will prevent the application being
successfuly complied for J2EE and should therefore be fixed.

Note These checkboxes will not prevent you accessing the information
once in the syntax report, they only affect what information is
immediately visible to the user.

The Compile Options

The compile information settings allow the user to customise the compile
function such that.

• Compile All

Check this checkbox if you want the entire directory of source
files to be compiled. If the checkbox is not checked, then only
those files which have been modified since the last compile was
run will be compiled.

• Retain Intermediate Files

Once a successful syntax check is run on the source directory,
there are two steps which the compile facility undertakes to
generate the servlets. The first step is to take the .taf and
.tcf files to .java files. The second step is to take the .java
files to .class files. If the user wishes to retain the .java files,
this checkbox should be checked. The more usual approach
would be to run the compile without this option checked.
139139

Selecting Options

140140

S E C T I O N I I

Witango Building Blocks

How to Use Meta Tags and Variables
This section discusses two of the most important features of Witango
application files: Witango meta tags and Witango variables.

This section contains chapters on the following topics:

• Chapter 7, Working with Meta Tags on page 143

• Chapter 8, Working With Variables on page 155

Chapter 7 and a look through Chapter 8 are recommended for new
users of Witango. .

142142

7
C H A P T E R S E V E N

Working with Meta Tags

Understanding how to work with Meta tags
Meta tags are special tags that are entered in Witango Studio and are
interpreted by Witango Server when your application files are executed.
They can do many different things in an application file, from controlling
the flow of information to performing an action on a data source to
setting or retrieving variable values.

Meta tags look like HTML tags, with a starting and ending angle bracket
(“<” and “>”), but the character after the starting angle bracket is “@”, or
in the case of a closing meta tag, “/@”. When you are creating HTML in
Witango Studio, you insert meta tags just like HTML tags. The user’s Web
browser never sees the meta tags, as they are interpreted by Witango
Server before being sent to the Web browser.

You can find a complete and detailed list of Witango meta tags and their
attributes in the Witango Programmers Guide.

This chapter covers the following topics:

• introduction to meta tags

• how to insert meta tags in Witango application files, Witango class
files, and HTML documents created with Witango.
143

About Meta Tags

14
About Meta Tags
1444
Meta tags are special commands to Witango that can do many things,
including control execution of Witango application files, return values
from a database, create variables, and return the values of variables. One
of the places these tags have their effect is in the HTML returned by
Witango Server to your Web browser; for example, Witango may return
HTML to the browser using meta tags that refer to form field values
(<@POSTARG>) and values returned from a database (<@COLUMN>).

Meta tags are interpreted by Witango Server at the application file
execution time and the resulting values, if any, are substituted where the
meta tags appear.
Most meta tags return values when interpreted by Witango Server. A few
Witango meta tags that control the flow of information or assign values
to variables do not return values. These include <@ROWS>, <@IF>,
<@IFEQUAL>, <@IFEMPTY>, and <@ASSIGN> meta tags.

Meta tags begin with the “at” symbol, “@”, to distinguish them from
HTML tags. Closing meta tags begin with “/@”. This documentation
shows meta tags in uppercase, but meta tags are case insensitive; that is,
<@if>, <@IF>, and <@iF> are all treated the same.

Meta tags often have attributes, much like HTML tags. These name/value
attribute pairs specify required and optional attributes of the meta tag.
For example:

<@ASSIGN NAME="last_name" VALUE="Flintstone">

This example assigns the value “Flintstone” to the variable last_name.

You can leave the name of an attribute off if the attribute is required and
in its standard position; however, it is recommended that you use
attribute names to avoid ambiguity.

Where You Can Use Meta Tags
Where You Can Use Meta Tags
Most meta tags can be used in all places in Witango application files and
Witango class files where text or HTML can be inserted, including these
locations:

• attribute HTML that is attached to an action, including:

• Results HTML

• Error HTML

• No Results HTML

• actions in a Witango application file or Witango class file, including:

• parameters in Search, Update, and Delete actions

• column values in Update and Insert actions

• Maximum Matches and Start Match fields in Search actions

• External action parameters

• File action parameters

• Assign actions (both name and value)

• If action parameters

• custom and column references used in database actions

• SQL entered into the Direct DBMS action window

• HTML files included using the <@INCLUDE> meta tag

• most attributes for other meta tags.

Where you can insert meta tags, the context-sensitive menu shows
Insert Meta Tag.
145145

Combining Meta Tags

14
Combining Meta Tags
1466
When you use meta tags in action fields or in attributes of other meta
tags, you can use multiple meta tags and mix literal values with meta tags.
For example, in a column value field parameter for an Insert action, you
could specify:

<@POSTARG NAME=prefix><@POSTARG NAME=suffix>

This indicates the concatenation of the prefix and suffix form fields.

To give a long distance code in a standard format that includes spaces and
meta tags, the parameter would look something like the following:

+1 <@POSTARG NAME=area_code> <@POSTARG
NAME=phone_num>

Quoting Attribute Values
Quoting Attribute Values
Only attributes that have spaces in them need to be quoted, but it is
never wrong to quote attributes. Either single or double quotes can be
used.
For more information on
the rules for quoting
attributes in meta tags, see
the Witango Programmers
Guide.
<@CALC EXPR=3+4 PRECISION="2">
<@CALC EXPR="3+4" PRECISION="2">

Both examples are correct, as is the single quote

<@POSTARG NAME='homer'>.

Tip For new users of Witango, the best method to adopt is quoting all
attribute values.
147147

Inserting Meta Tags

14
Inserting Meta Tags
For more information, see
“Working With Snippets”
on page 120.
1488
Meta tags can always be entered by typing them or dragging a meta tag
snippet into your Witango application file or Witango class file. There is
also a shortcut to inserting many common meta tags: the Insert Meta Tag
dialog box. This dialog box does not contain all of the meta tags; some
must be typed in or dragged in from the Snippets Workspace.
The Insert Meta Tag command, available from the Edit menu or the
context-sensitive menu, inserts a meta tag into a Witango application file
or Witango class file. This dialog box shows common meta tags in a
category drop-down menu. This provides a quick reference for many
common meta tags.

To insert common meta tags into your Witango application file or
Witango class file

1 From the Edit menu, choose Insert Meta Tag.

The Insert Meta Tag dialog box appears:

2 From the Category drop-down menu, select one of the five
options:

• Form Field or URL Argument

• Variable

• Current Date or Time

• Request Parameter

Inserting Meta Tags
• Action Result Item

Selecting a category changes the dialog box to show the
appropriate fields for that category of meta tag.

3 Select or enter the attributes necessary for the meta tag you are
inserting.

4 Click Insert.

The Insert button is enabled only when you have entered sufficient
information to construct the meta tag.

The meta tag and its attributes are placed at the insertion point in your
Witango application file or Witango class file when Insert is clicked. The
various types of meta tags you can insert are described in the following
sections.

Form Field or URL Argument

To insert a meta tag that returns the value of a form field or a URL
argument, choose Form Field or URL Argument from the Category
drop-down menu. These meta tags are <@SEARCHARG>, <@POSTARG>,
and <@ARG>. A name must be specified. (The name of an argument is
assigned in the HTML form that is set up by the creator of a Web page.)

Once you have specified the name, the radio buttons have the following
effects:
• Single value has no effect on the inserted meta tag.
149149

Inserting Meta Tags

150150
• Array of values adds the TYPE=ARRAY parameter to the meta tag.

Use this option to get all values for form fields which may contain
multiple values (such as lists).

• Either inserts <@ARG>.

• Form field inserts <@POSTARG>.

• URL argument inserts <@SEARCHARG>.

Variables

To insert a meta tag that returns the value of a variable (the <@VAR> tag)
with the Insert Meta Tag dialog box, choose Variable from the
Category drop-down menu.
The following attributes can be assigned for insertion of <@VAR> with the
Insert Meta Tag dialog box:

• Name contains an alphabetized list of variables assigned to (via
Assign actions) in the current Witango application file or Witango
class file. Select one of the variable names or type one in. This
attribute is required and inserts the NAME attribute.
• The Scope drop-down menu contains:

• Default

• Request

• User

• Cookie

• Application

Inserting Meta Tags
• Domain

• System.

If the scope is other than default, the SCOPE=selectedScope
attribute is added to the meta tag.

• The Row and Column fields are enabled only when the Array
Element check box is checked. This option adds [rownumber,
columnnumber] to the variable name. If you leave either of the
Row or Column fields empty, the value defaults to “*”, which
means all rows or columns are returned.

Current Date or Time

To insert the current date or time using a meta tag, choose Current
Date or Time from the Category drop-down menu.
For more information, see
“<@CURRENTDATE>,
<@CURRENTTIME>,
<@CURRENTTIME-
STAMP>” in the Witango
Programmers Guide.
This action inserts <@CURRENTDATE>, <@CURRENTTIME>, or
<@CURRENTTIMESTAMP>. There are various options you can set for
Current Date or Time.

If you select a format other than Default, the FORMAT attribute is added
to the tag.

The Format list contains several common formats of the type denoted
by the Current date, Current time, or Current timestamp radio
button. When the radio button selection changes, the Format selection
reverts to Default.
151151

Inserting Meta Tags

152152
Request Parameter

To return a value pertaining to the current user request, choose
Request Parameter from the Category drop-down menu.
The Parameter list includes items corresponding to all of the
<@CGIPARAM> tag parameters.

This action inserts <@CGIPARAM NAME=paramName>, where paramName
is the CGI parameter name corresponding to the selected item in the list.

Action Result Item

To insert a meta tag that returns values from the first row of results for
previously executed actions in the current application file execution,
choose Action Result Item from the Category drop-down menu.

Inserting Meta Tags
Action result items specified here are data from the first row of results
generated by the action. A Search action, for example, may return 100
rows of data in ten columns. Specifying action result item six from that
action (<@ACTIONRESULT searchActionName 6>) gives you the value
from row one, column six.
153153

Inserting Meta Tags

154154

8
C H A P T E R E I G H T

Working With Variables

Working with Variables in Witango
Variables are placeholders that you can assign a value to; they are created
using the <@DEFINE> meta tag assigned values using the Assign action or
the <@ASSIGN> meta tag.

Every variable belongs to a scope, which tells Witango if the variable is to
be used only for the particular application file execution, within a
Witango application, for a user, or for a particular domain being served
with Witango. Variables can also belong to special scopes within Witango
class files that apply to a method or an instance of a Witango class file.

Arrays are a special variable type that allow you to create a structured
data table with multiple values, as opposed to standard variables which
only store one value.

You can also create variables that contain XML data structures
(document instance variables) and variables that contain objects.

One important set of variables determines the behavior of certain
Witango options. These are called configuration variables.

Variables are covered in great detail in the Witango Programmers Guide,
and it is recommended that the user familiarise themselves with this
material before completing this chapter. This chapter provides a guide as
to how the Witango interface allows the user to work with variables.
155

Assigning Variables With the Assign Action

15
Assigning Variables With the Assign Action
1566
To assign a variable

• Drag the Assign action from the Actions bar into the Witango
application file or Witango class file window.

The Assign action is inserted into the Witango application file or
Witango class file; a new variable assignment appears if it is a new
Assign action.

The following is an Assign editing window:

The Assign editing window consists of a three-column list. Each row of
the list shows the variable scope, name, and value.

You can add one or more variable assignments to each Assign action.
Editing Variable
Assignments
You type text in the Name and Value fields. The Scope field contains a
text field/drop-down menu that allows you to select a standard scope or
define a custom scope.
The standard scopes are Request, Cookie, User, Application,
Domain, or System. You can also choose default scope from the

Assigning Variables With the Assign Action
Scope field. For information on how Witango assigns scope to variables
with default specified, see the Witango Programmers Guide.

Context-Sensitive Menu

Using the context-sensitive menu, you can fill in names from previously-
assigned variables.

The Document Variables context-sensitive submenu contains an
alphabetical list of all variables assigned (via Assign actions) in the current
Witango application file or Witango class file. Selecting an item from this
list sets both the scope and name for the variable assignment.

To add a new variable assignment to this window

Do one of the following:

• From the Edit menu, choose Insert.
• On the main toolbar, click the Insert icon.

• Right-click the Assign window, and choose Insert Assignment
from the context-sensitive menu that appears.

To select a variable assignment

• Click the row.

To move a variable assignment

• Click an assignment and drag it to the desired position.

To delete a variable assignment

1 Click the assignment you want to delete.

2 Do one of the following:

• From the Edit menu, choose Delete.

• On the main toolbar, click the Delete icon.

• Press Delete.
157157

Assigning Variables With the Assign Action

158158
• Right-click and then choose Delete Assignment from the
context-sensitive menu that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Tip You can bypass the confirmation dialog box by holding down the
Ctrl key when choosing Delete.

To view Assign Properties

Do one of the following:

• From theView menu, choose Properties.

• Right-click on the row and choose Properties from the
context-sensitive menu that appears.

The Assign Properties window appears.

The Assign Properties window consists of two sections:

• General. Click the General tab to edit the name, value, and scope
in the General section.

• Cookie. Click the Cookie tab to display controls for editing
attributes of cookie variables. (Each group of settings corresponds to
an element of the Set-Cookie HTTP header line.)

Note The Cookie tab to access the Cookie section appears only if the
scope for the current assignment is “Cookie”.

Assigning Variables With the Assign Action
The default values for new cookies are as shown:

• Expiry

When user quits browser is the default cookie behavior as
described in the cookie specifications. When this option is chosen,
the Expires value is omitted from Set-Cookie line in the cookie
header.

After __ [time units]. The drop-down menu for time units has
minutes, hours, days, and years options. The text entry field holds up
to 31 characters; a meta tag can be specified there.

• Domain

Current server omits the Domain value from the Set-Cookie
line, causing the cookie to be valid for the current server.

Other allows specification of any domain string up to 31 characters.
“.example.com”, for example, would cause the cookie to be sent
back to www.example.com, demo.example.com,
sales.example.com, and so on.

• Path

Server root (/) specifies that the cookie be sent for all paths within
the specified domain.

Other allows specification of a path string up to 31 characters. For
example, /Witango/ would cause the cookie to be sent back only
for URLs below the Witango folder.

• Require secure connection for client send

True (enabled) or False (disabled). This option sets the Secure
value of the Set-Cookie line. If the value is set to true, then the
cookie is sent back by the Web browser only if a secure connection
is being made.
159159

Shortcuts to Configuration Variable Assignments: Snippets

16
Shortcuts to Configuration Variable Assignments: Snippets
1600
The Workspace contains configuration variable snippets which create
assignments for configuration variables. The configuration variable
snippets are organized alphabetically by category (Arrays, Data Format,
Debugging, and so on) and by Scope (Application, Domain, Local, System,
and User). This provides you with a quick way of creating assignments to
configuration variables by dragging these snippets into an Assign action
window or an HTML editing field.
For more information, see
“Using Snippets” on
page 117.
To use the configuration variable assignment snippets

1 Open the Snippets Workspace by showing the Workspace and
clicking the Snippets tab.

2 Expand the Configuration Variables folder.

A tooltip appears if you place your cursor over the snippet,
giving the content of the snippet.

3 Choose the configuration variable to which you want an assignment
created, and drag it into the HTML or Assign action window.

Shortcuts to Configuration Variable Assignments: Snippets
For more information, see
“Using Snippets” on
page 117.
Dragging a configuration variable snippet into the HTML window creates
an assignment using meta tags, for example, <@ASSIGN
NAME="currencyChar" SCOPE="Local" Value="¥">. Witango puts
your cursor at the special ¥ symbol, so you can just start typing the value
of the configuration variable.

When you drag a snippet into an Assign action window, the configuration
variable assignment is automatically created for you.

The Value field becomes active, ready for you to type a value in:

If you choose a snippet without a defined scope (that is, from the
category section of the configuration variable snippet), the scope is set to
Default.
161161

Shortcuts to Configuration Variable Assignments: Snippets

162162

S E C T I O N I I I

Witango Builders

How to Use Witango Builders
This section contains a chapter on how to use Builders in general, and
two chapters giving details on the Search Builder and New Record
Builder.

This section contains chapters on the following topics:

• Chapter 9, Building Actions Using Witango Builders on page 165

• Chapter 10, Configuring the Search Builder on page 171

• Chapter 11, Configuring the New Record Builder on page 209.

This section is recommended for new users of Witango.

164164

9
C H A P T E R N I N E

Building Actions Using
Witango Builders

How Witango Builders Work in Application Files
Witango builders help you create and generate a sequence of actions to
perform specific tasks. Builders are added to an application file in exactly
the same way you add any other action.

Once you add a builder and configure it, the actions the builder generates
are inserted automatically into the application file. Builder information is
saved in the application file format, making it cross-platform capable. This
means you can use any application file containing a builder across all
platforms.

Witango Studio provides two builders.

• The Search Builder builds the actions required to perform a search of
database records and to update and delete them.

For details about how to configure the Search Builder, See “About
the Search Builder” on page 172.

• The New Record Builder builds the actions required to add a new
record to a database.

For details about how to configure the New Record Builder, See
“About the New Record Builder” on page 210.

The topics covered in this chapter include:

• adding a builder to an application file

• generating builder actions

• details about the actions generated by the builders.
165

Adding a Builder to an Application File

16
Adding a Builder to an Application File
1666
With a new or existing application file open, you add a builder in the same
way you add an action; that is, you drag the builder icon from the Actions
bar into the application file window.

When you drag either of the builder icons into an application file window,
the corresponding builder window opens. For example, if you drag the
Search Builder icon from the Actions bar into an open application file, the
Search Builder window opens so you can immediately set Search Builder
options.

In the application file window, the corresponding builder icon appears
with a default name, just like with actions. The default name for the

Dragging a builder from the
Actions bar adds the builder
to the application file, and
the builder’s options

Adding a Builder to an Application File
Search Builder is “Search_Builder” and for the New Record Builder,
“Record_Builder”.

Note Witango Studio can properly process one Search Builder and
one New Record Builder in the same application file. If you want to use
multiple builders of the same type in a single file, you must handle them
using If actions and additional request arguments.
For more information, see
“General Forms of
Conditional Actions” on
page 280.
If you add a builder to an application file that already contains the same
builder using the default name, Witango adds a number to the default
name and increments it by one for each subsequent addition, for
example, “Search_Builder1”, “Search_Builder2”, and so on.

Note The title of the builder window is in the same form as an action
window, <File name> : <Builder name>.

Within the application file, a builder behaves exactly like an action group.
That is, it contains actions that can appear in expanded or collapsed form.
In the preceding diagram, the Search Builder icon represents a group, but
the group is empty until its actions are built. Witango Server ignores
unbuilt builders.
Page Format
Table Settings
Witango Studio by default saves your Witango builder page formats and
uses these settings for new tables you create in the builders, allowing you
to develop a consistent appearance for Web sites and Witango
applications quickly.

Unique page formats set in the New Record Builder and in each of the
Search, Record List, and Record Detail tabs in the Search Builder are
saved and used as defaults for new tables.

To change whether page format are saved

1 From the Edit menu, choose Preferences.
167167

Adding a Builder to an Application File

168168
The Preferences dialog box appears:

2 Click the General tab.

3 Under Studio options, check or uncheck Save last-used page
format settings in the Builders and use them as defaults for new
Builders.

Save page
format
settings
check box

Building the Actions
Building the Actions
Once you have entered all the relevant information in the builder
window, you can generate the actions.

To build Search or New Record actions in an application file

1 Open a builder window (if it is not already open).

The following is an example of a builder window:

2 Enter the required information.

• For information on using the Search Builder, see Chapter 11.

• For information on using the New Record Builder, see
Chapter 12.

3 Click Build Actions.

The builder checks to see if you have entered all the information
required to build the actions.

• If you have not, an error message appears and the build process
stops.

• If you have, it builds the actions required to perform the task.
169169

Building the Actions

17
For information on
generating actions in the
Search Builder, See
“Actions Built by the
Search Builder” on page
206. For information on
generating actions for the
New Record Builder, See
“Actions Built by the New
Record Builder” on page
220.
1700
On completion, the actions appear in the builder group. The following
figure shows an application file window after successfully building actions
using the Search Builder:

You can view the hierarchy of a builder in an application file. Click either
the plus sign (+) or minus sign (-) to expand or collapse the builder group
accordingly.

When building actions, the builder replaces any existing actions in the
group:

• If the builder group is empty, the actions are inserted into the builder
group.

• If the builder group only contains the actions that were generated by
the builder and those actions have not been modified, the new
actions replace the old actions within the builder group.

• If there are actions in the builder group that the builder did not
generate, or the actions in the builder group have been modified, a
message box appears.

• To replace all actions in the builder group with the new actions,
click Yes.

• To stop the build action, click No.

10
C H A P T E R T E N

Configuring the Search
Builder

Witango Search Builder Options and Setup
The Search Builder builds a series of actions that allows you to create Web
pages for users to search a database, view the results of the search, and
view, update, and delete individual records.

The topics covered in this chapter include:

• setting search, record list, and record detail options

• formatting the search form, and record list and record detail Web
pages

• customizing your Web forms and pages, and creating response
messages

• tips on modifying how the Search Builder builds actions

• defining joins.
171

About the Search Builder

17
About the Search Builder
1722
Using the Search Builder, you can quickly and easily build the actions
necessary to:

• display a search form allowing users to specify search criteria

• display a list of matching records

• allow viewing of detailed information on a single record

• allow editing and deleting of the records found.
What Users
See in Their
Web Browser
When searching the database, users generally encounter three types of
Web pages: search form, record list Web page, and record detail Web
page.

This section describes what users experience when they visit your Web
site. The next section, How You Create These Web Pagespage 174,
gives you a brief idea as to how you can easily create this user experience
using the Search Builder.

Search Form

Based on the settings in each of the option groups and the actions
generated, the following is an example of a search form users see in their
Web browser. :

On the search form, the user enters the criteria for the records to
return.

About the Search Builder
By default, a Begins with search is performed on text columns and an =
(equals) search on all others. If you want, you can instead let users select
each search operator from a drop-down menu.

To initiate the search, the user clicks Find.

Record List Web Page

Witango Server searches the data source for records matching the user’s
criteria and displays them on the record list Web page.

The following is an example of the record list Web page:
.
 Note Character data from data sources is by default stripped of trailing
spaces. You can disable this feature by using the configuration variable
stripChars: assign the variable the value false in local scope for a
particular application file, or, if you want to set the variable for all data
sources, use the Witango Administration Manager (the config.taf
application file) to change the variable’s value to false in system
scope.

If you want, you can set up the record list Web page to display Next and
Previous buttons, so users can browse through large result sets.
173173

About the Search Builder

174174
To view detailed information for a record, the user clicks the name of the
record in the list, which is hot linked to the record detail.

Record Detail Web Page

The record detail Web page displays more information on the selected
record and—if you allow it—lets the user edit or delete it.

The following is an example of the record detail Web page:
How You
Create These
Web Pages
When you open the Search Builder window you see three tabs: Search,
Record List, and Record Detail. These tabs correspond to the three main
groups of options you can specify. Each option group is represented by a
page in the Search Builder window:

To switch among these three pages, click the appropriate tab in the
Search Builder window.

About the Search Builder
For more information on
joins, see Defining Joins on
page 205 and Joining
Database Tables on
page 336.
Unless you are working with joins, make sure you select the General tab
at the bottom of the Search Builder window.

Search Page

The Search page allows you to specify the columns you want users to
search. It also defines the format of the search form you want users to
see in their Web browsers.

Record List Page

The Record List page allows you to specify the columns you want to
display in the record list that is returned to the user after a search. It also
defines the format of the record list Web page.
175175

About the Search Builder

176176
Record Detail Page

The Record Detail page allows you to specify the columns you want to
include on the single-record display Web page, which appears after a user
clicks a specific record in the record list. It also defines the format of the
record detail Web page. In addition, you can set up the record detail Web
page to allow users to delete the record and/or edit specified columns.

Determining What is Displayed in the Web Browser

What you specify on the three pages of the Search Builder window
determines what the users see and are able to do in their Web browsers.
The follow table is a summary of the basic relationship:

Search Builder window Web browser

Search page search form

Record List page record list Web page

Record Detail page record detail Web page
Main Steps to
Use the Search
Builder
The standard way to use the Search Builder is to fill out the contents of
the three pages of the Search Builder window, in the following sequence:

• Search page

For more information, see “Setting Search Options” on page 178.

• Record List page

For more information, see “Setting Record List Options” on
page 189.

• Record Detail page

For more information, see “Setting Record Detail Options” on
page 197.

Then, format the pages for display in the Web browser and customize the
response messages related to these pages:

• search form

For more information, see “Formatting the Search Form” on
page 186 and Customizing Your Search Form and Response Messages
on page 187.

• record list Web page

About the Search Builder
For more information, see “Formatting the Record List Web Page”
on page 195 and Customizing Your Record List Web Page on
page 196.

• record detail Web page

For more information, see “Formatting the Record Detail Web Page”
on page 201 and Customizing Your Record Detail Web Page and
Response Messages on page 202.

In some cases, you can simplify the process by skipping some steps. For
more information, see “Simplified Steps to Use the Search Builder” on
page 204.
177177

Setting Search Options

17
Setting Search Options
1788
When you drag the Search Builder icon from the Actions bar into an
application file, the Search Builder window opens, displaying the Search
page:

You use the search options on this page to define how the search form
appears to the user, which columns the user can search on, and how the
values entered by the user are used to search the database. You can also
define fixed criteria in addition to the ones the user enters.

Tip You can save your Witango builder page formats to use for new
tables you create in the builders. For more information, see “Page
Format Table Settings” on page 167.
Search
Columns List
Drag columns from the Data Sources Workspace to this list to use them
in defining the search. Columns in the Search Columns list appear in
the format table_name.column_name. The order of the columns in the
Search Columns list determines the order of the fields on the resulting
search form.
Search Builder

Setting Search Options
The following table describes the operations you can perform on
columns:

To ... Do This ...

Reorder columns Select the columns and drag them to a different location in
the list.

Delete columns Select the columns. Choose Delete from the Edit menu,
press DELETE on the keyboard, select the Delete icon on
the main toolbar, or right-click and choose Delete from
the context-sensitive menu that appears.

Delete columns without
confirmation

Hold down the CTRL key while using the Delete
command.
Column
Options
Use the Column Options portion of the Search page to configure each
search column. You can specify how each column’s entry field appears on
the search form and how the value entered by the user is used to search
the database.

Field Title

In Field Title, set the title of the value entry field for the column as you
want it to appear on the search form.

This title for this
column appears on the

How the column value
searches the database.

Lets the user enter the
search value on the search
form.

Includes the column, even
when no value is specified

Specify the value yourself and
prevent this column from
appearing on the search
page.

The type of value entry field
to appear on the search
form.
179179

Setting Search Options

180180
Operator

Use this option to set the search operator for the column. For example,
if the operator is set to Begins with, Witango searches the database for
records that begin with the column’s search value. If you select User
Enters, the search form displays a drop-down menu of the operators
available, and the user can select which operator to use.

User Enters Value

Select this option if you want the user to enter a value in an entry field on
the search form. The available field types are: Text, Drop-down List, List
Box, Check Box, and Radio Buttons.

Field Type

To select a value entry field type for a column, select the column in the
Search Columns list and then an item from the Field Type drop-down
menu.

A Field Properties dialog box appears allowing you to specify values for
the field.

You can edit a field’s values at any time by clicking the Field Properties
button in the Search Builder window or by choosing Field Properties
from the Attributes menu.

The following describes each of the options in the Field Properties dialog
box for each field type:

• Text. Use the Text field type to provide single- or multi-line entry of
values.

Default Value is the default value you want to appear on the new
record entry form.

Password
Field check
box
Field Properties

Setting Search Options
Maximum Length is the maximum number of characters the user
can enter in the field. This option is not available when Scrolling
Field is selected because HTML does not support it.

Width is the width of the field in characters.

Height is the number of lines of text displayed in the field without
scrolling. This field is available only when you select Scrolling Field.

Scrolling Field. The height of a non-scrolling field is always “1”.

Password Field. Selecting this option generate form input elements
with the attribute TYPE=PASSWORD, which conceals the characters
that the user enters into the text field (for example, often asterisks
or bullets are shown).

• Drop-down List, List Box, and Radio Buttons. Each of these
field types lets the user select the search value from a predefined list.

For example:

Use the Field Properties dialog box for these field types to specify
the values and choose the default. The same dialog box appears for
all three field types.

To add an item to the values list

1 From the Field Type drop-down menu, select Drop-down List, List
Box, or Radio Buttons; then do one of the following:

• In the Search Builder window, click the Field Properties
icon.

• From the Attributes menu, choose Field Properties.

Drop-down List

List Box

Radio Buttons
Field Properties
181181

Setting Search Options

182182
The Field Properties dialog box for the selected column appears:

2 Choose New.

An “Untitled” entry appears:

3 Type a name in the Name field.

4 Press ΤΑΒ to copy the name into the Value field, or enter a value for
the item if you want it to be different from the name.

5 Click New to continue adding items to the values list.

6 When you have added all of your items to the values list, click OK.

Setting Search Options
The Name determines what the user sees for this item. The Value
determines what is used as the search value. If your database column
uses abbreviations or codes for values, you can enter a more user-
friendly value into the Name field and the actual value in the Value
field. For example, if you are creating a field to search a “state”
database column containing abbreviations such as “CA”, “NY”, and
“GA”, you can use these values in the list items’ Value fields, and the
full state names (“California”, “New York”, and “Georgia”) in the
Name fields.

The following table lists the other operations you can perform on
the values list:

• Check Box. The Check Box field type lets the user select between
an empty search value (unchecked) and a value you specify (checked).

Checked Value is the value to be used for the search if the check
box is selected by the user. If the check box is not selected, an empty
value is used.

Initially Checked specifies whether the check box should be
checked by default.

To ... Do This ...

Set which item will be
initially selected

Select an item in the list and choose the Selected
option. The item then appears in bold in the list. If
you do not specify an item as Selected, the user’s
Web browser determines which item is initially
selected. Most Web browsers choose the first
item, but some do not select any in this case.

Delete an item Select it in the list, and click Delete. To delete
without displaying a confirmation dialog box, hold
down the CTRL key while deleting.

Create an item that causes
the column to be omitted
from the search criteria
when chosen

Leave the Value field for that item empty and
make sure the Include criteria if value is
empty option is not selected.
183183

Setting Search Options

18
Fixed Value
1844
When this option is selected, the search value is hard-coded and no entry
field appears on the search form. The value you specify is used for every
search.
For more information, see
“Field Type” on page 180.
Using the Value drop-down menu, select one of the following options
for a fixed value:

• Value Entered. Use the text box provided to enter the search
value for the column.

• SQL Expression. The value returned by the SQL expression text
entered is used as the search value. The text entered is evaluated by
the database, and the result is used as the search value.

Note For ODBC data sources, you can enter ODBC scalar functions
here.

• SQL Statement. The SQL statement entered is executed, the
results retrieved, and the first data item of the results is used as the
search value. For example, if you enter:

SELECT MAX (cust_num) FROM customer

the largest customer number is used as the search value.

• Current Timestamp. The current timestamp (date and time
combined) on the Witango Server computer is used as the search
value.

• Current Date. The current date on the Witango Server computer
is used as the search value.

• Current Time. The current time on the Witango Server computer
is used as the search value.
• CGI Parameters. The rest of the fixed value options are referred
to collectively as CGI parameters. They include Client Name,
Client Domain, Client IP Address, Client Browser, Server
Address, Server Port, Referer Page URL, and Method. They
are passed by either the user’s Web browser or the Web server with
each request to Witango. When you specify one of these parameters
as the search value, the parameter value used is the one passed in
when the user clicks Find.

Setting Search Options
Summary:
Setting Column
Options
The following table describes the settings you can make in the Column
Options portion of the Search page:

To ... Do This ...

Let the user specify the
search value for a column

Select the column in the Search Columns list. Select
the User enters value radio button. This option
defines the column as a user-searchable field, and a value
entry field will appear on the search form.

Specify the title to appear
for a column’s search form
value entry field

Select the column in the Search Columns list. The
column’s name appears in the Field Title field. Replace
the name with the desired field title. Witango
remembers the entered title and uses it as the default
the next time you use the column.

Specify the type of value
entry field to be displayed
for a column

Select the column in the Search Columns list. Make
sure the User enters value option is selected. From
the Field Type drop-down menu, select the type of
field you want displayed. A Value dialog box appears,
allowing you to specify the field attributes.

Include a column in the
search even if the user
leaves its value entry field
empty

Select the column in the Search Columns list. Select
the Include criteria if value is empty option. If the
user leaves this column’s value empty and clicks Find,
only records that have an empty value in the column are
returned. If the option is not selected (the default), the
column is omitted from the search when the user does
not enter a value.

Specify the operator
Witango uses when
comparing the database
column values with the
search value

Select the column in the Search Columns list. From
the Operator drop-down menu, select the operator
that specifies how you would like the column searched.
For example, Begins with searches for values that begin
with the entered value.

Let the user select the
search operator for a
column

Select the column in the Search Columns list. Select
User Enters from the Operator drop-down menu. A
drop-down menu of available operators appears beside
the column’s value entry field on the search form.

Hard-code the search value
for a column

Select the column in the Search Columns list. Select
the Fixed value option. From the Value drop-down
menu, select a search value. You can use one of the
preset values, such as current date or time, select Value
Entered to enter a value yourself, select one of the SQL
options to get a search value from the data source, or
select a CGI parameter. Columns specified as Fixed
value do not appear on the search form.
185185

Formatting the Search Form

18
Formatting the Search Form
1866
You can set up format options to define how the search fields and their
titles appear to users on their Web browsers.

To change the format of the search form

Do one of the following:

• In the Search Builder window, click the Page Format icon.

• From the Attributes menu, choose Page Format.

The Page Format dialog box appears:

Specify the table attributes as follows:

• Border width. The width of the table border in pixels. Select none,
or from numbers 1 to 8.

• Border color. The color of the table border. Select default or a
color from the list.

Note For Border color, Background color, Cell spacing, and Cell
padding, selecting default instead of a value omits that attribute from
the HTML and causes the Web browser’s default setting to be used
instead.

• Background color. The background of the table. Select default or
a color from the list.

• Cell spacing. The amount of space, in pixels, inserted between
individual cells in the table. Select none, or from numbers 1 to 8.

• Cell padding. The amount of space, in pixels, between the border
of a cell and the contents of the cell. Select none, or from numbers
1 to 8.
Page Format

Customizing Your Search Form and Response Messages
Customizing Your Search Form and Response Messages
Header, Footer,
and No Results
HTML
Use Header HTML and Footer HTML to customize the search form by
specifying HTML to appear above and below the search form.

No Results HTML lets you specify the HTML to return when no records
match the search criteria specified by the user.

To enter Header HTML, Footer HTML, or No Results HTML

1 Do one of the following:

• In the Search window, click the Header HTML, Footer
HTML, or No Results HTML icon.

• From the Attributes menu, choose Header HTML, Footer
HTML, or No Results HTML.

The corresponding HTML editing window appears:

You can switch between the HTML editing windows by clicking
on the Header, Footer, and No Results tabs at the bottom of
the HTML window.

2 Enter the HTML you want.

3 Close the editing window.
Header
HTML
Footer
HTML
No Results HTML
187187

Customizing Your Search Form and Response Messages

18
Changing
Button Titles
1888
The search form contains two buttons below your search fields:

• The Find button initiates the search.

• The Reset Values button resets the entry fields to their default
values.

To change button titles

1 Do one of the following:

• Click the Button Titles icon.

• From the Attributes menu, choose Button Titles.

The Button Titles dialog box appears:

2 Enter new titles in the corresponding fields.

3 Click OK.
Button

Setting Record List Options
Setting Record List Options
The record list Web page consists of the results returned to the Web
browser after Witango has performed the search. The Record List page
of the Search Builder is used to define the appearance and functionality of
the record list Web page.

Among other things, you can specify:

• which columns from each matching record are displayed

• the ordering of result records

• the maximum number of records to be returned

• whether you want Next and Previous buttons to appear, allowing
paging through large result sets

• which column or columns appear as links to the record detail Web
page.
Display
Columns
Drag columns from the Data Sources Workspace to this list to have them
retrieved from the database and displayed on the record list Web page.
The order in which columns appear in the Display Columns list
determines their order on the Web page.
189189

Setting Record List Options

19
Order By
1900
Records from the database are sorted on the record list Web page
according to the order specified in the Order By list. You can drag any
number of columns into this list; however, each of the columns must also
appear in the Display Columns list.

The records are sorted by the first column listed. Then, records having
the same values in that column are ordered by the second column, and so
on. The default sort order is ascending, meaning records with lower
values in the sort column appear first in the list. You can toggle between
ascending and descending by clicking the and icons.

Ascending
sort order

Descending
sort order
Column
Options
Use the Column Options section to set up options for each column in
the Display Columns list.

Field Title

In the Field Title field, enter the text you want to appear as the column
title.

The title you assign appears

Lets you change how the value is
formatted by adding a formatting
attribute to the <@COLUMN>
tag.

Specify how you want the
columns to display in the Web
browser after the search.

The number of decimal
places you want to display
for number and currency

To display an image file residing
on your Web server, specify the
image path.

Automatically add line breaks to
the HTML generated for the
specified column.

Setting Record List Options
Display As

You can specify how you want the columns to display in the Web browser
after the search. From the drop-down menu, select from the following
options:

• Normal Text adds the following to the HTML generated for the
specified column:

[columntag]
For more information, see
“Encoding Attribute” on
page 10 of the Meta Tags
and Configuration Variables
manual.
If the Add HTML line breaks option is selected for the specified
column, the HTML becomes:

[columntag ENCODING=MULTILINE]

• Link to Detail. Select this option to cause the selected column to
appear as a hyperlink to the record detail Web page; that is, the user
can click a value from this column and the detail for that record is
displayed. You can specify more than one column as a link to the
record detail.

If you specify no column as a link to the record detail Web page, the
first column is automatically chosen for you when actions are built.

• Link to URL Stored in Column. If you have a URL stored in your
database column, select this option to automatically generate a hot
link. This option adds the following to the HTML generated for the
specified column:

[columnvalue]

• Link to E-mail Address Stored in Column. If you have an
e-mail address specified in your database column, select this option
to automatically generate a mailto link. This option adds the
following to the HTML generated for the specified column:

[columnvalue]

• Image: File Name Stored in Column. Select this option to
display an image file residing on your Web server.

When you select this option, the Image path field is enabled in
which you enter the path to the image.

This option adds the following to the HTML generated for the
specified column:

• Image: URL Stored in Column. Select this option to display an
image file residing on the Internet; that is, your database stores a
191191

Setting Record List Options

192192
URL pointing to the image. This option adds the following to the
HTML generated for the specified column:

For more information, see
“Encoding Attribute” on
page 10 of the Meta Tags
and Configuration Variables
manual.
• HTML. Use this option if your database column contains HTML that
you would like to display. This option adds the following to the
HTML generated for the specified column:

[columnvalue ENCODING=NONE]

If the Add HTML line breaks option is selected for the specified
column, the HTML becomes:

[columnvalue ENCODING=MULTILINE]

Format As

The Format As field is enabled only when you select either the
Normal Text or Link to Detail option from the Display As drop-
down menu.
Each of the following options in the drop-down menu (except No
Formatting) adds a FORMAT="formatstring" attribute to the
<@COLUMN> tag in the HTML generated for the column in the Record List
action’s Results HTML.

The following table lists the options and the corresponding format string:

Option Format String

No Formatting None

Date datetime:@@dateFormat

Time datetime:@@timeformat

Timestamp datetime:@@timeStampFormat

Number with Commas num:3*,'@@thousandsChar','@@decimalChar',,,'-',

Number with No Commas ,,decimals,'@@decimalChar',,,'-',

Currency with Commas num:3-*,'@@thousandsChar',decimals,
'@@decimalChar','@@currencyChar',,
'@@currencyChar(',)

Currency with No Commas ,,decimals,'@@decimalChar',
'@@currencyChar',,'@@currencyChar(',)

Setting Record List Options
Decimals

Specify the number of decimal places you want to display for number and
currency values. The Decimals field is available only when you select one
of the number or currency options from the Format As drop-down
menu. The default is 0 for number options and 2 for currency options. An
empty or non-numeric value is evaluated as 0.

Add HTML line breaks

This option is available only when you select Normal Text or HTML
from the Display As drop-down menu and No Formatting is selected
from the Format As drop-down menu. Otherwise, this option is
disabled.
Maximum
Matches
Use the options in this section to restrict the number of matches
displayed on the record list Web page.

Limit To

Select this option to limit the number of records returned by the search
to the number specified. For example, to show only the first 10 records
matching the search criteria, select this option and enter “10” in the
Limit To field.

No Maximum

If you select the No Maximum option, all records matching the search
criteria are retrieved and displayed on the record list Web page.

Show Multiple Pages If Limit Exceeded

If you specify a maximum number of matches in the Limit To field, this
option is available. If selected, a Next button appears on the record list

Limit the number of
records appearing on
the Web page.

Display all records matching
the search criteria.

Include Next and Previous
buttons for displaying multiple
record list Web pages.
193193

Setting Record List Options

194194
Web page (if the number of matching records exceeds the limit entered),
along with an indication of the total number of records matching and
which records are being displayed. When the user clicks the Next
button, the next group of matching records appears. A Previous button
appears on record list Web pages beyond the first, which allows the user
to go backwards in the list of matching records.

Choosing the Show Multiple Pages If Limit Exceeded option
causes result set information and a Next button to appear on the
results list Web page.

Formatting the Record List Web Page
Formatting the Record List Web Page
Use the format options to define how the record list is displayed.

Witango displays results records in a table with one row for each record.

To change the format of the record list Web page

Do one of the following:

• In the Record List window, click the Page Format icon.

• From the Attributes menu, choose Page Format.

The Page Format dialog box appears. This dialog box is identical to the
one for the search Web page. See page 186 for details.
Page Format
195195

Customizing Your Record List Web Page

19
Customizing Your Record List Web Page
Header and
Footer HTML
1966
You use Header HTML and Footer HTML to customize the record list
Web page by specifying HTML to appear above and below the record list.

To enter Header HTML and Footer HTML

1 Do one of the following:

• In the Record List window, click the Header HTML or Footer
HTML icon.

• From the Attributes menu, choose Header HTML or
Footer HTML.

The corresponding HTML editing window appears:

You can switch between the HTML editing windows by clicking
on the Header and Footer tabs at the bottom of the HTML
window.

2 Enter the HTML you want.

3 Close the editing window.
Header
HTML
Footer
HTML

Setting Record Detail Options
Setting Record Detail Options
Use the options in the Record Detail window of the Search Builder to
define the appearance and functionality of the Web page returned when a
user clicks on a record on the record list Web page. This Web page
displays a single record and supports user editing and deletion, if you
choose to allow it.
Display
Columns
The columns appearing in this list are displayed on the record detail Web
page. To add a column to the list, drag it from the Data Sources
Workspace. The order in which columns appear in the Display
Columns list is the order they appear on the record detail Web page.
197197

Setting Record Detail Options

19
Column
Options
1988
Use the Column Options section of the Record Detail window to
configure each detail column. This section describes each of the column
options.

Field Title

In the Field Title field, enter the title to appear for this column’s value
on the record detail Web page.

Allow Update

Select this option to allow the user to change the value of the column on
the record detail Web page and save the changes to the database.

Required

If you allow users to update a database record by enabling Allow
Update, you can also select the Required check box to force the user
to enter information into the selected field before the record can be
successfully updated.

If the user tries to update the record without entering a value in a
required field, a message appears, telling the user that an entry into the
field is required, and the form is displayed again.

Field Type

If you select the Allow Update option for a column, the Field Type
drop-down menu and Field Properties icon are enabled, allowing you

Other than the Allow Update and Required options, the Column Options
section for the Record Detail window is the same as the Column Options
section for the Record List window. See Setting Record List Options on
page 189.

Allows the user to
change the value
of the column on
the record detail
Web page and
save the changes
to the database.

Forces the
user to enter
information
into the
selected field
before the
record can be
successfully
Field Properties

Setting Record Detail Options
to select the type of value editing field you want to appear for the column
on the record detail Web page.

As with the search form, you can select from the available field types:
Text, Drop-down List, List Box, Check Box, and Radio Buttons.
For more information, see
“Field Type” on page 180.
You specify the field type and its options the same way you do in the
Search window of the Search Builder.

The selected column’s Field Properties dialog box for each field type is
the same in the Record Detail window as it is in the Search window,
except you cannot specify a default value (text field type) or a selected
item (drop-down list, list box, check box, and radio buttons). This is
because the value of the column in the detail record determines the field’s
initial value.

When creating value lists for drop-down list, list box, and radio button
field types in the Record Detail window, make sure you enter the item
values exactly as they appear in the database, and include all possible
values. If Witango cannot find the column’s value in the list when it is
constructing the record detail Web page for a record, no item is selected
by default. Depending on the user’s Web browser, the first item may be
selected or no item may be selected. Either way, if the user saves the
record—even if no changes are made to that particular field—a new value
(an empty value or the first value in the list) is saved in it.

For similar reasons, make sure check box fields are used only for columns
that can contain either an empty value or the value you specify as its
checked value.

Setting Column Options: Display As, Image Path, Format
As, Decimals, and Add HTML line breaks

Setting these options is identical to setting the column options for the
record list Web page, except as follows:

• When you select the Allow Update option, these options are
disabled.

• The Display As drop-down menu excludes the Link to Detail
option.
199199

Setting Record Detail Options

20
Record
Maintenance
Options
2000
If you select the Allow Delete of Record From option, a Delete button is
added to the record detail Web page, giving the user the ability to delete
the current detail record.

Deleting records from multiple tables simultaneously is not supported by
the Search Builder, so if you have included columns from more than one
table in the Display Columns list, use the drop-down menu to select
the table whose record you want to delete.

Formatting the Record Detail Web Page
Formatting the Record Detail Web Page
Use the format options to define how the detail column values and their
titles are displayed.

To change the format of the record detail Web page

Do one of the following:

• In the Record Detail window, click the Page Format icon.

• From the Attributes menu, choose Page Format.

The Page Format dialog box appears. This dialog box is identical to the
one for the search Web page. See page 186 for details.
Page Format
201201

Customizing Your Record Detail Web Page and Response Messages

20
Customizing Your Record Detail Web Page and Response
Messages
Header, Footer,
Update
Response, and
Delete
Response
HTML
2022
You use Header HTML, Footer HTML, Update Response HTML, and
Delete Response HTML to customize the record detail Web page.

Using Header HTML and Footer HTML, you can edit the HTML that you
want to appear above and below the record data.

Using Update Response HTML and Delete Response HTML, you create
messages in response to record updates and deletions.

To enter Header HTML, Footer HTML, Update Response HTML, or
Delete Response HTML

1 Do one of the following:

• In the Record Detail window, click the Header HTML,
Footer HTML, Update Response HTML, or Delete
Response HTML icon.

• From the Attributes menu, choose Header HTML, Footer
HTML, Update Response HTML, or Delete Response
HTML.

The corresponding HTML editing window appears.
Header
HTML
Footer
HTML
Update
Response
HTML
Delete
Response
HTML

Customizing Your Record Detail Web Page and Response Messages

Button Titles
You can switch between the HTML editing windows by clicking
on the Header, Footer, Delete Response, and Update
Response tabs at the bottom of the HTML window.

2 Enter the HTML you want.

3 Close the editing window.
Button Titles
 When you make a field updatable, or when you allow users to delete
records from the record detail Web page, buttons for these actions are
added to the record detail Web page.

The record detail Web page contains three buttons below your record
detail fields: Save, Reset Values, and Delete.

To change button titles

1 Do one of the following:

• In the Record Detail window, click the Button Titles icon.

• From the Attributes menu, choose Button Titles.

The Button Titles dialog box appears:

2 Enter new titles in the corresponding fields.

3 Click OK.
203203

Simplified Steps to Use the Search Builder

20
Simplified Steps to Use the Search Builder
2044
In general, you use the Search Builder by following the standard sequence
described in Main Steps to Use the Search Builder on page 176. In some
cases, you can simplify the process by skipping some steps. The following
information may be useful to you:

• Using only fixed values in the Search options. If you configure
all of the Search columns to search for fixed values, the built actions
on execution take the user directly to the record list and display the
records matching the criteria you specify.

• Specifying no Search columns. If you do not specify Search
columns, the built actions on execution take the user directly to the
record list and display all the records in the database table.

• Specifying no Record Detail columns. If you do not specify
Record Detail columns, the built actions do not contain detail
functionality and no links appear in the record list.

• Specifying no Record List columns. If you do not specify Record
List columns, the built actions on execution take the user straight to
the record detail Web page for the first record matching the Search
criteria.

Defining Joins
Defining Joins
For complete details on
what joins are and how to
define them using Witango
Studio, see Joining Database
Tables on page 336.
You can include columns from more than one table in a search, if you
define joins for the tables.

If you select columns from more than one table in a search, a dialog box
appears telling you to define a join.

Either choose Define to go directly to the Joins section or Later if you
want to define the join at a later time.

When you define the join, it adds the columns to a search. You must,
however, define the join before you build the actions for the search or
you save the application file.

Note You must define separate joins for the initial search (the one that
displays the record list) and for the detail search.
205205

Actions Built by the Search Builder

20
Actions Built by the Search Builder
2066
The actions built by the Search Builder appear in the application file as
follows:
For more information, see
“Building the Actions” on
page 169.
The following table describes the actions resulting from the Search
Builder process and the conditions under which actions are built:

IfForm

<@ARG _function> = sform or <@ARG _function> is empty

This section appears only if one or more user-enterable search
columns are specified.

Form

ElseIfList

<@ARG _function> = list

This section appears only if record list columns are specified. If no
Form is present, this is an If action named IfList.

RecordList

If you selected SQL Statement for any column value, a Direct
DBMS action (one for each) appears immediately before the
RecordList action.

Actions Built by the Search Builder
ElseIfDetail

<@ARG _function> = detail

This section appears only if detail columns are specified. If no
RecordList or Form section exists, this is an If action named IfDetail.

RecordDetail

ElseIfUpdate

<@ARG _function> = update

This section appears only if updatable detail columns are specified.

Update

UpdateResponse

For information about the update response, See “Header,
Footer, Update Response, and Delete Response HTML” on
page 202.

ElseIfDelete

<@ARG _function> = delete

This section appears only if the Delete option is specified for the
record detail Web page.

Delete

DeleteResponse

For information about the delete response, See “Header,
Footer, Update Response, and Delete Response HTML” on
page 202.

ElseError

Invalid Function

The HTML for this action displays the following message:

Error: Invalid Function

An unknown function was specified.

Return
207207

Actions Built by the Search Builder

208208
This action ends execution of the application file and returns the
accumulated Results HTML to the Web browser.
HTML Snippets
 The Snippets Workspace contains a snippets folder named Builder
Snippets, and a subfolder named Search. The Search folder contains
snippets for the Form Header, Form Footer, Record List Header, Next/
Previous Buttons, Record List Footer, No Matches, Record Detail
Header, Record Detail Footer, Update Response, and Delete Response.

The Search Builder uses these snippets in the designated places as default
values for the named attributes. To change the default values, you can edit
these snippets.

11
C H A P T E R E L E V E N

Configuring the New
Record Builder

Witango New Record Builder Options and Setup
The New Record Builder builds a series of actions that allows users to add
a record to a database, on the new record entry form in their Web
browser. For the new record, you specify the database columns the user
can add data to and the response message to return after the record is
added. Witango does the rest.

The topics covered in this chapter include:

• setting new record column options

• formatting the new record entry form

• customizing your form and creating response messages

• a summary of how to set column options.
209

About the New Record Builder

21
About the New Record Builder
2100
You use the New Record Builder to build actions that, when Witango
Server executes them, display a form allowing users to enter data for a
new record and return a response message after the record is added to
the database.

The following is an example of a new record entry form, which appears in
the users Web browser:

The user enters the values for the columns in the new record, and clicks
Save to save the record. Witango Server saves the record to the data

About the New Record Builder
source and returns the HTML response you specified in the New Record
Response HTML.
Main Steps to
Use the New
Record Builder
To use the New Record Builder, fill out the contents of the New Record
Builder window. For more information, see “Setting New Record
Options” on page 212.

Then, format the new record entry form for display in the Web browser
and customize the response messages related to this form. For more
information, see “Formatting the New Record Entry Form” on page 217
and Customizing Your Form and Response Messages on page 218.
211211

Setting New Record Options

21
Setting New Record Options
2122

New Record Builder
When you drag the New Record Builder icon from the Actions bar into
an application file, the New Record Builder window appears:

All the options necessary for configuring the New Record Builder appear
in its options window.

Tip You can save your Witango builder page formats to use for new
tables you create in the builders. For more information, see “Page
Format Table Settings” on page 167.
Columns
 The columns you include in this list are the columns the user assigns
values to in the new record. To add columns to the list, drag them from
the Data Sources Workspace. Columns appear in the format
table_name.column_name. You can only add columns from one table.
The order in which the columns appear in the Columns list determines
their order on the resulting new record entry form.

The following table describes the operations you can perform on
columns:

To... Do This...

Reorder columns Select the columns and drag them to a different location in
the list.

Setting New Record Options
Delete columns Select the columns. Choose Delete from the Edit menu,
press the DELETE key on the keyboard, select the Delete
icon on the main toolbar, or right-click and choose Delete
from the context-sensitive menu that appears.

Delete columns without
confirmation

Hold down the CTRL key while using the Delete command.

To... Do This...
Columns
Options
Use the Column Options area to configure each column appearing in
the Columns list. You can specify how each column’s entry field appears
on the new record entry form and whether a value is required for it or
not.

Field Title

In this field, set the title of the value entry field for the column as you
want it to appear on the new record entry form.

User Enters Value

Select this option if you want the user to enter a value in an entry field on
the new record entry form.

This title appears for this
column on the new
record entry Web form.

Lets the user enter the
value for the new record.

Specify the value yourself
and prevent this column
from appearing on the
new record entry form.

The type of value entry
field to appear on the new
record entry form.

Prevents the user from
adding the new record
without specifying a value
for this column.
213213

Setting New Record Options

214214
Field Type

To select a value entry field type for a column, select the column in the
Columns list and select an item from the Field Type drop-down menu
(Text, Drop-down List, List Box, Check Box, or Radio Buttons).

A Field Properties dialog box appears, allowing you to specify properties
for the field.

You can edit a field’s properties at any time by clicking the Field
Properties icon in the New Record Builder window or by choosing
Field Properties from the Attributes menu.
For details on the different
types of field that can
appear here (text, drop-
down list, list box, check
box, or radio buttons), see
Field Type on page 180.
The Field Properties dialog box for the specified type of field appears. For
example, in the case of a text field:

Fixed Value

If you select this option, no entry field appears on the new record entry
form. The value you specify is used for every new record.

Using the Value drop-down menu, select one of the following options
for a fixed value:

• Value Entered. Use the text box provided to enter the value for
the Field Title.

• SQL Expression. The value returned by the SQL expression text
entered is used as the value. The text entered is evaluated by the
database, and the result is used as the column value in the new
record.

Note For ODBC data sources, you can enter ODBC scalar functions
here.
Field Properties

Setting New Record Options
• SQL Statement. The SQL statement entered is executed, the
results are retrieved, and the first data item of the results is used as
the column value in the new record. For example, if you enter:

SELECT (MAX (cust_num)+1) FROM customer

the largest customer number plus one is used as the value for the
column in the new record.

• Current Timestamp. The current timestamp (date and time
combined) on the Witango Server computer is used as the value.

• Current Date. The current date on the Witango Server computer
is used as the value.

• Current Time. The current time on the Witango Server computer
is used as the value.
• CGI Parameters. The rest of the fixed value options are referred
to collectively as CGI parameters. They include Client Name,
Client Domain, Client IP Address, Client Browser, Server
Address, Server Port, Referer Page URL, and Method. When
you specify one of these parameters as the column value, the
parameter value passed in when the user clicks the Save button is
used.

Required

Select this column option to prevent a record from being added, unless
the user enters a value. If the user tries to leave the value field empty, an
error message like the following is returned.
215215

Setting New Record Options

216216
If you select Fixed Value for the column, the Required option is not
available. It is also not available for columns configured to use the Check
Box field type. This is because a check box can have only two values:
empty and the one you specify in the Field Properties dialog box. Making
it required would mean the record could not be added unless the user
checks the checkbox, in which case you could use the Fixed Value
option for the column and have it not appear on the new record entry
form.
Summary:
Setting Column
Options
The following table summarizes how to set column options for the New
Record Builder:

To ... Do This ...

Let the user specify the value
for a column

Select the column in the Columns list. Select the
User Enters Value option. This option defines the
column as a user-enterable field, and a value entry field
appears on the new record entry form.

Specify the title to appear for
a column’s new record form
value entry field

Select the column in the Columns list. The column’s
name appears in the Field Title field. Replace the text
with the desired field title. Witango remembers the
entered title and uses it as the default the next time
you choose it.

Specify the type of value
entry field you want to
display for a column

Select the column in the Columns list. Make sure the
User Enters Value option is selected. From the
Field Type drop-down menu, select the type of field
you want to display. A dialog box appears, allowing
you to specify the field properties.

Prevent the user from
omitting a column value

Select the column in the Columns list. Make sure the
User Enters Value is selected. Select the Required
option. If the user leaves the field empty and tries to
save the record, an error message appears, explaining
the problem.

Hard-code the value for a
column

Select the column in the Columns list. Select the
Fixed Value option. From the Value drop-down
menu, select a value to use for the new record. You
can use one of the preset values, such as Current
Date or Current Time, or select Value Entered
to enter a value yourself. Select one of the SQL
options to get a value from the data source. Columns
specified as Fixed Value do not appear on the new
record entry form.

Formatting the New Record Entry Form
Formatting the New Record Entry Form
Use the format options to determine the layout of the entry fields and
their titles in the Web browser.

To change the page format options of the new record entry form

Do one of the following:

• In the New Record Builder window, click the Page Format icon.

• From the Attributes menu, choose Page Format.

The Page Format dialog box appears. This dialog box is identical to the
one for the Search page of the Search Builder. See page 186 for details.
Page Format
217217

Customizing Your Form and Response Messages

21
Customizing Your Form and Response Messages
2188
The Snippets Workspace includes the default builder HTML snippets
described in this section. They include snippets for Form Header, Form
Footer, and New Record Response.
Header, Footer,
and New
Record
Response
HTML
You use Header HTML and Footer HTML to customize the new record
entry form by specifying HTML that is placed above and below the entry
form.

The New Record Response HTML is returned after the user saves the
new record.

The Column Snippets folder in the Snippets Workspace contains the
names of all the columns in the table being inserted into. Dragging a
column name to the HTML editing field causes an <@COLUMN> tag to be
added to the HTML. When the application file is executed, the column’s
value in the new record is included at that location in the response.

To display values from the new record, Witango must be able to get those
values from one of three places: the new record form submitted by the
user, a fixed value you have specified, or from the database. If you include
a column in the result message that does not appear in the Columns list
of the New Record Builder window, Witango must do a search of the
database to retrieve the new record after it is added.

To do so, Witango must have the value of the record’s primary key
column(s). This means the primary key column(s) must appear in the
Columns list of the builder. Without this information, Witango Studio
does not permit you to build the New Record actions.

To enter Header HTML, Footer HTML, or New Record Response
HTML

1 Do one of the following:

• In the New Record Builder window, click the Header HTML,
Footer HTML or New Record Response HTML icon.

• From the Attributes menu, choose Header HTML, Footer
HTML, or New Record Response HTML.
Header
HTML
Footer
HTML
New Record
Response HTML

Customizing Your Form and Response Messages

Button Titles
The corresponding HTML editing window appears:

2 If you want to include HTML other than the default snippets, enter it.

3 Close the editing window.
Changing
Button Titles
The new record entry form contains two buttons at the bottom of your
form:

• The Save button saves the record.

• The Reset Values button resets the entry fields to their default
values.

To change button titles

1 Do one of the following:

• In the New Record Builder window, click the Button Titles
icon.

• From the Attributes menu, choose Button Titles.
219219

Customizing Your Form and Response Messages

220220
The Button Titles dialog box appears:

2 Enter new titles in the corresponding fields.

3 Click OK.
Actions Built by
the New
Record Builder
The actions built by the New Record Builder appear in the application file
window as follows:
For more information, see
“Building the Actions” on
page 169
The following shows the actions resulting from the New Record Builder
process and the conditions under which the actions are built:

IfForm

<@ARG _function> = nrform

This section appears only if one or more user-enterable fields exist.

Form

ElseIfInsert

<@ARG _function> = insert

If no form is present, this is an If action named IfInsert.

IfMissingRequiredFields

Customizing Your Form and Response Messages
This action contains one criterion for each required field, to
check if <@ARG fieldName> is empty. All the criteria are
connected with OR operators.

If there are no required fields, this If/Else condition does not
exist.

MissingFieldsMessage

If the user leaves out values for required fields, the HTML for
this action displays the following message:

Error: Missing Required Fields

The record could not be added because the
following required fields were left empty:

...

Please go back and enter values for these
fields.

ElseDoInsert

Insert

If you selected SQL Statement for any column value, a
Direct DBMS action (one for each) appears immediately before
the Insert action.

InsertResponse

For information about the new record entry response, See
“Header, Footer, and New Record Response HTML” on page
218.

ElseError

Invalid Function

The HTML for this action displays the following message:

Error: Invalid Function

An unknown function was specified.

Return

This action ends execution of the application file and returns the
accumulated Results HTML to the Web browser.
221221

Customizing Your Form and Response Messages

22
HTML Snippets
2222
The Snippets Workspace contains a snippets folder named Builder
Snippets, and a subfolder named New Record. The New Record folder
contains snippets for the Form Header, Form Footer, and New Record
Response.

The New Record Builder uses these snippets in the designated places as
default values for the named attributes.

S E C T I O N I V

Witango Actions

How to Use Witango Actions
This section gives details on many of the actions that can be used in
Witango. Actions not discussed in this chapter are discussed in the
Section V, “Witango Objects.”

This section contains chapters on the following topics:

• Chapter 12, Working With Actions on page 229

• Chapter 13, Grouping Actions on page 245

• Chapter 14, Using Basic Database Actions on page 251

• Chapter 15, Using Control Actions on page 273

• Chapter 16, Extending Witango Functionality on page 297

• Chapter 17, Sending Electronic Mail From Witango on page 309

• Chapter 18, Reading, Writing, and Deleting Files on page 317

• Chapter 19, Using Advanced Database Actions on page 325.

Chapter 12, which gives a general overview of Witango actions, is
recommended for new users of Witango. Whenever you need to know
about another action type, you can read the relevant chapter at that time.

Previous users of Witango may wish to read about the Presentation
action, in Chapter 12, and about revisions to the Mail functionality in
Chapter 17.

224224

12
C H A P T E R T W E L V E

Using Actions

The Basics of Using Witango Actions
A Witango application file is made up of a series of one or more actions.
Each action performs a specific type of function and can have results,
usually in the form of HTML1, associated with it. The applications you
create may be used to input data to information systems, compose and
display information from data sources, and many more interactions.

When an application file is called, the actions in it are executed by
Witango Server. When execution is complete, the HTML results are
returned to the user’s Web browser. These results can be from the user
or from interaction with other servers, normally DBMSs.

Several actions allow you to search, add, update, and delete database
records. There are also actions for executing manually-entered database
statements and controlling the flow of execution within an application file.
You can also automatically create a sequence of actions using the builders.

This chapter covers the following topics:

• the Actions bar

• working with actions

• assigning attributes to actions

• the Results action

• the Presentation action.
225

1 Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible.

About Actions

22
About Actions
2266
The Actions bar shows all the available action types. It appears whenever
an application file is active, or you choose Actions Bar from the View
menu.

Tip You can drag the Actions bar to anywhere on your desktop and
resize it.

You add all Witango actions to an application file from the Actions bar.

The following table lists each action, its function, and where in this User’s
Guide you can find more information:

Icon Action Function
User’s Guide
Reference

Select Selects actions in the
application file window.

This chapter.

Search Retrieves records from a
database.

Searching a
Database on
page 252

Insert Adds records to a database. Adding Records to
a Database on
page 266

Update Changes records in a database. Modifying a
Database Record
on page 268

Delete Removes records from a
database.

Removing a
Database Record
on page 270

Direct DBMS Executes SQL statements. Using SQL Directly
on page 330

Begin
Transaction,
End
Transaction

Begins a transaction and ends a
transaction with a rollback or
commit.

Using Database
Transactions on
page 326

About Actions
Results Performs no special functions
of its own, but it lets you
append HTML to the results.

Results HTML on
page 237

Presentation Allows you to reference
presentation pages (external
files) in your Witango
application file.

Presentation Action
on page 243

Mail Sends out electronic mail. Sending Electronic
Mail From Witango
on page 309

File Reads, writes, and deletes files
on the Witango Server
machine.

Reading, Writing,
and Deleting Files
on page 317

Script Allows you to specify server-
side JavaScript code to execute.

Executing JavaScript
on page 298

External Calls an external code module
to perform a function and
return results.

Using an External
Action on
page 301

Create
Object
Instance

Creates object instances from
COM, JavaBean, and Witango
class file objects.

Adding a Create
Object Instance
Action on
page 377

Call Method Calls methods on the object
instances that are created.

Adding a Call
Method Action on
page 383

Assign Makes specified value
assignments.

Assigning Variables
With the Assign
Action on
page 156

Group Groups related actions. Grouping Actions
on page 245

If, Else If, Else Executes an expression and,
based on the result of the
expression, affects the control
flow in the application file.

General Forms of
Conditional Actions
on page 280

While Loop,
For Loop

Repeats a set of contained
actions until an expression
evaluates to true or for a
specified number of times.

Repeating a Set of
Actions (Loop
Actions) on
page 288

Objects Loop Loops over collection objects. Using the Objects
Loop Action on
page 391

Icon Action Function User’s Guide
Reference
227227

About Actions

228228
As well as actions, the Actions bar includes icons for the Search Builder
and the New Record Builder. You add the builders to an application file in
exactly the same way you add actions.

Break Terminates processing in a
loop.

Exiting a Loop
(Break Action) on
page 294

Branch Causes a jump to another
action or action group.

Jumping to a
Designated Action
(Branch Action) on
page 274

Return Ends execution of the
application file and returns the
accumulated Results HTML to
the Web browser.

Ending File
Processing (Return
Action) on
page 295

Icon Builder Function
User’s Guide
Reference

Search Builder Builds the actions required to
perform a search.

Configuring the
Search Builder on
page 171

New Record
Builder

Builds the actions required to
add a new record.

Configuring the
New Record
Builder on
page 209

Icon Action Function User’s Guide
Reference

Working With Actions
Working With Actions
The application file window shows the actions that you want Witango
Server to execute. Generally speaking, Witango Server executes actions
sequentially, from top to bottom, until it encounters a control action.
Control actions make decisions and cause execution to jump to another
action or action group.

The following is an example of the application file window:

An action icon in the Action column indicates the type of action. Each
action must have a name that is unique in the application file.

An action can have attributes. Action attribute icons in the Attributes
column indicate which attributes are associated with the action on that
row.

Some actions require database operations. The Object/Data Source
column indicates which data source an action is associated with.

Actions and action
groups.

Data source or
object for action.

Optional attributes
assigned to action.

Any additional
comments about
the action.

Unique action
name.
Adding an
Action
To add an action to an application file

Do one of the following:
229229

Working With Actions

230230
• Drag an action icon from the Actions bar into the application file
window (the cursor changes to include crosshairs and the action icon
you are adding), and drop it where you want to add the action.

• Click an action icon, move the cursor into the application file
window (the cursor changes to crosshairs), and click where you want
to add the action.

In either method, a gray line indicates where the new action is to be
placed.

If the action has an editing window, it opens automatically.

Tip To prevent the action’s editing window from being opened
automatically, hold down the CTRL key while dragging the new action
into the document window.
Naming an
Action
Each action in an application file must have a unique name. Witango
Studio gives actions a unique name automatically.

The default name for an action is its action type. When you add an action
that already exists in the application file with its default name, Witango
appends the default name with a numeric starting at “1”; for example,
“Search1”.

Tip To make your application files more readable, you should always
replace default action names with more meaningful ones.

Working With Actions
To rename an action in an application file

1 Select the action you want to rename.

2 Do one of the following:

• Click the name of the action.

• From the Edit menu, choose Rename.

• Right-click the selected action and choose Rename from the
context-sensitive menu that appears.

3 Type the new name.

Note Action names can contain only letters, numbers, and
underscores. No spaces, punctuation, or other characters are allowed.
Adding spaces automatically adds underscores.

When you rename an action, Witango automatically updates any Branch
actions in the same application file referring to the action. If you rename
an action that is the destination for branches from other application files,
the Branch actions in other application files are not updated.

Witango does N O T automatically update action results references for
renamed actions.
Deleting an
Action
To delete an action from an application file

1 Select the action you want to delete.

2 Do one of the following:

• From the Edit menu, choose Delete.

• On the main toolbar, click the Delete icon.

• Press DELETE.

• Right-click and choose Delete from the context-sensitive menu
that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Tip You can bypass the confirmation dialog box by holding down the
Ctrl key when choosing Delete.
231231

Working With Actions

23
Editing an
Action
2322
All of the actions—except Return, Group, and Break actions—have
associated attributes and parameters. You can set these parameters in the
action’s editing window.

To edit an action in an application file

• Double-click the action icon in the application file window.

The action’s editing window opens.

If the action is associated with a data source, the Data Sources
Workspace opens, listing the tables and columns for the data source. If
Witango Studio has not loaded the data source yet, it is loaded first.
Moving an
Action
Witango executes the actions in an application file sequentially, from top
to bottom; however, you can use control actions to modify this sequence.

If you want the actions to be performed in a different order, you can
rearrange them. Move them to another location in the application file by
dragging them to the position you want.

To move an action to a new location

Do one of the following:

• Select the action you want to move, and drag the action to its new
position.

• Select the action, and cut and paste it using the edit commands.

Actions are pasted after the currently selected action, or at the end
of the file if no action is selected.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

When you move an action, Branch actions referring to it continue to
branch to the action, even though its position has changed.
Copying an
Action
You may want to create an action that performs a task similar to one
performed by an existing action in another application file. Instead of
having to recreate the action and specify all its parameters again, Witango
Studio allows you to duplicate an action.

To copy an action in the same application file

Do one of the following:

• Select the action you want to copy, hold down the Ctrl key, and
drag the action to where you want the new action to appear.

Working With Actions
• Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

The copied action is given a new, unique name, which you should change
to a more descriptive name.

To copy an action into another application file

Do one of the following:

• Select the action you want to copy, and drag the action into another
application file.

• Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

Be careful when copying database actions. For an action to work
correctly in the new application file, the data source must be the same as
in the original one.

Alternatively, you may assign another data source to the action in the new
application file.
233233

Working With Actions

23
Context-
Sensitive
Action Menu
2344
When you right-click an action icon in the application file window, or
anywhere in the file window with an action selected, a context-sensitive
menu of action commands appears:

• Open opens the action editing window for the selected action.

• Cut, Copy, Paste and Delete perform the standard window editing
functions.

• Rename allows you to edit the current name of the action.
For more information on
using these commands, see
Setting Data Sources for
Actions on page 106,
Assigning Attributes to
Actions on page 236,
Debugging Files on
page 61, The SQL Query
Window on page 22,
Grouping Actions on
page 245, and Action
Properties on page 234.
• Set Data Source allows you to set the data source for one or more
actions.

• Results HTML, No Results HTML, Error HTML, and Push are
attributes you can assign to actions which support them.

• Debug File is an attribute of the entire application file or Witango
class file.

• SQL Query opens the SQL Query window so you can perform
SQL queries from within Witango.

• Group and Ungroup allows you to group related actions and also
to ungroup them.

• Properties displays the action properties window.
Action
Properties
When you select an action and choose Properties from either the View
menu or the context-sensitive menu, the Action Properties window for
that action appears.

Working With Actions
This window displays current information about the selected action and
the assigned data source.
For more information, see
“Properties Window” on
page 8.
Using this window, you can change some of the action’s properties.
235235

Assigning Attributes to Actions

23
Assigning Attributes to Actions
2366
In addition to the parameters specific to each action type, which are
edited using the action’s editing window, actions can also have the
following attributes:

• Results HTML applies to all actions, except control actions (other
than Branch). After the action is executed, this HTML is added to the
results returned.

• No Results HTML applies only to Search, Direct DBMS, Script,
File, and External actions. When the action does not return data, this
HTML is returned instead of the Results HTML.

• Error HTML applies to most action types except certain control
actions (including Return and Break). In the event of an error in the
action’s execution, this HTML is returned immediately.

• Push causes the Results HTML accumulated so far to be sent back
to the Web browser when the action to which it is assigned finishes
executing. Execution then continues normally.

• Debug File lets you see useful information about your application
file or Witango class file execution in your Web browser application.
This attribute applies to the entire application file, not a particular
action. For more information, see Debugging Files on page 61.

To assign Results HTML, No Results HTML, Error HTML, or Push

Do one of the following:

• Select the action in the application file window, then select an
attribute from the Attributes menu or from the Attributes bar.

• Right-click the action in the application file window and choose the
attribute that applies to the selected action from the context-
sensitive menu that appears.

The HTML action attributes in the Attributes
menu have a corresponding button on the
Attributes bar.

A check mark
appears beside Push
and Debug File
when they are
selected.

Assigning Attributes to Actions
Action attribute icons appear beside the action name in the Attributes
column of the application file window. See the example on page 229.
For more information, see
“HTML Editing Window”
on page 6.
You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.
Results HTML
 Many actions in an application file can have HTML associated with them.
This HTML is stored in the Results HTML attribute. If Results HTML
contains any text, the Results HTML icon appears in the attributes
column of the application file window; otherwise, it does not.

As Witango Server executes the actions in a file, the Results HTML
associated with each is accumulated. When execution of the file is
complete, the HTML is returned.

Results HTML can also contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is interpreted by the
user’s Web browser and returned as is (via the Web server), Witango
Server first substitutes meta tags with other values.
For more information, see
“Working with Meta Tags”
on page 143.
The <@COLUMN> meta tag causes a database value to be placed in the
HTML. There are many others, including tags for referencing form field
and search argument values, and conditional tags for displaying HTML
only if the result of a given comparison is true.

To create or edit the Results HTML for an action

1 Select the action in the application file window.

2 Do one of the following:

• From the Attributes menu, choose Results HTML.
• Click the Results HTML icon on the Attributes bar.

• Right-click the action and choose Results HTML from the
context-sensitive menu that appears.
237237

Assigning Attributes to Actions

238238
The Results HTML editing window appears:

3 Type the Results HTML into the HTML text area. The text can
include any valid HTML1 or Witango meta tags.

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.
For more information, see
“Working With Snippets”
on page 120.
You can add column values (for Search actions only) and any HTML
snippets you have defined to the Results HTML editing window from the
Snippets Workspace. As well, you can add from the list of standard
Witango snippets that allow for easy entry of many of the meta tags.

To include any of these items in your Results HTML, select the snippet
and either drag it, or copy and paste it into the desired location in your
text.

For HTML snippets that have placeholders for the current selection,
select the text and drag the snippet over the selected text. The snippet is
wrapped around the selection. For example, “Title” becomes
“<H1>Title</H1>”.

You can also easily add many of the common Witango meta tags.
1 Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible. If you use other content types, you are responsible for setting the
HTTP header appropriately.

Assigning Attributes to Actions
To add a meta tag

1 Click the editing area where you want to add a meta tag.

2 Do one of the following:

• From the Edit menu, choose Insert Meta Tag.

• Right-click, and choose Insert Meta Tag from the context-
sensitive menu that appears.

The Insert Meta Tag dialog box appears.
No Results
HTML
You can associate No Results HTML text with Search, Direct DBMS,
Script, and External actions. If the action execution does not return any
data, this text is added to the application file’s accumulated HTML instead
of the Results HTML. This is useful when you want to display a special
message to users when their queries do not return data.

Note If both Results HTML and No Results HTML appear as
attributes, Witango accumulates one or the other, but never both.

After Witango Server processes the No Results HTML, execution of the
application file continues normally to the next action.

No Results HTML can contain any of the Witango meta tags used in
Results HTML, except for those related to displaying result data items,
such as <@ROWS>, <@COLUMN>, and <@COL>.

To create or edit the No Results HTML for an action

1 Select the appropriate action in the application file window (Search,
Direct DBMS, Script, and External actions).

2 Do one of the following:

• From the Attributes menu, select No Results HTML.

• Click the No Results HTML icon on the Attributes bar.

• Right-click the action and choose No Results HTML from the
context-sensitive menu that appears.

The No Results HTML editing window appears.

3 Type the No Results HTML into the HTML text area. The text can
include any valid HTML or Witango meta tags.
239239

Assigning Attributes to Actions

24
Error HTML
2400
Error HTML allows you to specify your own error messages in HTML
format, instead of having Witango Server produce them. The other
alternative is to modify the Error.htx file; see To specify your own
custom default error messagepage 241on this page.

You can associate Error HTML with most actions. If an action fails for any
reason, execution ends and the Error HTML for the action is returned
immediately to the user.

Error HTML can contain all the Witango meta tags used in Results HTML,
except for those related to displaying result data items.
There are also special Witango meta tags for displaying error information.

If no Error HTML has been assigned to an action and an error occurs in
that action, Witango returns a default error message using the following
HTML:

<h3>Error</h3>

An error occurred while processing your request:<p>
<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1>

<@ifequal <@ERROR PART=NUMBER2> 0>
<@else>

Secondary Error Number: <@ERROR
PART=NUMBER2>

</@ifequal><p>
<i>
<@ERROR PART=MESSAGE1>

<@ifequal @ERROR PART=MESSAGE2> "">
<@else>

@ERROR PART=MESSAGE2>

</@ifequal><p>
</i>
</@ERRORS>

To create or edit the Error HTML for an action

1 Select the action in the application file window.

2 Do one of the following:

• From the Attributes menu, select Error HTML.

• Click the Error HTML icon on the Attributes bar.

• Right-click the action and choose Error HTML from
thecontext-sensitive menu that appears.

The Error HTML editing window appears.

Assigning Attributes to Actions
3 Type the Error HTML into the HTML text area. The text can include
any valid HTML or Witango meta tags.

To specify your own custom default error message

1 Create a text file containing the desired HTML and meta tags.

2 Name the file error.htx.

3 Save or copy it to the following directory
WITANGO_PATH\MiscFiles.

If Witango Server finds this file, it processes and returns it instead of the
built-in default Error HTML. Error HTML assigned to an action is used if
it exists.
The name and location of this file is determined by the
defaultErrorFile configuration variable, which can be modified using
the Witango Administration Application. The values when Witango is
first started are given above. If you modify the path or name of the error
file, place the file in the directory you specified instead.
Push
 The Push attribute causes the Results HTML accumulated so far to be
sent back to the Web browser, when the action to which the Push
attribute is assigned finishes executing. Execution then continues.

Normally, Witango waits until all execution is finished before returning
the results at one time. If you want the user to see some of the results
while Witango continues with the rest of the execution, set the Push
attribute of the action.

Note Some Web browsers may not display table HTML immediately if
you use the Push attribute to return an unclosed table.
Debug File
 For more information, see Debugging Files on page 61.
241241

Adding HTML (Results Action)

24
Adding HTML (Results Action)
2422
The Results action adds HTML to an application file’s results.

When you drag the Results action icon from the Actions bar into an
application file, a blank HTML editing window appears.

Results HTML can contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is returned as is to
your Web browser (via the Web server), any meta tags are first
substituted with other values by Witango Server. You can also associate
Error HTML with the Results action.
Results Action

Presentation Action
Presentation Action
Uses of the
Presentation
Action
The main benefit of using the Presentation action is to facilitate the
separation of the business logic from the presentation logic when you
develop your Witango application.

Business logic involves the use of Witango actions and meta tags to access
the appropriate Web pages and data sources. Presentation logic involves
the use of HTML to display the Web pages.

Because developing the business logic and the presentation logic generally
require different skill sets, setting up independent teams to work on these
two areas can improve the effectiveness and efficiency of the project.
Furthermore, changing the business logic—for example, accessing a
different data source—often does not affect the presentation logic, or
vice versa. Keeping the two areas separate simplifies the maintenance of
your project.

A Presentation action in your application file points to an HTML page. It is
the link between the business logic and the presentation logic of your
project.
How the
Presentation
Action Works
The Presentation action allows you to include individual presentation pages
in your Witango application file. The presentation page—the file the
Presentation action points to—can contain HTML, Witango meta tags, or
any other sort of document markup. When Witango Server executes
your application file and arrives at a Presentation action, it processes the
presentation page associated with the Presentation action.

The Presentation action performs an operation similar to that of including
an HTML or other file in a Witango application file using the
<@INCLUDE> meta tag.
For more information, see
“Working With
Presentation Pages” on
page 77.
The file referenced by the Presentation action is part of the current
project, and can be opened and edited by double-clicking on the file icon
within the Presentation Pages folder in the Project section of the
Workspace.

You can also designate files in your project as presentation pages, and
manage files within the Presentation Pages folder.
243243

Presentation Action

24
Setting Up a
Presentation
Action
2444
When you drag the Presentation action from the Actions bar into an
application file, the Presentation dialog box appears:

Do one of the following:

• In the Presentation Page field, enter the name of the presentation
page, or if you have previously specified a presentation page in the
current Project, choose a file name from the drop-down menu.

• Click Browse to navigate to the location of the presentation page.

If the file is not in your current project, you are prompted to add it to the
project, where it appears in the Presentation Pages folder and in the
Files folder of the Project tab of the Workspace.

In the Path to target page on server area, select Same as source page
if the presentation page is located in the same folder as the current
application file, or select Other.

If you choose Other, you specify the path to the presentation page. This
value is a slash-separated path from the Web server document root, and
may include literal text, meta tags, or both. To insert a meta tag in this
field, right-click in the text field and choose Insert Meta Tag... from the
context-sensitive menu that appears.

For example, you could enter the following into the text field:

Witango/MyDirectory/

This example includes the specified file residing in the MyDirectory
folder within the Witango folder in the Web server document root
folder.

<@APPFILEPATH>

This example includes the specified file residing in the same folder as the
currently-executing application file.

13
C H A P T E R T H I R T E E N

Grouping Actions

Organizing Related Actions
The Group action allows you to organize actions within the file by
grouping related actions and naming the group.

The topics in this chapter cover:

• working with action groups

• executing grouped actions.
245

About Grouped Actions

24
About Grouped Actions
2466
In large Witango application files, it is common to place a number of
related actions together; however, when viewing an application file, it can
be difficult to locate the related actions. To allow you to better organize
actions within the file, you can group related actions and name the group.
They also provide a destination for branching.

The following shows a typical application file containing action groups:

Expanded action
group

An action group
within an action
group

Collapsed action
group
For more information, see
“Application File Window”
on page 56.
You can view grouped actions in a collapsed or expanded state. Groups
added to an application file are in the expanded state by default. The
collapsed or expanded state of an action group is saved in the application
file. When the file is next opened, the last state is restored.

You can also include an action group within another action group.

You cannot associate action attributes with an action group. When you
select a group, Results HTML, No Results HTML, Error HTML, and Push
attributes are disabled.

Working With Action Groups
Working With Action Groups
Adding an
Action Group
To add an action group to an application file

• From the Actions bar, drag the Group icon to the location you want
in the application file.

Follow the instructions in “Adding an Action to a Group” on this
page to add actions.

To automatically group selected actions

• Select the actions you want to group together, and choose Group
from the Edit menu or the context-sensitive menu.

A new action group containing all selected actions is created and
positioned where the top-most selected action was.
For more information, see
“Naming an Action” on
page 230.
Once added, the action group appears with a default name, just like other
actions. You rename action groups in the same way you rename other
actions. Just like action names, the action group name must be unique
within the application file.
Adding an
Action to a
Group
To add an action to a group

Do one of the following:

• Drag an action between two actions that are already in the group.

The action is added to the group at that location.

• Drag an action onto the group icon.

The action is added to the bottom of the group.

• Use the Copy and Paste commands from the Edit menu, main
toolbar, or context-sensitive menu to copy and paste an action into a
group.

Note You can select discontiguous actions in the application file and
drag, or copy and paste them into a group; the actions do not need to
be together already.
Removing an
Action From a
Group
To remove an action from a group

Do one of the following:

• Drag the action you want to remove outside the group.
Group
247247

Working With Action Groups

248248
If you drag the action above or below the group, the action appears
immediately before or after the group, respectively.

• Use the Copy and Paste commands from the Edit menu, main
toolbar, or context-sensitive menu to copy and paste an action
outside of a group.

Note Removing actions from a group does not delete the group, even
if all actions are removed from the group.
Ungrouping
Actions
To ungroup all actions with a group

1 Select the Group action.

2 Do one of the following:

• From the Edit menu, choose Ungroup.

• Right-click the Group action and choose Ungroup from the
context-sensitive menu that appears.

This deletes the group action but keeps the actions that were within the
group.

You can also drag actions out of the action group, but that does not
delete the Group action itself.
Deleting an
Action Group
You delete an action group and all actions within it the same way you
delete any action. Deleting a group also deletes all the actions within it.

For more information, see Deleting an Action on page 231.
Effects of
Editing an
Action Group
Editing an action group affects the actions within it:

• Moving an action group automatically moves all actions within the
group.

• Copying an action group copies all actions within the group as well.

• Deleting an action group deletes the action group and all actions
within the group.
Branching to an
Action Group
You can specify an action group as the destination of a Branch action.

For more information, see “Jumping to a Designated Action (Branch
Action)” on page 274.

Executing Grouped Actions
Executing Grouped Actions
When Witango Server encounters an action group during file execution,
no operation is performed on the action group itself, only on the actions
within the group.
For more information, see
“Exiting a Loop (Break
Action)” on page 294.
Even though an action group has no effect on the execution of an
application file, Witango Server supports the ability to branch to an
action group and the ability to break out of an action group. If a Break
action is encountered within a group, the next statement to be executed
is the first statement outside of the group.
249249

Executing Grouped Actions

250250

14
C H A P T E R F O U R T E E N

Using Basic Database
Actions

Search, Insert, Update, and Delete Actions
Witango includes several fundamental database actions that allow you to
search (Search action), add (Insert action), modify (Update action), and
delete (Delete action) database records. You do not need any knowledge
of SQL to use any of these actions.

The topics covered in this chapter include setting up and executing
Search, Insert, Update, and Delete actions.
251

Searching a Database

25
Searching a Database
2522
Search actions retrieve database records matching a given criteria.

You use the Search action editing window to define what columns are
selected, the order of the data retrieved, and the criteria that determine
which rows (records) are found.

Tip The SQL Query window gives you a convenient way to look at
your database values. Choose SQL Query from the Windows menu
or from the context-sensitive menu that appears when you right-click
the Search action editing window. For more information, see “The SQL
Query Window” on page 22.

You use the action’s Results HTML to format the results of the search.
Setting Up a
Search Action
When you drag the Search action icon from the Actions bar into an
application file, the Search action editing window appears. The window
consists of four sections, which you can access by clicking the respective
tabs. The Select, Criteria, and Results sections are covered in this chapter.
The Joins section is covered in Working With Joinspage 337on page
337.

Select Section

You use the Select section to select the type of search to perform, the
columns to retrieve, and the ordering of the records returned.

You can perform three types of search with a Search action: Normal,
Summaries of Groups, and Summary of All Rows.

Select which type of search you want to perform from the Select Type
drop-down menu.
Search Action

Searching a Database
• Normal returns rows matching specified criteria.

• Summaries of Groups returns summaries of rows whose values in
given columns (the grouping columns) are the same.

• Summary of All Rows returns a single row summarizing all rows
matching your criteria. This kind of search lets you get information
such as the maximum or average value of a particular column in a
database table.

Normal Search

The Normal type of search returns rows matching specified criteria.
This is the most common type of search.

When you select Normal from the Select Type drop-down menu, the
Select section appears as follows:

Specify values for the parameters in the Select section:

• Select Columns. Drag into this list from the Data Sources
Workspace the columns whose data is to be retrieved from the
database.
For more information, see
“Joining Database Tables” on
page 336.
You can include columns from multiple tables; if you do, you must
define joins to describe how the tables are related.

• Order By Columns. Drag into this list the columns that are used
to sort the results returned to the user. Ordering by columns is
optional.
253253

Searching a Database

254254
The order of the columns in the list determines the ordering
hierarchy. For example, if the first order column is “state or
province” and the second “customer name”, the results are first
ordered by state or province; customers in the same state or
province are then ordered by name.

The triangle to the left of the column name determines whether the
ordering is ascending () or descending (). To change the order
direction for a column, click the triangle.

Summaries of Groups

The Summaries of Groups search type returns summaries for groups
of rows with the same values in specified columns. For example, it allows
you to find out the total sales for each sales region in an invoices table by
selecting the sum of invoice amounts and grouping by sales region.

When you select Summaries of Groups, the Select section appears as
follows:

• Select Columns. Drag into this list the columns you want to select.
Select columns for this select type have an associated function. This
function is performed on the column for all the rows in a particular
group, as determined by the Group By Columns list. For example,
if you selected the MAX function for a “price” column and group by
the “classification” column, you would receive one row for each
unique classification. Each row would contain the maximum value of
the “price” column for the classification being summarized.

Searching a Database
The following table lists the available functions:

To choose the function for a column, click the Function column and
select the function from the drop-down menu.

• Order By Columns. As with the normal select type, you specify in
this list the ordering of results. You can drag columns from the Data
Sources Workspace or from the Select Columns list. You can
order only by columns appearing in the Select Columns list.

• Group By Columns. The columns in this list determine how rows
are grouped before being summarized. Groups consist of all the rows
that have the same values in the columns specified. For example, if
you group by the “cust_state” and “cust_rep” columns in a customer
table, you get one summary row for each group of rows with the
same values in the “cust_state” and “cust_rep” columns.

• Show Group Criteria. Normally, all the summary rows are
returned for records matching the user’s criteria. You can eliminate
summary rows by specifying group criteria. The group criteria have a
different function from the regular criteria in that the regular criteria
specify which rows are eligible for grouping, while the group criteria
specify which summary rows are returned.

Note The group criteria section is equivalent to the HAVING clause in
a SQL SELECT statement.

For example, if you are grouping by classification and selecting the
maximum order amount, you can use group criteria to limit the
returned rows to those customers whose maximum order amount is
greater than $5,000.

Function Description

MAX The maximum value of column in the group.

MIN The minimum value of column in the group.

AVG The average value of column in the group. Valid only for
numeric columns.

SUM The sum of all column values in the group. Valid only for
numeric columns

COUNT The number of non-null values in the column for the group.

None Perform no function; return the value of the column for each
group. Columns with this option must appear in the Group
By Columns list, because only group columns are sure to
have the same value within a group.
255255

Searching a Database

256256
To specify group criteria, click Show Group Criteria.

The Select section expands to show the area for entering group
criteria.

Drag columns from either the Data Sources Workspace or the
Select Columns list.

Note You can specify only columns that appear in the Select
Columns list.
For more information, see
“Criteria Section” on
page 257.
Except for the function option, you specify group criteria just like
normal criteria.

Summary of All Rows

To get a summary of all rows matching a specified criteria, use the
Summary of All Rows search type. Only one summary row is

Searching a Database
returned. For example, you could use this search type to find the average
amount of all orders in an orders table.

As with the Summaries of Groups search type, each select column has
an associated function that determines how that column is summarized.
All the column values in the rows matching the criteria are aggregated
using the specified function.

Criteria Section

The Search action criteria determine which rows from the database are
returned by the action. If no criteria are specified, all rows are returned;
otherwise, each row in the database is compared to your criteria and
only those meeting them are returned.
257257

Searching a Database

258258
To specify the criteria, drag columns from the Data Sources Workspace
to the Criteria list. For each column, you must specify:

• Logical Operator

• Column

• Operator

• Value

• Include Empty

• Quote Value.

Column

In the Column field, specify the column whose value you want to
compare. Drag the column from the Data Sources Workspace.

Logical Operator

The first field in the criteria list is the logical operator, which is either and
or or. To specify the operator, do one of the following:

• Click the row, then click the field to display a drop-down menu and
choose an operator.

• Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

Note You must specify at least two columns before the logical
operators are available.

The logical operator determines whether the current and previous
criteria must be true for a record to be included in the result or whether
a match on either the current or previous criterion causes a record to be
included in the result. For example, if your criteria are:

cust_num = 5100
and cust_name Begins with A

only records matching both criteria are returned. If the logical operator is
changed to or, records matching either one of the criteria are returned.

There is an implied order of operation for logical operators. Criteria
joined with the and logical operator are evaluated before those joined
with the or logical operator.

For example, in the following criteria:

cust_num = 5100
or cust_name Begins with A
and cust_state = NY

Searching a Database
a match is made if both the second and third criteria are true or the first
criterion is true.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
You can also use the Insert Meta Tag command to enter in the Criteria
window entry fields many of the commonly used meta tags.

To insert a meta tag, either click the field and choose Insert Meta Tag
from the Edit menu, or right-click the field and choose Insert Meta Tag
from the context-sensitive menu that appears.
For more information, see
“Criteria Separators” on
page 262.
You can use criteria separators to control the order of criteria evaluation,
regardless of this default logical operator hierarchy.

Operator

In the operator field (Oper.), specify the operator to use when
comparing the field by doing one of the following:

• Click the row, then click the field to display a drop-down menu to
choose an operator from.

• Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

Possible operators include:

Text columns permit the use of any operator; for other columns, the
Contains, Begins with, and Ends with operators are disabled.

Operator Meaning

= is equal to

!= is not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Contains field contains these character(s)

Begins with field begins with these character(s)

Ends with field ends with these character(s)

Is In matches one of a list of values (see page 261)

Is Null matches an empty field

Is Not Null matches a non-empty field
259259

Searching a Database

260260
You can either specify a static operator or insert a meta tag to get the
value at execution time. Using a variable operator allows you, for
example, to put a drop-down menu on your Web page to let users
choose the comparison operator.

When using a variable to specify the criterion operator, Witango requires
you to use special values to represent each of the operators. The
following table lists these special values:

For example, to create an operator drop-down menu in an HTML form
whose value you want to use as the operator in a search criterion, you
could use HTML similar to the following:

<SELECT NAME="cust_name_op" SIZE=1>
<OPTION VALUE = "iseq" SELECTED>=
<OPTION VALUE = "isnt">!=
<OPTION VALUE = "gthn">>
<OPTION VALUE = "lthn"><
<OPTION VALUE = "gteq">>=
<OPTION VALUE = "lteq"><=
<OPTION VALUE = "swth">Begins With
<OPTION VALUE = "ewth">Ends With
<OPTION VALUE = "cont">Contains
</SELECT>

and set the operator in the Search action to

<@ARG cust_name_op>

To Specify This Operator Use This Value

= iseq

!= isnt

> gthn

< lthn

>= gteq

<= lteq

Contains cont

Begins with swth

Ends with ewth

Is In isin

Is Null inul

Is Not Null nnul

Searching a Database
The Is In operator needs some additional explanation. It matches
records where a column value is in a list of values.

For example, the following criteria:

cust_num Is in 200, 300, 400

matches records in which the cust_num field has a value of 200, 300, or
400. The Is in operator can be thought of as a shortcut for a series of
OR equals criteria:

cust_num = 200
or cust_num = 300
or cust_num = 400

The value specified can be a single-column or single-row array (as would
be returned by the <@ARG> tag with a type attribute of ARRAY, for
example) or a comma-separated list of values.

Value

In the Value field, enter the value to use in the comparison.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
The value can also contain any value-returning Witango meta tags, which
are substituted when the application file is executed. Use the Insert
Meta Tag command to enter many of the commonly used meta tags.

Include Empty

In the Incl. Empty field, specify whether the criterion is included, even if
the comparison value is empty, by doing one of the following:

• Click the row, then click the field to display a drop-down menu to
choose a value from.

• Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

The values appear as false and true.

false omits the criterion if the value (after meta tag substitution) is
empty; true includes the criterion regardless of the value’s contents.

This option is used mainly for columns whose search value is taken from a
search form on a Web page. For example, you may have a search form
that allows you to enter search values for several columns, but you want
the search done only on the columns you enter values for. To do this, set
the Incl. Empty option for each of the corresponding Search action
criteria to false.

There are cases where you do want a criterion included, even if the value
is empty. For example, suppose you have a Web page that asks for a user
name and password, and a corresponding Search action that finds the
261261

Searching a Database

262262
user in a users’ database. In the Search action, you probably want to set
the Incl. Empty option for each of the values to true. If you do not, and
the user leaves both fields empty, the Search action omits both criteria
and returns all user records.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
You can right-click the Incl. Empty field, and choose Insert Meta Tag
from the context-sensitive menu that appears to enter many of the
commonly used meta tags.

Quote Value

In the Quote Value field, specify whether Witango puts quotation mark
characters around the value in the SQL it generates for this criterion by
doing one of the following:

• Click the row, then click the field to display a drop-down menu to
choose a value from.

• Right-click the field, and choose Edit from the context-sensitive
menu. Then choose an operator from the drop-down menu.

The values appear as false and true.

For text, date, time, and timestamp columns, you should set this option
to true. For date, time, and timestamp columns, this option has special
meaning. true converts the specified value from the default Witango
format to the format required by the database server; false passes the
value specified as is to the database server.

If you want to use an expression that the database server evaluates
(instead of a literal Witango-supplied value), set the Quote Value option
to false and enter the expression in the Value field.

For numeric and Boolean types, you should set the Quote Value option
to false.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
You can right-click the Quote Value field, and choose Insert Meta Tag
from the context-sensitive menu that appears to enter many of the
commonly used meta tags.

Criteria Separators

To group criteria, select the position between the criteria you want to
group and do one of the following:

• From the Edit menu, choose Insert Criteria Separator.
• Right-click and choose Insert Criteria Separator from the

context-sensitive menu that appears.

Searching a Database
Only the logical operator cell can be edited for separator items.

Upon execution, the criteria before the separator are combined with the
criteria after the separator using the logical operator specified in the
separator line in the criteria list.

Results Section

In the Results section, you specify the maximum number of records to
retrieve from the data source, at which result record number retrieval
begins, and whether Witango gets the count of matching records.

Number of rows to retrieve

To return all matching records, select No Maximum.
263263

Searching a Database

264264
To limit how many records you want the search to return, select Limit
To and enter the maximum number of records to retrieve.

The following options are only available for the Normal search type.

Start retrieval at row number

Select this option if you want to skip some of the matching records.
Specify the row number you want the Search action to start retrieval at.
The default is “1”. When the value is other than “1”, the Search action
returns records starting at that number, skipping any records before it.

This option is most useful when you use a variable (such as
<@SEARCHARG start>) for the starting record number.
For more information, see
“Show Multiple Pages If
Limit Exceeded” on
page 193.
For an example of how to use this option to provide results paging for
large result sets, look at the Search action in a Search Builder-generated
file created with the Show Multiple Pages If Limit Exceeded option
selected.

Retrieve distinct rows only

If you select this option, Witango Server adds the DISTINCT keyword
after the SELECT keyword in the generated SQL. The DISTINCT
keyword specifies whether duplicate rows are to be eliminated from the
result set. For example,

SELECT c1.cust_state, c1.cust_zip
FROM customer c1;

becomes

SELECT DISTINCT c1.cust_state, c1.cust_zip
FROM customer c1;

Get total number of matching rows

You use this option to retrieve the number of records matching the
search criteria, irrespective of how many records are actually retrieved.

Using this option, you can access the value in the Search action’s Results
HTML by using the <@TOTALROWS> meta tag.

Note Selecting this option involves an extra database operation, so
unless you require the information it provides, do not select it.
Executing a
Search Action
When Witango Server executes a Search action, the search is performed
against the associated data source. The result rowset is automatically

Searching a Database
stored as an array in the local variable resultSet. The Results HTML
for the Search action is then processed.

The HTML in the <@ROWS><@/ROWS> block, if any, is processed once for
each record in the results. Use <@COLUMN> or <@COL> meta tags to
include field values.

If the Search action generates no results, and you have specified No
Results HTML for the action, that HTML is processed instead of the
Results HTML.
265265

Adding Records to a Database

26
Adding Records to a Database
2666
The Insert action adds a record (row) to a table in a database.
Setting Up an
Insert Action
When you drag the Insert action icon from the Actions bar into an
application file, the Insert action editing window appears:

To set up an Insert action

1 From the Data Sources Workspace, drag into the Column list the
columns whose values you want to set in the new record.

Note You can select columns from only one table.

If you do not add all of the table’s columns to the Insert action,
the omitted columns are given the default values defined when
the database was created.

2 In the Value field for each column, enter the value for that column in
the new record. The value can contain any of the value-returning
Witango meta tags, which are substituted upon execution of the
application file.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
To insert a meta tag, either click the field and choose Insert
Meta Tag from the Edit menu, or right-click the field and
choose Insert Meta Tag from the context-sensitive menu that
appears.
For more information, see
“Quote Value” on
page 262.
The Quote Value option operates the same as it does in
search criteria.
Insert Action

Adding Records to a Database
Executing an
Insert Action
When Witango Server executes an Insert action, a record is added to the
database with the column values specified. The Insert action returns no
results.
267267

Modifying a Database Record

26
Modifying a Database Record
2688
The Update action modifies database records matching specified criteria.
Setting Up an
Update Action
When you drag the Update action icon from the Actions bar into an
application file, the Update action editing window appears.

To set up an Update action

1 In the criteria list at the top of the action’s editing window, specify
which records you want to update.

Specify the criteria for the Update

Records in the database matching the criteria are
updated with the values specified in this list.
For more information, see
“Criteria Section” on
page 257.
You edit the criteria list the same way you edit the Search
action’s criteria list.

CautionFor an Update action, be E X T R E M E L Y careful
when setting the Incl. Empty option to false. You may end up affecting
more rows than you intend, possibly even updating all the records from
your database table. Just like leaving Incl. Empty set to false in a Search
action returns all the records, leaving it set to false in an Update action
updates all records.
Update Action

Modifying a Database Record
2 From the Data Sources Workspace, drag the columns whose values
you want to update into the update columns list at the bottom of the
action’s editing window.

Note You can specify columns from only one table. If you want to
update multiple tables, use an Update action for each table. In this case,
consider using a Transaction action to make sure all or none of the
updates are processed. Only the values in the columns you specify are
modified when the action is executed.

3 Under Value for each column, enter the new value for that column.

The value can contain any of the value-returning Witango meta tags,
which are substituted upon execution of the application file.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
To insert a meta tag, either click the field and choose Insert Meta
Tag from the Edit menu, or right-click the field and choose Insert
Meta Tag from the context-sensitive menu that appears.

If you always want to update a column with a fixed value, simply
enter that value.
For more information, see
“Quote Value” on
page 262.
The Quote Value option operates in the same way it does in search
criteria.
Executing an
Update Action
When Witango Server executes an Update action, Witango searches for
records matching the specified criteria and updates them with the
specified column values.

The Update action returns no results.
269269

Removing a Database Record

27
Removing a Database Record
For more information, see
“Criteria Section” on
page 257.
2700
The Delete action removes database records that match the specified
criteria. You edit the criteria list the same way you edit the Search
action’s criteria list.
Setting Up a
Delete Action
To set up a Delete action

1 Drag the Delete action icon from the Actions bar into an application
file.

The Delete action editing window appears:

2 In the criteria list of the Delete action’s editing window, specify which
records you want to delete.

Note You can specify columns from only one table. If you want to
delete multiple tables, use a Delete action for each table. In this case,
consider using a Transaction action to make sure all or none of the
deletes are processed.

You must specify at least one criterion for the Delete action to be
valid.

CautionFor a Delete action, be E X T R E M E L Y careful
when setting the Incl. Empty option to false. You may end up affecting
more rows than you intend, possibly even deleting all the records from
your database table. Just like leaving Incl. Empty set to false in a Search
action returns all the records, leaving it set to false in a Delete action
deletes all records.
Delete Action

Removing a Database Record
Executing a
Delete Action
When Witango Server executes a Delete action, records matching the
specified criteria are deleted.

The Delete action returns no results.
271271

Adding Custom Columns to Database Actions

27
Adding Custom Columns to Database Actions
2722
A custom column entry lets you enter any text as the column reference.
You can use custom columns wherever Witango accepts columns dragged
from the Data Sources Workspace.

Make sure the text entered makes sense in the database action. For
example, in a Search action, you could enter the following calculation as a
Select column:

orders.order_amt + 20

To add a custom column to a database action

1 Do one of the following:

• From the Edit menu, choose Insert Custom Column.

• Right-click any database action editing window where you can
add columns, and choose Insert Custom Column from the
context-sensitive menu that appears.

The Custom Column Entry dialog box appears:

2 Enter the text to use as the column reference.

You can insert meta tags here.

3 Click OK.

Custom columns can be edited later by double-clicking the column
reference in the list.

15
C H A P T E R F I F T E E N

Using Control Actions

Branch, Conditional, Loop, Break, and Return Actions
Normally, actions in a Witango application file are executed sequentially,
from top to bottom. However, you can use control actions in an
application file to redirect the flow or repeat a sequence, depending on
various conditions. The control actions in Witango include Branch action,
conditional actions, loop actions, Break action, and Return action.

This chapter covers the setup and operation of the following actions:

• The Branch action causes a jump to a designated action or group.

• Conditional actions evaluate an expression, and based on the result of
that expression, affects the control flow of the file.

• Loop actions repeat a set of contained actions a given number of
times or while an expression evaluates to true.

• The Break action terminates processing in the loop.

• The Return action ends execution of the application file and returns
any accumulated Results HTML to the Web browser. It can also
return to another application file.
273

Jumping to a Designated Action (Branch Action)

27
Jumping to a Designated Action (Branch Action)
2744
The Branch action causes a jump to a designated action or to an action
group.
For more information, see
“Branching to Other
Application Files” on page
348.
You can set the Branch action to jump to an action in the same
application file, or to an action in another application file. If the Branch
action jumps to an action in another application file, you can choose
whether to return to the previous application file when a Return action is
encountered.
Branch Action
Destination
Rules
There are rules governing where a Branch action can jump to. If the rules
are violated, Witango Server returns an error. The rules are dependent
on what kind of file you use and whether you are branching to a different
file.

Branching within the Same Application File

When branching within the same application file, a Branch action can
branch to:

• any action at the outermost level.

• any action at the same level in the same block of Witango actions.

• any action that is an ancestor (for example, a parent or a parent’s
parent).

• any action that is a first-level child of an ancestor.

A Branch action cannot branch to:

• Else If or Else actions.

• any action that is its descendent (for example, a child or a child’s
child).

• any action that is a descendent of an action at the same level as this
Branch action.

Branching to a Different Application File

When branching to a different application file, a Branch action can only
branch to an action at the outermost level.

Witango Class File

When using a Witango class file, the rules for Branch actions are similar
to those for branching within the same application file. There is an

Jumping to a Designated Action (Branch Action)
additional rule: Branch actions in a Witango class file cannot branch
outside the current method.

Examples

Consider the following partial application file:

Examples of valid branches:

• BranchActionC can branch to BranchActionF.

Reason: The actions are in the same action block and at the same
level.

• BranchActionC can branch to BranchActionH.

Reason: BranchActionH is at the outermost level.

• BranchActionD can branch to If20 and If21.

Reason: If20 and If21 are both ancestors of BranchActionD.

• BranchActionD can branch to BranchActionC.

Reason: BranchActionC is the first-level child of an ancestor (If20) of
BranchActionD.

Examples of invalid branches:

• BranchActionB cannot branch to BranchActionE.

Reason: Incorrect relationship. BranchActionE is a descendent of
ElseIf22, which is at the same level as BranchActionB.

• BranchActionC cannot branch to BranchActionG.

Reason: Incorrect relationship. BranchActionG is a descendent of
If23, which is at the same level as BranchActionC.

• BranchActionC cannot branch to ElseIf22.

A
B

C

D
E

F

G
H

275275

Jumping to a Designated Action (Branch Action)

276276
Reason: Even though ElseIf22 is the first-level child of an ancestor
(If20) of BranchActionC, this branch is not allowed because
branching to an Else If action is invalid.
Executing a
Branch Action
When Witango Server executes a Branch action, it jumps to the
designated action. Later, when Witango Server encounters a Return
action, one of the following happens:
For more information, see
“Setting Up a Branch
Action” on page 277.
• If you did not select the Return to next action after branch
option when setting up the Branch action, Witango Server ends
execution.

• If you selected the Return to next action after branch option
when setting up the Branch action, Witango returns to the action

• following the Branch action.
For more information, see
“Branching to a Different
Application File” on
page 276.
Note This may not happen if the Branch action branches to a different
application file.
Branch and
Return
You can branch to the same application file or a different application file.
In both cases, you can select the Return to next action after branch
option when setting up a Branch action.

Branching within the Same Application File

When a Branch action in an application file branches to the same
application file with the Return to next action after branch option
selected, Witango Server returns to the action following the Branch
action when it encounters a Return action.

Branching to a Different Application File

When a Branch action in one application file branches to another
application file with the Return to next action after branch option
selected, Witango Server returns to the action following the Branch
action (in the previous application file) when it encounters a Return
action. However, there are certain circumstances under which the Branch
action never returns, even when the Return option is selected.

If a Branch action with the Return option selected branches to another
application file, and then encounters another Branch action with the
Return option not selected, the first Branch action never returns to the
first application file, even though Witango Server encounters a Return
action. That is, the lack of a Return option in the second Branch action
takes precedence.

Jumping to a Designated Action (Branch Action)
Setting Up a
Branch Action
When you drag the Branch action icon from the Actions bar into an
application file, the Branch action editing window appears:

To set up a Branch action

Note If you are using the Branch action in a Witango class file method,
skip to step 4.

Only branches within the method are allowed; the Application File field
and the “Path to target application file on Server” section are disabled.

1 From the Application File drop-down menu, select the file you
want the Branch action to jump to, by doing one of the following:

• Accept the default (that is, select the current file); go to step 3.

• If the current file is part of a project, the drop-down menu also
shows the other files in the project; select the file you want.

• If you want to select an application file elsewhere from your hard
drive, click Browse from the drop-down menu.

A standard file selection dialog box appears; select an application
file.

2 If you select an application file that is not the current file, the Action
list changes to show the actions in the selected file. The Path to
target TAF on Server section is also enabled to allow you to
specify the path to the application file.
Branch Action
277277

Jumping to a Designated Action (Branch Action)

278278
Do one of the following:

• Select the Same as source TAF option (the default) to cause
Witango Server to always look in the current file’s folder.

• Specify in the Other field the path to the folder you want, which
causes Witango Server to look for the application file in that
location. This path is specified relative to the Web Server’s
document root directory.
For more information, see
“Executing a Branch
Action” on page 276.
3 For the Return to next action after branch option, do one of
the following:

• Select the option if you want execution to continue with the
action following the Branch action when a Return action is
encountered in the destination.

• Do not select this option if you want execution to end when a
Return action is encountered in the destination.

The Branch icon in the Action list of the Witango application file
changes to reflect the change in the action’s behavior.

4 In the Action list, select the action you want the Branch action to
jump to.

5 Close the Branch action editing window.

The destination action for a Branch must be valid according to the rules
on page 274; otherwise, Witango Server returns an error.
Branch Action
Destination
Navigation
You can navigate from a Branch action to its destination action with the
Go To Destination context-sensitive menu command.

When you have selected a destination for a Branch action, right-clicking
the Branch action allows you to select the Go To Destination
command from the context-sensitive menu that appears. The name of the
target action appears beside Go To Destination; the path to the file
also appears if the action is in a different application file than the Branch
action.

To navigate to a Branch action destination

1 Do one of the following:

• Right-click anywhere in the Branch action editing window.

• Right-click the Branch action icon in the application file window.

The Go To Destination command appears in the context-
sensitive menu, along with the name of the destination action:
Branch Action
(with Return)
Branch
Action

Jumping to a Designated Action (Branch Action)
2 Choose Go To Destination from the context-sensitive menu that
appears.

Witango Studio automatically selects the designated action if it is in
the same application file. If the designated action is in a different
application file, Witango opens the application file and selects the
target action.

The Go To Destination context-sensitive menu item is available only
when you right-click either the Branch action or the Branch action editing
window. A destination action must be designated, or Go To
Destination is disabled.
279279

Deciding Course of Actions (Conditional Actions)

28
Deciding Course of Actions (Conditional Actions)
2800
Conditional actions consist of three closely related actions: If action, Else
If action, and Else action.

The If action is associated with an expression. During execution, Witango
Server evaluates whether the conditions stated in the expression are met.
If the conditions are met (true), Witango Server proceeds with a
sequence of actions in the application file; if the conditions are not met
(false), Witango Server proceeds with a different sequence of actions in
the application file.
Example:
Sports Fan Web
Site
Consider a Witango application file executing on a Web site for sports
fans. If the user chooses to display information on hockey, the variable
sport is set with the value hockey. Then, an If action evaluates the
sport variable, and, if the variable has the correct value (in this case,
hockey), Witango Server searches for and displays hockey information. If
the user chooses to display information on football (the variable sport is
set with the value football), an ElseIf action evaluates the sport
variable, and, if the variable has the correct value (in this case,
football), Witango Server searches for and displays football statistics.
Witango Server also displays general sports news when this application is
executed. The following is taken from an application file designed for our
sports fan Web site:

We see that with the use of If and ElseIf actions (conditional actions),
different sets of actions can be executed during the execution of an
application file.

If action combined
with an Else If action
General Forms
of Conditional
Actions
The If action has two related actions: Else If and Else. These conditional
actions are often used together: an If action followed by one or more Else
If actions and an Else action. However, an If action can exist without Else
If actions; it can also exist without an Else action.

Deciding Course of Actions (Conditional Actions)
The general forms of conditional actions are as follows:

• If Action

• If and Else Actions

• If, Else If, and Else Actions

If action (expression)

ActionA

ActionB

...
ActionC

ActionD

...

group of actions to execute if
expression evaluates to true

remaining actions in file

If action (expression)

ActionA

ActionB

...

Else action

ActionC

ActionD

...
ActionE

ActionF

...

group of actions to execute if
expression evaluates to true

remaining actions in file

group of actions to execute if
expression evaluates to false

applies only if expression evaluates to
false

If action (expression1)

ActionA

ActionB

...

Else If action (expression2)

ActionC

ActionD

...

Else action

ActionE

ActionF

...
ActionG

ActionH

...

group of actions to execute if
expression1 evaluates to true

remaining actions in file

group of actions to execute if
expression2 evaluates to true

applies only if expression1
evaluates to false

group of actions to execute if neither
expression1 nor expression2 evaluates
to true
281281

Deciding Course of Actions (Conditional Actions)

28
Nested
Conditional
Actions
2822
Conditional actions may be nested; that is, the indented actions under an
If, Else If, or Else action may contain other If, Else If or Else actions. You
can have multiple levels of nesting.

The following is an example of nested conditional actions:

If action (expression1)
If action (expression2)

ActionA
Else If action (expression3)

ActionB
ActionC

ActionD
If (expression4)

ActionE
ActionF

ActionG
Else action

ActionH
If action (expression5)

ActionJ
ActionK

ActionL
ActionM

le
ve

l 2
le

ve
l 2

le
ve

l 2

le
ve

l 1
Performing
Operations on
Conditional
Actions
Working with conditional actions is similar to working with grouped
actions. Each If, Else If, or Else action—together with the indented actions
under it—acts like a group.

For information on the operations you can perform on groups, see
Working With Action Groups on page 247.

Deciding Course of Actions (Conditional Actions)
Setting Up
Conditional
Actions
When you drag the If or Else If action icon from the Actions bar into an
application file, the If action editing window appears:

By default, the If action editing window appears in basic view, which
allows you to create expressions quickly. An empty parameter row
appears in the dialog box, ready for you to edit.

Note Dragging the Else action icon into an application file does not
open any action editing window. However, if you double-click an Else
action in an application file, the action editing window opens so you can
change the Else action to an If or Else If action.
For more information, see
“Advanced View” on
page 285.
An advanced view is also available that gives you more flexibility than the
basic view when specifying evaluation expressions.

You change the type of conditional action by selecting If, Else If, or Else
from the Action drop-down menu.

The If and Else If action editing windows are basically the same, and you
enter evaluation expressions the same way for both of them. When you
select Else, however, only the Action drop-down menu is active. This
allows you to change to another type of conditional action.

Note If you change back to an If or Else If action type from an Else
action type before closing the action editing window, any If or Else If
expressions you specified previously are retained.

Basic View

The basic view consists of a parameter list, which works as follows:
If, Else If, and Else
Actions
Else Action
283283

Deciding Course of Actions (Conditional Actions)

284284
• Each row in this list contains a parameter; it allows two values to be
compared, using an operator.

• All the parameters in this list are connected together, using logical
operators.

• All the parameters together constitute a single expression that
Witango Server evaluates.

• If the expression evaluates to “1” or “true”, it is considered true;
otherwise, it is considered false.

To specify values for the basic view parameters

Specify values as follows:

• Logical Operator. The first field in the parameter list is the logical
operator. There are two logical operators: and and or.
For more information, see
“Logical Operator” on
page 258.
Click the parameter row, then click the field to display a drop-down
menu to choose a logical operator. The logical operator is used when
the expression includes more than one row; it specifies the
relationship between the two rows.

• Value. Enter the values to use in the parameter. Do not add
quotation marks around the values.

• If you are using the =, !=, >, <, >=, or <= operator (see the
description of Oper. on page 284), enter the two values you
want to compare in the two Value columns respectively.

• If you are using the Is Empty or Is Not Empty operator (see
the description of Oper. on page 284), enter the single value
that you want to compare in the left Value column.

The values can contain any value-returning Witango meta tags, which
are substituted when Witango Server executes the action.
For more information
about inserting meta tags in
entry fields, see Inserting
Meta Tags on page 148.
You can also use the Insert Meta Tag command to enter many of
the commonly-used meta tags.

To insert a meta tag, either click the field and choose Insert Meta
Tag from the Edit menu, or right-click the field and choose Insert
Meta Tag from the context-sensitive menu that appears.
For more information, see
“Operator” on page 259.
• Oper. Specify the operator to use to compare the two values
specified on the same row.

Click the parameter row, then click the field to display a drop-down
menu to choose an operator.

Deciding Course of Actions (Conditional Actions)
Possible operators include:

To add a new parameter row

1 Open the If action editing window (if it is not already open).

2 Do one of the following:

• From the Edit menu, choose Insert.
• On the main toolbar, click the Insert icon.

• Right-click the list area, and choose Insert from the context-
sensitive menu that appears.

• Press Insert.

To delete a parameter row

1 Open the If action editing window, if it is not open already.

2 Do one of the following:

• Select the row you want to delete; from the Edit menu, choose
Clear.

• Right-click the row you want to delete and choose Clear
Criterion from the context-sensitive menu that appears.

• Select the row you want to delete; press Delete.

Advanced View

When you click Advanced in the basic view, the following happens:

• The window expands to show a text area where you can enter text-
based expressions.

• The Advanced button changes to Basic.

Operator Meaning

= is equal to

!= is not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Is Empty matches an empty field

Is Not Empty matches a non-empty field
Insert icon
285285

Deciding Course of Actions (Conditional Actions)

286286
• The parameter list in the basic view is disabled (appears grayed).

• The parameters in the basic list are automatically converted to an
equivalent text expression in the advanced text area.

There are some important differences between basic view and advanced
view:

• For simple situations, basic view is easier to use.

• Advanced view presents a free-form text area to give you more
flexibility than the basic view when specifying evaluation expressions.
For example, if you want to use parentheses to control the
evaluation order, you can enter the expression in this area.

The expression entered here takes the same form as expressions
specified for the <@CALC> meta tag.

• If the expression in the advanced text area evaluates to “1” or
“true”, the expression is considered true; otherwise, it is considered
false.

• Any editing you do in the advanced text area supersedes the
parameters in the basic view list area.

• If you return to the basic view from the advanced view, any editing
you do in the advanced text area is lost.

Witango can take the parameters appearing in the basic view and
regenerate the equivalent text-based expression in the advanced view.

Deciding Course of Actions (Conditional Actions)
To regenerate the parameters from the basic view

1 Do one of the following:

• To insert the text-based expression in the advanced text area,
right-click where you want the expression.

• To replace selected text with the text-based expression in the
advanced text area, select the text and right-click.

2 From the context-sensitive menu that appears, choose Insert
Expression As Above.

The text-based expression appears in the advanced text area.

Tip You can also drag snippets from the Snippets Workspace to this
text area.

To return to the basic view

• Click Basic.

CautionIf you changed the expression in the advanced view, your
changes are lost when you return to the basic view. An alert box asks if
you want to continue.
287287

Repeating a Set of Actions (Loop Actions)

28
Repeating a Set of Actions (Loop Actions)
2888
A loop action repeats the execution of a set of actions for a given number
of times or while an expression evaluates to true. In an application file,
the actions to be repeated in the loop are indented under the loop
action.
Example: Music
Store
Consider an online music store. It allows customers to search for their
favorite recordings and artists. As an additional service, this store also
searches other sites for recordings and artists that it does not have in
stock. A loop action can be set up such that Witango Server goes
through the sites that this store has an agreement with. For each of these
sites, Witango Server searches for recordings and artists, and then
updates the results and displays them to the customer. This process
continues until Witango Server comes to the end of the sites. The loop
ends at this point, and Witango Server proceeds to the next action
outside the loop, which is to present the order information.

The following is taken from an application file designed for our music
store:

Loop action
containing a series of
other actions.
General
Forms of
Loop Actions
There are three kinds of loop actions:

• While Loops. See the following sections for details.

• For Loops. See the following sections for details.

• Objects Loops. See Using the Objects Loop Action on page 391 for
details.

Repeating a Set of Actions (Loop Actions)
While Loop

The While Loop takes the following general form:

A While Loop is associated with an expression. If this expression
evaluates to true, Witango Server executes the indented actions listed
under the While Loop action. (In this example, these indented actions
include ActionA and ActionB.) When all the indented actions are
executed, the expression is evaluated again. Witango Server repeats the
indented actions as long as the expression evaluates to true. When the
expression evaluates to false, Witango Server proceeds to the next
action at the same level as the While Loop action. (In this example, it is
ActionC.)

For Loop

A For Loop action takes the following general form:

A For Loop specifies that a group of indented actions listed under the For
Loop is to be executed and repeated a number of times. (In this example,
these indented actions include ActionA and ActionB.) After repeating so
many times, Witango Server proceeds to the next action at the same
level as the For Loop action. (In this example, it is ActionC.)

While Loop action (expression)

ActionA

ActionB

...
ActionC

ActionD

...

group of actions to execute and
repeat if expression evaluates to true

remaining actions in file

For Loop action

ActionA

ActionB

...
ActionC

ActionD

...

group of actions to execute and
repeat for a specified number of
times

remaining actions in file
For more information, see
“Exiting a Loop (Break
Action)” on page 294.
Witango also includes a Break action you can use to exit a loop action
before the loop conditions for termination are met.
289289

Repeating a Set of Actions (Loop Actions)

29
Nested Loop
Actions
2900
Loop actions may be nested; that is, the indented actions under a While
Loop or For Loop action may contain other While Loop or For Loop
actions. You can have multiple levels of nesting.

The following is an example of nested loop actions:

While Loop action (expression1)

For Loop action

ActionA

ActionB

ActionC

While Loop action (expression2)

ActionD

ActionE

ActionF

ActionG

ActionH

For Loop action

ActionJ

While Loop action (expression3)

ActionK

ActionL

ActionM

ActionN

le
ve

l 2
le

ve
l 2

le
ve

l 2

le
ve

l 1
le

ve
l 1
Setting Up
Loop Actions
While Loop

A While Loop action executes and repeats the actions in the loop (shown
as indented actions) while an expression evaluates to true.

When you drag the While Loop action icon from the Actions bar into an
application file, the While Loop action editing window appears in its basic
view, allowing you to create evaluation expressions quickly.
While Loop Action

Repeating a Set of Actions (Loop Actions)
In order for the While Loop to work properly, you must avoid the
following pitfalls:

• Never entering the loop. If the expression you specify does not
evaluate to true when Witango first executes the While Loop action,
the indented actions under it are never executed.

• Infinite looping. Make sure that at least one value being compared
in the expression is being changed inside the loop. If this is not the
case, a “true” evaluation causes Witango to execute the enclosed
actions forever.

Be careful when constructing a While Loop expression. You want to
ensure that it eventually evaluates to false.
For more information, see
“Basic View” on page 283.
The basic view for a While Loop action is similar to the basic view for If
and Else If actions.

The While Loop action editing window also has an advanced view for
more flexibility when constructing evaluation expressions. For example,
you can use parentheses to control the evaluation order.
For more information, see
“Advanced View” on
page 285.
This view is similar to the advanced view for If and Else If actions.

For Loop

A For Loop action executes and repeats the actions in the loop (shown as
indented actions) for a given number of times.
For Loop Action
291291

Repeating a Set of Actions (Loop Actions)

292292
When you drag the For Loop action icon from the Actions bar into an
application file, the For Loop action editing window appears:

Set the parameters in a For Loop action as follows:

• Counter Variable (local). The name of a local variable to use to
access the current value of the counter.

Note This parameter is optional. It is not required to use the action.

• Start Value. The starting value for the loop counter. The default is
1.

• Count. The direction of the counting from the starting value to the
ending value. You must specify this parameter so Witango can
increment or decrement the counter properly. Choose Up or
Down from the drop-down menu to set the counter to increment
or decrement, respectively. The default is Up. When Down is
selected, the Increment By field name becomes Decrement By.

• To. The ending value for the loop counter.

• Increment/Decrement By. The value the counter increments or
decrements by on each loop.

Tip All For Loop action fields, except for the Count field, support
Witango meta tags.
Executing Loop
Actions
The General Forms of Loop Actionspage 288section on page 288
explains the basics of how Witango Server executes the While Loop and
the For Loop. This section provides some additional information.

Repeating a Set of Actions (Loop Actions)
While Loop

• If Witango Server finds the expression invalid, it returns a runtime
error.

• Witango Server evaluates any meta tags in the expression on each
pass through the loop.

For Loop

• If Start Value is a meta tag, Witango Server evaluates it prior to the
first pass through the loop.

• If the To and Increment/Decrement By fields contain meta tags,
Witango Server evaluates them on each pass through the loop.
Performing
Operations on
Loop Actions
Working with loop actions is similar to working with grouped actions.

For information on the operations you can perform on grouped actions,
see Working With Action Groups on page 247.
293293

Exiting a Loop (Break Action)

29
Exiting a Loop (Break Action)
2944
The Break action prematurely terminates processing in a loop or group
action. On termination, processing continues at the next action after the
loop or group.

Drag the Break action icon from the Actions bar into a loop or Group
action at the point you want the loop or group to terminate.

The following is an example of an application file showing how loop and
Break actions appear:

On execution, the Break action terminates the loop, and processing
continues at the next action after the loop.

Note If you include a Break action outside a loop or group, Witango
Server generates a runtime error on execution.

Loop action
containing a
series of other
actions.

Break action
included in the
loop.
Break Action

Ending File Processing (Return Action)
Ending File Processing (Return Action)
The Return action ends application file processing and returns any
accumulated Results HTML to the Web browser.
For more information, see
“Jumping to a Designated
Action (Branch Action)” on
page 274.
The exception to this is if the current execution flow is the result of a
Branch that had its Return to next action after branch option set. In
this case, the execution returns to the action following the Branch when
a Return action is encountered.
Return Action
295295

Ending File Processing (Return Action)

296296

16
C H A P T E R S I X T E E N

Extending Witango
Functionality

Script and External Actions
The Script action provides an interface within Witango for executing
JavaScript code at the server. The script executed can return to Witango
a value you can access using Results HTML.

The External action calls an executable invoked using a command line, a
Dynamic Link Library (DLL), or a Java class file to perform processing
and, if desired, return results.

Witango may also be extended through COM, JavaBean, and Witango
class file objects. For more information, see Witango and Objects on
page 343.

This chapter covers the following topics:

• setting up and executing a Script action

• configuring a DLL call or a Java action

• using a command line

• assigning variables to action parameters

• assigning action attributes

• deleting action parameters

• executing an External action.
297

Executing JavaScript

29
Executing JavaScript
2988
The Script action provides an interface for executing core JavaScript code
at the server. The script executed can return a value to Witango, which is
accessible using Results HTML.

Witango is JavaScript 1.4 compatible, meaning it includes the official
JavaScript Reference implementation from Netscape, and conforms to
version 1.4 of the language.

Note Witango supports the general purpose core of the language. The
objects representing the Web browser and its contents are not
supported, because the scripts are executed at the server where these
objects do not exist. For your convenience, a JavaScript HTML
reference is provided with the Witango HTML help.
Setting Up a
Script Action
When you drag the Script action icon from the Actions bar into an
application file, the Script action editing window appears:

The JavaScript object and variable scope parameter defines the
lifetime of the objects and functions declared in the script. This is a
concept similar to the scope of variables in Witango.
The drop-down menu/text box has several choices, or you can enter a
custom scope:
Script Action

Executing JavaScript
• Default specifies Witango’s default scope, which is set by the
defaultScope configuration variable. .

• Immediate specifies that the objects and functions go away
immediately after the action is executed.

• Method specifies that anything defined in the script can be referenced
within the current method of a Witango class file.

• Instance specifies that anything defined in the script can be
referenced within the current instance of a Witango class file.

Note Method and Instance appear only if the Script action is within a
Witango class file.

• Request specifies that anything defined in the script can be
referenced in another script in the same application file execution.

• User specifies that anything defined in the script can be referenced
in another script run by the same user.

• Application specifies that anything defined in the script can be
referenced in another script in an application file in the current
Witango application.

• Domain specifies that anything defined in the script can be
referenced in another script in an application file in the Witango
domain.
For information on using
the script text area, see
HTML Editing Window on
page 9, and The SQL
Query Window on
page 22.
You enter the text script to be executed in the JavaScript script text
area. The script may contain meta tags. All meta tags in the script are
substituted before the script is executed.

Tip You could use an <@INCLUDE> meta tag to reference an external
JavaScript file.

Tip The script text area functions the same as HTML text editing
windows.

When you right-click the script text area, the same context-sensitive
menu for the SQL text area of a Direct DBMS action appears.
Executing a
Script Action
Witango Server executes the Script action in a similar way it executes the
<@SCRIPT> meta tag.
299299

Executing JavaScript

30
 3000
Any value returned by a script is accessible in the Results HTML by using
<@COL 1> inside a <@ROWS> block. The action’s result set (a 1 by 1 array)
is also stored automatically in a local variable, resultSet.

Using an External Action
Using an External Action
Setting Up an
External Action
When you drag the External action icon from the Actions bar into a file,
the External action editing window automatically opens.

The standard External action type is based on the current platform, in
this case, DLL. You can also specify Java, command line execution.

From the Type drop-down menu, select the type of action you want to
execute.

Note If you specify parameters for one type and then change to
another type, Witango attempts to transfer the current parameters to
the new type.

This User’s Guide gives a description of each type of External action. The
DLL, Command Line and Java externals are available if you plan to
deploy your application file on Windows. Command Line and Java are
available for Linux, OS X and Solaris versions of Witango Server.
Configuring a
DLL Call
To configure a DLL call

1 From the Type drop-down menu, select DLL, if it is not already
selected.

The External action editing window for the DLL type appears:
External Action
301301

Using an External Action

302302
2 In the DLL field, type the fully qualified path to the DLL you want to
call, for example:

C:\Program Files\Witango\externals\Test.dll.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

This path may contain meta tags.

Note The DLL called by the External action must be written to
conform to the API described in Appendix B.

3 Insert a new parameter row by doing one of the following:

• From the Edit menu, choose Insert.
• On the main toolbar, click the Insert icon.

• Right-click thein the Parameters area, and choose Insert from
the context-sensitive menu that appears.

A new parameter row appears. The parameters are numbered
for easy identification.

Tip You may re-order parameters by dragging them within the list.

4 In the Value field, type a parameter value.

All parameters are passed to the corresponding APIs by pointers of
type (char *). Parameter values may include any value-returning
Witango meta tags, which are substituted when the action is
executed.
Using a
Command Line
External actions allow you to run any executable file (for example, batch
file, shell or Perl script, C application) and, if desired, retrieve results.
Values are passed from Witango to the executable by means of
environment variables. Results are retrieved by Witango from text that
the External action has written to the standard output stream (stdout).
Rows and columns are delimited with tabs and returns, respectively.

To configure a command line External action

1 From the Type drop-down menu, select Command Line.

Using an External Action
The External action editing window for the Command Line type
appears:

2 In the Command field, specify the executable file name.

The value of this field (after meta tag substitutions) must be a
valid file path (for example, c:\temp\dir.bat). Command line
parameters are not allowed here.

Note The path specified in the Path field is appended to the value of
the absolutePathPrefix configuration variable. If this
configuration variable has a value (in either application or system
scope), this field should contain a path relative to that location

You may include command line switches here (Linux only).

Note A command line containing a DOS-like command (for example,
dir) does not work because ‘dir’ is not a file. Commands calling other
command processors (shell) also do not work. If you want to execute
an operating system command, you should create a batch file or shell
script.

On Unix, shell scripts must have read/execute permission for the user
running the Witango daemon. In order to be properly executed under
the appropriate shell, the shell script must have a shell execution
directive such as #!/bin/sh as its first line.

3 Insert a new environment variable row by doing one of the following:
303303

Using an External Action

304304
• From the Edit menu, choose Insert.
• On the main toolbar, click the Insert icon.

• Right-click the environment variables area, and choose Insert
from the context-sensitive menu that appears.

A new environment variable row appears.

4 In the Name field, enter the name of an environment variable to
create for the process. This value is passed on the command line to
the External action.

Note The name of an environment variable is case sensitive.

5 In the Value field, enter the value to assign to the named
environment variable.
For more information, see
“Assigning Attributes” on
page 305.
Environment variables may include any value-returning Witango
meta tags, which are substituted when the action is executed.

Tip You may re-order variable rows by dragging them within the list.
Configuring a
Java Action
Witango ships with its own Java server, which is on the same machine as
Witango Server. The Java type External action allows you to connect to
the Java server.

To configure a Java external action

1 From the Type drop-down menu, choose Java.

The External action editing window for the Java type appears:

Using an External Action
2 In the Java Server field, type the IP address or hostname.domain of
the machine running the Java server.

The default server name is localhost (127.0.0.1), meaning that
the Java server is on the same computer as Witango.

3 In the Port field, type the port number the Java server is listening on.
The default port is 4000.

4 Select either Java Class or Java Bean to specify the type of Java file.

5 In the Path field, type the fully qualified path to the Java file. This
path can contain meta tags.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

6 Insert a new argument row by doing one of the following:

• From the Edit menu, choose Insert.
• On the main toolbar, click the Insert icon.

• Right-click thein the arguments area, and choose Insert from
the context-sensitive menu that appears.

A new argument row appears. The arguments are numbered for
easy identification.

Tip You may re-order arguments by dragging them within the list.
Note Arguments may include any value-returning Witango meta tags,
which are substituted when the action is executed.
Assigning
Attributes
You can also assign the following attributes to an External action:

• Results HTML

• No Results HTML
For a description of each
attribute, see Assigning
Attributes to Actions on
page 236.
• Error HTML.

You assign these attributes using the Attributes menu.

You can also right-clickthe External action icon or name in the application
file, or click the open External action editing window to display a context-
305305

Using an External Action

306306
sensitive menu of available attributes. The Properties command is also
available in this menu.

If you right-clickan action parameter, the Edit command is active allowing
you to edit the parameter value; otherwise, it is disabled (grayed).
Deleting
Parameters
To delete an External action parameter

1 Open the External action editing window.

2 Select the parameter row you want to delete, and do one of the
following:

• From the Edit menu, choose Delete.

• Right-click the parameter, and choose Delete from the context-
sensitive menu that appears.

• Click the Delete icon on the main toolbar.

• Press Delete.

3 When you are asked to confirm deletion of the selected row, click
OK.
Executing an
External Action
When an External action is executed, the DLL, command line, or Java
specified is called and the parameters are passed to it.

Any results returned are accessible in Results HTML in the same way as
in the Search action—by using a <@ROWS></@ROWS> block. The
<@COLUMN> meta tag, however, does not work in the External action. You
must use the <@COL> meta tag along with an item number to refer to
data items, as the items do not have names.

A single item result is treated as a one-column row, a list of items is
treated as a row of columns, and a list of lists is treated as a rowset.

For example, if an External action returns a list of lists of three data items
each, all the results can be viewed with the following Results HTML:

<@ROWS>
Row <@CURROW>, Item 1: <@COL 1>

Row <@CURROW>, Item 2: <@COL 2>

Row <@CURROW>, Item 3: <@COL 3>

<HR>
</@ROWS>

For the command line and Java options, the value returned is treated as
tab and return delimited: a tab separates columns and a return separates
rows.

Only textual data can be returned from an External action.

Using an External Action
The entire result rowset from an External action is automatically assigned
to a local array variable, resultSet.

If the External action generates no data, and you have specified No
Results HTML for the action, that HTML is processed instead of the
Results HTML.
307307

Disabling JavaScript, Java and External Actions

30
Disabling JavaScript, Java and External Actions
3088
You can specify that External actions are executed only in a specified
directory of Witango Server using the absolutePathPrefix
configuration variable. Using this configuration variable to set the path
ensures that users cannot access directories other than the specified
ones when using the External action.
.
 JavaScript, Java, and External actions are by default enabled in Witango. If
you want to disable (or enable) these features, you can do so by changing
the following options in the Witango Administration Manager (the
config.taf application file), in the Feature Switches screen:

javaScriptSwitch
javaSwitch
externalSwitch
.
 Check or uncheck the check boxes beside the options.

17
C H A P T E R S E V E N T E E N

Sending Electronic Mail
From Witango

Mail Action
The Mail action sends out electronic mail (e-mail) using the Simple Mail
Transfer Protocol (SMTP). SMTP is the main protocol used to send mail
on the Internet.

The Mail action lets you send e-mail messages from Witango application
files and Witango class files. For example, you might send an e-mail
message to a list of recipients notifying them of a change to a database or
that a particular file has been executed. Many types of information
gathering are possible. For example, you can use e-mail for inventory
management, shipping and receiving, data compilation, generating sales
leads, or any function that can use data derived from activity in a database
or an object.

You can also attach files to an e-mail message generated from Witango,
add custom headers, and specify the character set and encoding used for
the e-mail message.

This chapter covers the following topics:

• setting up a Mail action

• disabling the Mail action in Witango.
309

Setting Up a Mail Action

31
Setting Up a Mail Action
3100
When you drag the Mail action into your application file, the Mail action
editing window appears:

Specify the attributes of your message under the three tabs in the top
panel. All of the Mail action fields support the use of Witango meta tags,
which are evaluated at the time the e-mail message is sent.
General Tab
 • From. Enter the e-mail address of the sender of your message.
Normally, this is also the address that replies and error messages go
to.
If this field is left empty, Witango uses the system configuration
variable mailDefaultFrom to determine the default value.
Mail Action

Setting Up a Mail Action
The value of this configuration variable can be changed in the
Witango Admin Application, config.taf: enter the address of the
person sending the e-mail message, for example,
Witango@example.com. This configuration variable is stored in the
Witango Server configuration file (witango.ini).

Note If both the configuration variable and the From field are empty,
then the e-mail message cannot be sent. An e-mail message must always
be from somebody.

• To. Enter the e-mail address or a comma-delimited list of addresses.

• Cc (Carbon Copy). Enter the e-mail address of the person you want
to send a copy of the message to. This field also allows you to enter a
comma-delimited list of addresses.

• Bcc (Blind Carbon Copy). This field is the same as Cc except the
recipients are not listed in the message; that is, the To, Cc and other
Bcc recipients do not know that the message was also sent to those
addresses.

• Subject. Enter the subject of the e-mail message.

You compose your e-mail message in the bottom pane of the Mail action
window.

Proper E-Mail Address Syntax

You must use a valid e-mail address format in the From, To, Cc, and Bcc
fields of the Mail action. The following formats are supported by Witango
Server:

• johndoe@example.com

e-mail address.

• <johndoe@example.com>

e-mail address in angle brackets.

• ”John Doe” <johndoe@example.com>

name in quotes, e-mail address in angle brackets.

• johndoe@example.com (John Doe)

e-mail address, name in parentheses.

Note Some e-mail clients may not show the name when displaying an
e-mail header if you use the format shown in the final example.
311311

Setting Up a Mail Action

31
Options Tab
3122
Click the Options tab and specify how you want your message to appear
to the recipient, as shown in the following fields:

• Content Type. Specify the output format of your e-mail message by
selecting Plain Text or HTML from the drop-down menu, or enter a
content type in the text field provided.

• Character Set. Select an option from the drop-down menu to
specify the character format for the e-mail message.

Note When the message is sent, Witango Server adds the following
MIME header lines, displaying the message to the recipient in the chosen
content type and character set:

MIME-Version 1.0
Content-type: type; charset=”charset”
Content-transfer-encoding: encoding
X-Mailer: Witango <@VERSION>

The type, charset, and encoding options are replaced by the content
type (for example, text/plain or text/html), character set (for
example, ISO-8859-1), and encoding (for example,
quoted-printable) selected by the user.

Setting Up a Mail Action
• Wrap Lines At. Enter the line length of your message body. The
value of this field must be between 30 and 132 characters. The
default value is 72 characters. This field is available when the
Character Set option is set to ASCII or a user-entered value.
With non-ASCII character sets, no wrapping occurs.

• Custom Header Lines. Enter text or meta tags that are to be
displayed as custom headers at the end of the message headers. Data
in this field should not exceed 32K.
Attachments
Tab
• Click the Attachments tab to attach a file to your message.

To attach a file to a message

1 Do one of the following:

• From the Edit menu, choose Insert.

• On the main toolbar, click the Insert icon.

• Right-click in the Filenames window and choose Insert... from
the context-sensitive menu that appears.
313313

Setting Up a Mail Action

314314
2 Specify the full path and name of the file to be attached; for example,
C:\Outbox\Attachments\myattachment.txt.

Note The paths specified here are appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

For each path field, meta tags can be inserted to a maximum length of
1024 characters. Witango evaluates meta tags in the file path for each
attachment in the list. After meta tag substitution, Witango determines
whether the value is text or an array. If the value is an array, Witango
processes every cell in the array as a separate file path.

For example, you could enter the following in a field in the Filenames
section of the Mail action dialog box:

@@myFiles

When the application file is executed, the file or files specified by the
variable myFiles (single value or array) are attached to the generated e-
mail message.

When the Mail action is executed, Witango Server connects to the SMTP
server. Witango then sends the message to all the specified recipients.
The SMTP server is defined by the configuration variables mailServer
and mailPort. These variables can be changed using the Witango
Configuration Manager (config.taf application file). They are stored in
the Witango Server configuration file (witango.ini).

The result of the action is a one-column array of the messages sent to
and received from the SMTP server. Use <@COL 1> inside a <@ROWS>
block in the Mail action’s Results HTML to display these results. This
information can be useful for debugging a Mail action.

The resultSet for a Mail action shows both the mail server’s and the
client’s side of the SMTP conversation, and the commands Witango sends
to the mail server.

Disabling Mail
Disabling Mail
.
 You can specify that mail attachments to come only from a specified
directory of Witango Server using the absolutePathPrefix
configuration variable. Using this configuration variable to set the path for
mail attachments ensures that users cannot access directories other than
the specified ones when using the Mail action. This configuration variable
also affects all other actions which have absolute paths as parameters.
.
 Mail actions are enabled in Witango by default. If you want to disable (or
enable) this feature, you can do so by changing the following option in the
config.taf application file Feature Switches screen:

mailSwitch

Check or uncheck the check box beside the option.
315315

Disabling Mail

316316

18
C H A P T E R E I G H T E E N

Reading, Writing, and
Deleting Files

File Action
The File action allows you to read, write, and delete files on the Witango
Server machine. Some of the functions you might want to perform using
this action are as follows:

• Store data permanently to disk for later retrieval (as opposed to
variables which are in memory).

• Keep a log file, appending to it when a certain function gets called in
your application file.

• Write HTML files using database-generated data to your Web server
document folder.

• Store data to a file for export to an external system, providing data
navigation.

• Import data from a file from an external system, for example, daily
reports from a mainframe, newswire feeds, and periodic updates to a
third-party supplier.

• Use the action instead of giving FTP access to deploy (upload) one or
two files from a Web site.

• Use the action as an administrative tool to deploy graphics or as an
intranet tool to deploy word processor documents or other types of
documents to the server.

The topics covered in this chapter include:

• setting up a File action

• handling file security.
317

Setting Up a File Action

31
Setting Up a File Action
3188
You can set up the three types of file operations using the File action.

• Read (the default) allows you to specify the path and file name of the
file you want to read. You also specify if you want to read the entire
file or some part of it, and store the data in a local variable.

• Write allows you to specify the path and file name of the file to
write data to. You also specify what that data is and, if the file exists,
whether the data should be appended to or overwrite the existing
data. You can also store the file name in a local variable.

• Delete allows you to specify the path and file name of the file you
want to delete.

When you drag the File action icon from the Actions bar, the File action
editing window appears:

Note For any of the editing fields, you can include value-returning
Witango meta tags or drag snippets from the Snippets Workspace. You
can also right-click an editing field to display a context-sensitive menu of
editing commands, including the Insert Meta Tag command.
File Action

Setting Up a File Action
Setting Up
Read Options
From the File Operation drop-down menu, select Read, if it is not
already selected.

The action editing window changes to show the options for the Read
type operation, which you specify as follows:

• File. The path and file name of the file you want to display to the
user. You must specify the full, absolute path, not the path relative to
the Web server root.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

• Read. Sets which part of the file to read. You can choose Entire
file, or select one of the following options:

First. Type the number of bytes to read from the start of the
file.

Last. Type the number of bytes to read at the end of the file.

Bytes. Type the starting and ending bytes. If the ending byte you
are specifying is the end of the file, you can select EOF instead.

• Store data in local variable. The name of a local variable to store
the read data in.

Note The read data is also available as <@COL 1> in the action’s
Results HTML and is stored in the local resultSet variable.

If you do not specify a file, the action does not do anything. In other
words, the action behaves like a file exists, but the file is empty.
Specifically, the specified variable is empty.
Setting Up
Write Options
From the File Operation drop-down menu, select Write.
319319

Setting Up a File Action

320320
The action editing window changes to show the options for the Write
type operation.

Specify the Write options as follows:

• File. The full, absolute path and file name of the file you want to
write data to, for example:

 c:\inetpub\wwwroot\client\uploads\mydoc.doc

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location. This file information can
also come from a variable or an argument.

You can also tell Witango to generate a temporary file by selecting
Temporary file from the drop-down menu. If you select this
option, the server creates a temporary file using standard routines
for the operating system.

• Data to write. The data to write to the specified file. For example,
you could enter the named post argument for a form field where the
user enters the data to be saved in the specified file, or enters a file
name to deploy.

Setting Up a File Action
• If file exists. Specify what you want to do if the file already exists.
Select one of the following options:

Append to it appends to the existing file the data you are writing.

Overwrite it replaces the existing data in the file with the data you
are writing.

Generate an error generates an error message on execution.

• File Attributes (used by Mac OS servers only). These Mac OS only
Type and Creator codes are used when creating a file. TEXT and
R*ch are the default values for new actions. They are also the values
used by the server if either field evaluates to empty. Witango Server
uses the first four characters of each field (after substitution). If you
specify fewer than four characters, the value is space padded to the
end.

• Store file name in local variable. The name of a local variable in
which to store the path and file name of the file written to. You
would use this option when you write data to a temporary file.

Note The read data is also available as <@COL 1> in the action’s
Results HTML and is stored in the local resultSet variable.
Setting Up
Delete Options
From the File Operation drop-down menu, select Delete.

The action editing window changes to show the options for the Delete
type operation.
321321

Setting Up a File Action

322322
In the File field, specify the full, absolute path, and file name of the file to
delete.

Note The path specified here is appended to the value of the
absolutePathPrefix configuration variable. If this configuration
variable has a value (in either application or system scope), this field
should contain a path relative to that location.

Handling File Security
Handling File Security
.
 You can specify that file reads, writes, and deletes only take place in a
specified directory of Witango Server using the absolutePathPrefix
configuration variable. Using this configuration variable to set the path for
file reads, writes, and deletes ensures that users cannot access directories
other than the specified ones when using the File action.

File reads, writes, and deletes are enabled in Witango by default. If you
want to disable (or enable) these features, you can do so by changing the
following options in the Witango Configuration Manager (the
config.taf application file), in the Feature Switches screen:

fileReadSwitch
fileWriteSwitch
fileDeleteSwitch
.
 Check or uncheck the check box beside the option.

Note The fileReadSwitch configuration variable also applies to
the <@INCLUDE> meta tag.
323323

Handling File Security

324324

19
C H A P T E R N I N E T E E N

Using Advanced Database
Actions

Transaction and Direct DBMS Actions, and Joining of Database
Tables
You can put several database actions together to create a single
transaction that manages the work being performed. Using Begin
Transaction and End Transaction actions you can specify where to begin,
commit, and rollback database changes.

You can use the Direct DBMS action to execute specified SQL statements
and return any results generated.

Relational databases let you specify joins to permit searches involving
more than one table. A join tells the database how the tables are related.
A standard join preserves only those rows from a search in which a match
exists with the joined table. An outer join preserves all the rows in one of
the tables, even if there is no match with the other table.

The topics covered in this chapter include:

• setting up and executing transaction actions

• setting up and executing the Direct DBMS action

• understanding joins

• creating and editing joins.
325

Using Database Transactions

32
Using Database Transactions
3266
Witango supports special database actions that allow you to specify
where to begin, commit, and rollback database changes. Using the Begin
Transaction and End Transaction actions, you can create a well-defined
single transaction.

Normally, actions executed by Witango Server that change the content of
databases (Insert, Update, Delete, and Direct DBMS actions) cause an
immediate change to the database. This is because Witango automatically
sends a COMMIT command as the final step in its execution of these
actions.

However, transaction actions let you control when database changes are
made permanent and also let you undo (or ROLLBACK) the effects of
actions that have been executed.

To perform a transaction action, Witango maintains a database
connection longer than it would for other actions. You should consider
the impact this may have on your server and database resources before
deciding to use transactions in your application file.

Note Witango transaction actions have no effect on databases that do
not support transactions.
Setting Up a
Transaction
Action
Begin Transaction

The Begin Transaction action indicates the beginning of a transaction on a
particular data source.

To set up a Begin Transaction action

1 Drag the Begin Transaction action icon from the Actions bar into an
application file.
Begin Transaction

Using Database Transactions
For more information, See
“Setting Data Sources for
Actions” on page 106.
The Data Source Selection dialog box appears:

2 Select a data source and click OK.

If username and password are required for this data source, a
dialog box appears, where you can enter your username and
password:

3 Enter your Username and Password into the respective fields, and
click OK.
For more information, see
“Connecting to Large Data
Sources” on page 113.
If there are more than the maximum number of tables in the
data source, and this is the first time you have accessed this data
source in this Witango Studio session, the Select Tables dialog
box appears, allowing you to choose which tables you want
visible in the data source. Select the tables and click OK.

The Begin Transaction action dialog box becomes active:
327327

Using Database Transactions

328328
4 Click a radio button to select the isolation level you want to assign to
the Begin Transaction action.

• Read/Write exclusive. Locks rows that are read as part of the
transaction until a COMMIT or ROLLBACK command is issued to
the database server.

• Read uncommitted. Reads rows that have been changed by
other database users in a transaction, but for which the
transaction has not been committed or rolled back.

5 Click anywhere outside the Begin Transaction dialog box to close it.

End Transaction

The End Transaction action marks the end of the transaction and either
commits it (saves all the changes) or rolls it back (discards all the
changes).

To set up an End Transaction action

1 Drag the End Transaction action icon from the Actions bar into an
application file.

The End Transaction action dialog box appears:

2 Click a radio button to select the option you want to the End
Transaction action:

• Commit. Commits any modifications made to the database
during the current transaction.

• Rollback. Undoes any modifications made to the database
during the transaction.

In the application file, the End Transaction action icon changes to
reflect the associated attribute.

3 Click anywhere outside the End Transaction dialog box to close it.
End Transaction
Commit
End
Transaction

R
E
T

ollBack
nd
ransaction

Using Database Transactions
The following is an example of valid transaction actions appearing in an
application file.

RollBack Transaction

Commit Transaction

Begin Transaction
Executing a
Transaction
Action
If Witango Server detects that an End Transaction action is being
executed without first executing a Begin Transaction action, it reports a
runtime error. It is also an error to begin another transaction before an
existing transaction is committed or rolled back.

Database actions on data sources that are not the transaction data source
are automatically committed.

If the application file ends without executing an associated End
Transaction action or a Return action, then a Rollback End Transaction
action executes automatically.

Tip When executing a transaction, your application could slow down;
additional RAM may be required for Witango Server.
329329

Using SQL Directly

33
Using SQL Directly
3300
The Direct DBMS action executes specified SQL statements and returns
any results generated.
Setting Up a
Direct DBMS
Action
To set up a Direct DBMS action

1 Drag the Direct DBMS action icon from the Actions bar into an
application file.

The Data Source Selection dialog box appears:
For more information, See
“Setting Data Sources for
Actions” on page 106.
2 Select a data source.

3 A dialog box appears where you can enter a username and password,
if necessary.

Enter the Username and Password and click OK.
Direct DBMS Action

Using SQL Directly
For more information, see
“Connecting to Large Data
Sources” on page 113.
If there are more than the maximum number of tables in the data
source, and this is the first time you have accessed this data source in
this Witango Studio session, the Select Tables dialog box appears,
allowing you to select which tables you want visible in the data
source.

4 Click OK.

An empty Direct DBMS action editing window appears, displaying
SQL and Results tabs.

Fill in the tabbed windows as described next.
The Direct
DBMS Action
Editing Window
The Direct DBMS action editing window consists of two sections: SQL
and Results.

SQL Section

Click the SQL tab to display the SQL section. You can enter SQL
statements in the text area for execution.
For information on
constructing SQL
statements, consult your
database or ODBC driver
documentation.
All statements are executed against the database specified in the data
source associated with the Direct DBMS action.

You can easily enter column or table names by dragging them from the
Data Sources Workspace. If you drag multiple columns, they are
separated with commas.

You can also perform standard editing operations in the Direct DBMS
action editing window by one of the following methods:

• From the Edit menu, choose the editing command you want.

• Click the appropriate editing icon on the main toolbar.

• Right-click to display a context-sensitive menu of commands.

You can reference any value-returning Witango meta tags in your SQL.
331331

Using SQL Directly

332332
To insert a meta tag in the Direct DBMS window

1 Click the SQL text area of the editing window where you want to
enter a meta tag.

2 Do one of the following:

• From the Edit menu, choose Insert Meta Tag.

• Right-clickthe action editing window, and choose Insert Meta
Tag from the context-sensitive menu that appears.
For information on filling in
the Insert Meta Tag dialog
box, see Inserting Meta
Tags on page 148.
The Insert Meta Tag dialog box appears, allowing you to specify a
meta tag, and inserts it at the insertion point in the SQL text area.
You can use the <@IF>, <@IFEQUAL>, and <@IFEMPTY> meta tags in the
SQL text to include or exclude SQL based on the result of a comparison
at execution time. For example, you could use this capability to execute
different SQL based on the type of data source in use.

Direct DBMS SQL Auto-Encoding

Witango Server automatically performs SQL encoding on meta tag values
substituted in Direct DBMS SQL. For example, if a variable called myName
contains "O'Brien":

SELECT * FROM customer WHERE cust_name = '<@VAR
NAME=myName>'

This results in:

SELECT * FROM customer WHERE cust_name = 'O''Brien'

If Witango did not do this, the result would be:

SELECT * FROM customer WHERE cust_name = 'O'Brien'

and a DBMS error would result due to the unescaped quote.
If your Direct DBMS SQL contains meta tags that evaluate to an entire
(or partial) SQL statement constructed elsewhere, the quote-doubling
may cause DBMS errors. This is because all single quotes are doubled,
even those meant to delimit a string. In this case, the solution is to modify
the meta tag(s) returning your SQL by adding the ENCODING=none
attribute. For example:

<@VAR NAME=mySQL ENCODING=none>

Using SQL Directly
Results Section

Click the Results tab to display the results options you can set for the
Direct DBMS action.

You can specify options for the maximum number of records to retrieve
from the data source and at which result record number retrieval begins.

Number of rows to retrieve

• To return all matching rows, select No Maximum.

• To limit how many records are returned by the action, select Limit
To and enter the maximum number of rows to retrieve.

Start retrieval at match number

Use this option to skip some of the matching records. Enter “1” (the
default) to start retrieval with the first matching record. When a value
other than “1” is entered into this field, the Direct DBMS action returns
records starting at that number, skipping any records before it.

Both of these fields can contain meta tags which return values.
333333

Using SQL Directly

33
Executing a
Direct DBMS
Action
3344
When Witango Server executes a Direct DBMS action, the specified SQL
is sent to the data source for execution.

The result rows are returned to Witango and may be accessed in the
action’s Results HTML. As with the Search action, a <@ROWS>
<@/ROWS> block is used to iterate through the records returned. You
must specify column references differently, however.

You can use <@COLUMN> to refer to your columns by name for ODBC
data sources, but for non-ODBC data sources, you must refer to your
columns in Results HTML by number, using the <@COL> meta tag.

For example, if your Direct DBMS action executed the following
statements with a non-ODBC data source:

SELECT maintable.price, maintable.classification,
maintable.manufacturer

FROM maintable

the following Results HTML would print the database results:

<@ROWS>
maintable.price: <@COL 1>

maintable.classification: <@COL 2>

maintable.manufacturer: <@COL 3>
<HR>
</@ROWS>

When you perform an SQL query where you are selecting an aggregate
function or calculated column, the column name depends on the
database:

Database Return Value Comments

Access Expr100x... Returns Expr1000, Expr1001, and so on, for
each column with an expression.

SQL Server blank No column name.

Using SQL Directly
If the Direct DBMS action generates no database results, and you have
specified No Results HTML for the action, that HTML is processed
instead of the Results HTML.

You can use bound values in SQL by using the <@BIND> meta tag. When
calling a stored SQL server procedure from a Direct DBMS action with
an ODBC data source, you should use the following syntax:

{call procedureName(param1,param2,paramX)}

Oracle (OCI) blank No column name.

Oracle (ODBC) Expression Returns the expression as the column name;
for example, if the column took the
maximum of a list of prices using
MAX(price), the column name is
MAX(price).

Database Return Value Comments
335335

Joining Database Tables

33
Joining Database Tables
For more information on
joins, consult your DBMS
documentation, such as,
T H E
P R A C T I C A
L S Q L
H A N D B O O
K (J.S. Bowman, E T .
A L ., ISBN: 0-201-
62623-3), or any other
good SQL reference guide.
3366
To understand how joins work, consider a database with vendor and
associated account manager information in two different tables. You want
to create a search to find the account manager for any given vendor, and
display in your browser the vendor information with the corresponding
account manager’s name. Because the vendor table contains only the
account manager’s identifier, you have to join the two tables to get the
account manager’s full name.

The vendor table (VENDOR) has a record for each vendor including a
vendor identifier, name, contact information, payment terms, and an
account manager identifier. The account manager table (ACCTMGR) has
a record for each account manager including the account manager’s
identifier, name, and telephone number. The vendor table is related to the
account manager table by an identifier in the AcctMgr column; the
account manager table has a MgrID column that contains the identifier
corresponding to the AcctMgr column in the vendor table.
For more information, see
“Creating a Join in a Search
Action” on page 338.
Using a Witango search, you select the columns you want to relate and
define the type of join in the Joins section of the Search action or Search
Builder.

In addition to the standard join, you can define an outer join, which can be
left or right. A left outer join means all rows in the left-specified table are
returned, including those with no match in the right-specified table. A
right outer join means all rows in the right-specified table are returned,
including those with no match in the left-specified table.

For this example, you would select the MgrID column in the left table,
ACCTMGR, and the AcctMgr column in the right table, VENDOR. Then,
from the drop-down menu you select the type of join you want to use.

Joining Database Tables
• If you select a standard join (=), the search returns only rows of
vendor information where a valid account manager’s identifier is
found. If none is found, the corresponding row is not returned. For
instance, if a vendor has not been assigned an account manager and
thus the MgrID column is blank for that record, that vendor is not
returned.

• In contrast, if you define a right outer join (=*), the search returns all
rows of vendor information, regardless of whether an account
manager is found or not.

• A left outer join (*=) returns rows of vendor information based on the
account managers found, including any account managers without
vendors assigned.

Only rows with
matching
account
managers are
returned.

In this case, the
row is returned
even though no
matching account
manager is found.

In this case, the row
is returned even
though the account
manager found has
no matching
vendor.
Working With
Joins
To work with joins, you must first have your Search action or Search
Builder action editing window open.
337337

Joining Database Tables

338338
You can include columns from more than one table in a search, if you
define joins for the tables. If you select columns from more than one table
in a search, a message appears telling you to define a join.

Choose either Define to create the join definition now or Later if you
want to define the join at a later time. Choosing Define opens the Joins
section of the current dialog box.

You create, modify, and delete joins using the Joins section of the Search
editing window or Search Builder.

When you define the join, it adds the columns to the search. In the
Search Builder, you must define the join before you build the actions for
the search or save the application file.

Note In earlier versions of Witango, you could get join information by
using the Attribute menu’s Joins command or the Joins icon in the
Attributes bar. Join information is viewed in the Search action or Search
Builder editing window.
Creating a Join
in a Search
Action
To create a join, drag the columns you want to include in the search from
the Data Sources Workspace into the Joins section.

Note You cannot create a join from two different data sources.

To create a new join in a Search action

1 In the Search editing window, click the Joins tab.

Joining Database Tables
The Joins section appears:

If you added columns from different tables to the Select
Columns list (under the Select tab), a join definition already
appears, showing you the tables selected and the first column
added from each table. The default operator is “=”.

If you have not added columns, do so now by dragging the
columns into the Joins section.

2 From the Table drop-down menus, select the left and right tables for
the join. The following is an example of the drop-down menu:

3 From the Column lists, select the columns you want to join in each
table. A table’s first column appears as the default in the list.

4 From the Oper. drop-down menu, select a join operator.

Join Operator Description

= Standard join (the default). Only records matching
the join criterion are returned.

*= Left outer join. All left-table rows are returned,
including those with no match in the right table.

=* Right outer join. All right-table rows are returned,
including those with no match in the left table.
339339

Joining Database Tables

34
Inserting a Join
3400
To insert a join definition

Do one of the following:

• Click in the list area of the Joins section. From the Edit menu,
choose Insert.

• Right-click the Joins section and choose Insert from the context-
sensitive menu that appears.
Editing a Join
 To edit a join definition

1 Click the Joins tab in the Search action editing window.

The Joins section appears, showing you the current join
definition(s) including table names, joined columns, and join
operator.

2 Do one of the following to edit a definition field:

• Click the field twice.

• Right-click and choose Edit from the context-sensitive menu
that appears.

The field changes to a drop-down menu so you can choose a
different entry.
Deleting a Join
 To delete a join definition

1 Click the Joins tab in the Search action editing window.

The Joins section appears, showing you the current join
definition(s) including table names, joined columns, and join
operator.

2 Select the join definition you want to delete, and do one of the
following:

• From the Edit menu, choose Delete.

• On the main toolbar, click the Delete icon.

• Press DELETE on your keyboard.

• Right-click the selected join definition(s) and choose Delete
from the context-sensitive menu that appears.

A message appears asking you to confirm that you want to
delete the selected row(s).
You can SHIFT-click
(contiguous rows) or CTRL-
click (discontiguous rows)
to select multiple join
definitions.
3 Click Yes to delete the selected rows or No to cancel.

Tip You can bypass the confirmation dialog box by holding down the

Joining Database Tables
Ctrl key when choosing Delete.

Note If your Search action refers to columns from the deleted joined
table, you need to remove these columns and references from the
action or builder window manually.
Creating a Join
in the Search
Builder
You create, edit, and delete joins in the Joins section the same way you do
for a Search action. See Creating a Join in a Search Action on page 338.

The Search and Record List pages of the Search Builder share the same
join information because they both apply to the same generated Search
action. You can specify separate join information on the Record Detail
page.

You switch from the Search, Record List, or Record Detail section to the
associated Joins section by clicking the General and Joins tabs,
respectively, at the bottom of the Search Builder window.

Note You cannot create a join between two different data sources.

Clicking the General and Joins
tabs switches you between the
selected General section and the
associated Joins section.
341341

Joining Database Tables

342342

S E C T I O N V

Witango and Objects

How to Use Objects and Create Objects (Witango Class Files)
This section gives details on using objects in Witango.

This section contains chapters on the following topics:

• Chapter 20, Understanding Objects in Witango on page 345

• Chapter 21, Using Objects on page 361

• Chapter 22, Witango Class Files on page 395.

This section is recommended to all users of Witango who are going to
add object functionality to their application files or create their own
objects as Witango class files.

344344

20
C H A P T E R T W E N T Y

Understanding Objects in
Witango

How Objects Work in Witango
Objects are reusable software components. Witango supports the use of
objects in Witango application files. The use of objects can simplify the
development process and reduce development time.

Witango supports different object types:

• COM objects

• JavaBeans

• Witango class files.

The topics covered in this chapter include:

• an introduction to objects

• the benefits of using objects in Witango

• an overview of the types of objects supported

• the data types used in Witango.

This chapter covers only the basic concepts of objects in Witango. See
the next chapter for the details of using objects in Witango.
345

What are Objects?

34
What are Objects?
3466
Objects are reusable software components. Each object is generally
designed to deal with a specific issue within a programming project. For
example, if you have a project that prepares financial statements for
customers, you may use an object that calculates the compound interest
of an account, and another object that organizes information into a
report.

When you develop a Witango application file that requires calculation of
compound interest and presentation of reports, you do not necessarily
have to write your own code to do the calculation or the presentation;
you could simply select and use the appropriate objects that perform
those tasks. Using objects can simplify your application development and
reduce your development time.
Objects as
Black Boxes
Objects are treated as “black boxes”; that is, as a user of objects, you do
not need to know the source code inside objects or the programming
languages used for writing this code. In fact, unless you are the developer
of an object, you have no access to the inside of that black box.

Instead of editing the source code within an object, you interact with the
object through an interface.

Example: Interest Calculator

Let us assume there is an object called Interest Calculator, which
calculates compound interest. When you use this object in your Witango
application, the object calculates compound interest as one of the tasks in
the Witango application file. You do not know how Interest Calculator
performs this task, nor do you care. You only want to be able to input
your principle, interest rate, and period, and get the result.

With the help of the Interest Calculator example, let us introduce the
basic elements of an object used in Witango:

• Interest Calculator is an object; it is treated as a black box—you have
no access to how the object performs its computations.
• An object instance is a specific application of the Interest Calculator
object. In general, a separate object instance has to be created from
Interest Calculator to handle each customer account. You create an
object instance in Witango using a Create Object Instance action or
the <@CREATEOBJECT> meta tag.

What are Objects?
• Interest Calculator has an interface that allows you to input data
(principle, interest rate, period) into the object and to get results
(interest) from the object. A method is a specific way to interface
with an object instance. You call a method in Witango using a Call
Method action or the <@CALLMETHOD> meta tag.
For more information, see
Method Elements:
Parameters on page 348.
• Each method of Interest Calculator specifies precisely the
requirements of the input (for example, what type of data is
principle) and output data. These requirements are the parameters.
Object
Interface:
Methods
The interface of an object consists of one or more methods. A method
allows you to tell the object to input data, get data, or carry out any
other action.

Each object includes at least one method; otherwise, you cannot use the
object. An object may include several methods. For example, the Interest
Calculator object (See “Objects as Black Boxes” on page 346.) includes a
method which gives you the interest; it may include another method
which gives you the total payment amount.

When you use an object, you need to choose a method of the object you
want to use.

While an object itself is a black box, the methods of an object are visible
to users. Through a process called introspection,Witango discovers the
methods and properties of the objects you want to use; it then presents
this information to you. For each object, you can view a list of its
methods and their associated parameters (see Method Elements:
Parameters on page 348) in the Objects Workspace. You can view
additional object information in the Object Properties window.

Viewing object information that Witango generates through introspection
merely displays a list of what methods are available for your use; it does
not give you all the detailed information about the objects. Objects may
come with documentation from the vendors of these objects. You need
to find out from this documentation whether a particular object suits
your purpose and how you might use it.
For more information, see
“Adding a Call Method
Action” on page 383.
You use objects in Witango by incorporating Create Object Instance and
Call Method actions into Witango application files. Create Object
Instance action and Call Method action are types of Witango actions:
when Witango Server executes a Witango application file that contains a
Call Method action, it performs the task specified by the method.

You can also create object instances and call methods in Witango by using
the <@CREATEOBJECT> and <@CALLMETHOD> meta tags. However, these
meta tags do not show you the methods and parameters of your objects,
and are therefore recommended for advanced users of Witango.
347347

What are Objects?

34
Method
Elements:
Parameters
3488
Parameters are the basic data elements of a method. A parameter defines
what the object accepts as an input, output, or both. Each method
consists of one or more parameters.

For example, the Interest Calculator object (See “Objects as Black
Boxes” on page 346.) includes a method that contains a parameter called
Principle. You have to input data into Principle according to the
requirements of this parameter. Another parameter of this method is
called Interest. The object outputs the result of interest calculation
according to the requirements of the Interest parameter.
Class, Object,
and Object
Instance
In theory, a class is a category of objects. A class defines all the common
properties of the different objects that belong to it. In the computer
industry, however, the term “object” is often used loosely. What is called
an object may in fact be a category of objects.
For more information, see
“Object Types Supported in
Witango” on page 355.
Many of the “objects” available on the market—such as COM objects and
JavaBeans—are, strictly speaking, classes. Witango class files, which you
can create using Witango Studio, are also classes.

Witango Server does not execute a class directly; instead, it executes an
object instance of a class. An object instance is an application of an
“object” in the real world. You can create multiple object instances based
on the same “object.”

The example below illustrates the relationship between a class (“object”)
and an object instance:

Interest Calculator (See “Objects as Black Boxes” on page 346.) can
be seen as a class. It is a generic interest calculator, in the sense that
it does not calculate interest for any particular customer; it can
potentially perform similar tasks for many customers. When your
Witango application file asks Interest Calculator to calculate interest
for John Smith, Witango Server creates an object instance of Interest
Calculator for the John Smith account. Similarly, Witango Server
creates an object instance of Interest Calculator for the Mary Brown
account, when it is needed.

The object instance created for the John Smith account has nothing
to do with the object instance created for the Mary Brown account;
yet both object instances are based on the common properties of
Interest Calculator.

What are Objects?
In the computer industry, an object instance is often also called an
“object”.

Note While Witango attempts to use an unambiguous terminology
whenever possible, it is not always practical to avoid terms that are
already widely used in the computer industry. The following is a brief
description of what “object” may mean in Witango, depending on
context:
• a class (a category of objects with the same behavior)
• an object instance (a particular use of an object in the real world)
• a data type used with objects.
Creating
Object
Instances
Before you can use an object in Witango, an object instance has to be
available for use. In general, this means you have to create the object
instance first.
For more information, see
“Using Available Object
Instances” on page 350.
This section explains how you can create an object instance in the same
application file that you use it. There are circumstances when you do not
have to create an object instance in the same application file before using
it.

In your Witango application file, use a Create Object Instance action to
create an object instance from an object that Witango supports.
For more information, see
“Working With Variables”
on page 155.
Object instances are stored in Witango variables. The scope of the
variable determines where the object instance is available. For example,
local scope applies to the current execution, and user scope applies to
all the Witango application files executed by the current Witango user.
An object instance is destroyed when the variable in which it is stored
expires or is purged, using the <@PURGE> meta tag. .

You can also use the <@CREATEOBJECT> meta tag to create an object
instance.

In some cases, you may want to create more than one object instance
from the same object. The following example shows such a case:

You use the Interest Calculator object to calculate interest for
various customer accounts. In your application file, you already have
an object instance of Interest Calculator that calculates interest for
John Smith, and now you need to calculate interest for Mary Brown.
Because the two accounts are not related, you do not want to use
the existing instance (with John Smith’s data) for Mary Brown.

In this scenario, you create a new object instance of Interest
Calculator for the Mary Brown account.
349349

What are Objects?

35
Using Available
Object
Instances
3500
There are several ways in which object instances can be available for use
in your application file:
For more information, see
“Creating Object
Instances” on page 349.
• An object instance has been created for this application file, using the
Create Object Instance action.

• An object instance has been created for a different application file
and, during execution of the current application file, the variable in
which that object instance is stored has not yet expired.

For example, application files A and B are running simultaneously
under the same username. File A created an object instance stored in
the user scope. File B can access the object instance that has already
been created by file A.
For more information, see
Calling Methods
page 350on this page.
• An object instance has been created as a result or an output of a
previous Call Method action, provided that the variable in which that
object instance is stored has not yet expired.
Calling
Methods
After creating an object instance or finding one that is available for use in
your application file, you can select a method from this object instance
and call the method using a Call Method action.

You can also use the <@CALLMETHOD> meta tag to call methods on
objects.

An object typically consists of a number of methods in its interface. You
can call more than one method from the same object instance, and you
can call the same method several times in the same application file. Every
time you call a method, you need to use a Call Method action. The
following example shows how you might use several methods from the
same object instance:

You use the Interest Calculator object to calculate interest for John
Smith. The first Call Method action is SetPrinciple, and you set
the principle to $100. The second Call Method action is
SetInterestRate, and you set the interest rate to 5%. Your
second Call Method action must use the previous object instance of
the Interest Calculator object; otherwise, Witango does not know
that the $100 and the 5% refer to the same account. The third Call
Method action is GetBalance. This action must also use the
previous object instance of the Interest Calculator object; otherwise,
Witango does not get the balance from the John Smith account.

In this scenario, every time you use a Call Method action, you refer
to the same object instance, that is, the one set up for the John Smith
account.

What are Objects?
The following example shows how you might use the same methods in
the same application file, but with different object instances:

Let us say you now want to perform interest calculation for both the
John Smith account and the Mary Brown account in the same
application file. Because you do not want to mix up the two
accounts, you have to create two separate object instances for the
two accounts before you use the Call Method actions.

A Call Method action may return a result or an output. In some cases, the
result or output is another object instance, which you may then use with
another Call Method action.
Example 1:
Investment
Scenarios
Let us assume you are developing a Witango application file
(Invest.taf) for a financial institution that advises customers on
retirement investment strategies. You want to present scenarios to
customers based on different mixes of savings and mutual funds.

You can use an object that calculates accumulated savings (Savings
Calculator), another object that projects the future values of mutual
funds (Mutual Funds Calculator), and another object that works out
different investment scenarios and organizes the results into a report
(Report Organizer).

The parameters of Savings Calculator may include current age, retirement
age, monthly contribution, and total savings; the parameters of Mutual
Funds Calculator may include monthly contribution, mutual fund
category, risk factor, and total value; the parameters of Report Organizer
may include savings, mutual funds, and total investments.
351351

What are Objects?

352352
The following diagram shows how you might incorporate several objects
into your Witango application file (The other actions shown in the
application file are entirely arbitrary.):

Savings
Calculator

Mutual
Funds

Calculator

Report
Organizer

Invest.taf
Create Object Instance
- Object=Savings Calculator
- Object Instance=MySavings
Call Method
- Object=Savings Calculator
- Object Instance=MySavings
- Method=CalculateInterest
For Loop
Create Object Instance
- Object=MutualFundsCalculator
- Object Instance=MyMutualFunds
Call Method
- Object=MutualFundsCalculator
- Object Instance=MyMutualFunds
- Method=CalculateCapitalGain
Results
Create Object Instance
- Object=ReportOrganizer
- Object Instance=MyReport
Call Method
- Object=ReportOrganizer
- Object Instance=MyReport
- Method=PresentFindings
Results

Partial Invest.taf
Example 2:
More
Investment
Scenarios
Let us assume that you now want Invest.taf (the Witango

application file shown in Example 1) to keep track of two
separate savings accounts and you want to use three different methods—
SetPrinciple, SetInterestRate, and GetBalance—on each of
these accounts.

Because both savings accounts behave in the same way, but with different
data, you create two separate object instances—MySavings1 and
MySavings2—based on the “Savings Calculator” object. When doing
your interest calculation for each of these accounts, you call the three
different methods on each of the two object instances.

What are Objects?
The following diagram describes the logical flow in a part of a Witango
application file, which shows how you might incorporate two or more
object instances, each with several Call Method actions, into your
Witango application file:

Invest.taf
Create Object Instance
- Object=Savings Calculator
- Object Instance=MySavings1
Create Object Instance
- Object=Savings Calculator
- Object Instance=MySavings2
Call Method
- Object=Savings Calculator
- Object Instance=MySavings1
- Method=SetPrinciple
Call Method
- Object=Savings Calculator
- Object Instance=MySavings1
- Method=SetInterestRate
Call Method
- Object=Savings Calculator
- Object Instance=MySavings1
- Method=GetBalance
Call Method
- Object=Savings Calculator
- Object Instance=MySavings2
- Method=SetPrinciple
Call Method
- Object=Savings Calculator
- Object Instance=MySavings2
- Method=SetInterestRate
Call Method
- Object=Savings Calculator
- Object Instance=MySavings2
- Method=GetBalance

Partial Invest.taf

Create first object instance from the
"Savings Calculator" object

Create second object instance from
the "Savings Calculator" object

Call several methods on the first
object instance based on the "Savings
Calculator" object

Call several methods on the second
object instance based on the "Savings
Calculator" object
353353

Benefits of Using Objects in Witango

35
Benefits of Using Objects in Witango
3544
When you use objects in your Witango application files, you obtain a
number of benefits:

• Many objects are available for free or for purchase from a variety of
vendors. They perform various programming tasks, some of which
may be useful to your Witango application files. When you
incorporate objects in your Witango application files, you save on
development and testing time.

• Many programming tasks are most efficiently performed by writing in
particular programming languages, such as C++, Visual Basic, or Java.
You do not have to know any of these languages to use objects
written in these languages.

• Developers of objects are often experts in their respective fields.
When you use objects to develop Witango application files, you draw
on their expertise.

• You can develop your own objects in Witango (Witango class files).
You can then reuse these objects in your current and future Witango
application files.

• You can mix and match different object types supported by Witango:
objects available from many vendors and objects you develop
yourself can be used in the same Witango application file.

• Because of the modular structure of objects, using objects in your
Witango application files helps you organize and maintain these files.

• Developers of objects may modify the source code inside their
objects to improve their design. As long as they do not change the
interface—which is typically the case—you can benefit from the
improved design, without having to alter the code in your Witango
application files.

• When you use objects to isolate certain areas of functionality in your
application file, it is relatively easy to replace those objects later with
other objects, without requiring a great deal of rewriting of the main
application file.
When to Use
Objects
You can incorporate objects in any Witango application file. In general,
the more complex your Witango application file is, the more benefits you
can derive from using objects.

Object Types Supported in Witango
Object Types Supported in Witango
Witango supports different types of objects. You can use any of the
following types or a combination of them within the same Witango
application file:

• COM/DCOM objects
• JavaBeans

• Witango class files.
For more information, see
“Class, Object, and Object
Instance” on page 348.
Strictly speaking, all “objects” that Witango supports are classes;
however, because they are typically called “objects” in the computer
industry, Witango Studio and Witango documentation generally conform
to the popular usage.

NoteBecause the method calls are made on the server side by
Witango Server, COM objects and JavaBeans that have a user interface
are generally not appropriate for use with Witango. A server-side
object with user interface elements works with Witango as long as the
object works without user interaction.
Object Type
Independence
In Witango Studio, you do not have to write code to identify whether the
object you are using is a COM object,JavaBean, or Witango class file.
Witango takes care of all the implementation details for you. This
Witango design feature simplifies the use of objects.
For more information, see
“Adding a Call Method
Action” on page 383.
When you incorporate objects into your Witango application, you follow
a very similar procedure, no matter which object type you are using.
COM Objects
 COM (Component Object Model) objects are objects that conform to
the COM objects specifications developed by Microsoft. COM objects
currently run on the Windows platform only.

Automation Servers

Witango supports the kind of COM objects known as Automation Servers
(also called Automation Objects). Many Automation Servers, when
installed, inform Witango that they are “programmable”. These objects
generally offer sufficient information on their methods and parameters to
make them useful in Witango application files.
355355

Object Types Supported in Witango

35
For more information, see
“Adding an Object to the
Objects Workspace” on
page 365.
3566
To help you identify COM objects useful in Witango, by default, Witango
gives you a list of available “programmable” Automation Servers when
you want to add a COM object. It is recommended that you select COM
objects from this list.

Witango can also give you a complete list of available COM objects, if you
select the “Show All Objects” option. However, COM objects which are
not “programmable” Automation Servers may not respond correctly, if at
all.

DCOM Environment

Witango supports the DCOM (Distributed COM) environment. In the
DCOM environment, you can deploy COM objects on machines other
than the one running Witango Server.
For more information, see
“Installing an Object” on
page 362.
You set up the DCOM environment by indicating which particular object
implementation is available on which machine. Once you have done that,
your Witango applications work transparently; you need not be
concerned with object locations. You simply build your Witango
application files as though all objects are executed on Witango Server.

Licensed COM Objects

Some COM objects require licensing. When a COM object is installed,
the license is generally installed with it. This works fine with Witango
Studio on the development machine. During deployment, however,
Witango Server may or may not be able to validate the license on the
deployment machine.

In many cases, the vendor of a licensed COM object generates a license
key, which allows the license to be transferred from the development
machine to the deployment machine. If the deployment machine has a
license already or receives a license key, Witango Server executes the
COM object transparently; otherwise, it returns an error message.
For more information, see
“Details” on page 375.
When you use Witango Studio, you can find out whether the COM
object you plan to use requires a license, has a license, or has a license
key. This information is displayed in the Detail section of the Object
Properties window.
JavaBeans
JavaBeans are objects that conform to the JavaBeans specifications
developed by Sun Microsystems. JavaBeans can run on any platform.
Witango Class
Files
Witango class files are objects designed specifically for use in Witango
application files.

Object Types Supported in Witango
For more information, see
“Witango Class Files” on
page 395.
You can create Witango class files in Witango Studio and incorporate
them in Witango application files, just like any other objects that Witango
supports. Witango class files can run on any platform.
General
Requirements
Regardless of object types, only objects that satisfy certain requirements
are appropriate for use with Witango:

• objects intended for use in a server environment
• objects that do not present a user interface.

When you call methods in Witango, the objects you use are run on
Witango Server, not in the end-user’s browser. Therefore, objects which
present user interface elements (for example, windows, buttons, grid
controls, and charting applets) are not appropriate.

Of course, you may include objects that present user interface elements
in your Witango application files; but to do so, you need to include the
appropriate markup in the HTML returned to the user (for example,
<EMBED>, <APPLET>, or <OBJECT>). Refer to an HTML reference book
for detailed instructions.
357357

Understanding Data Types

35
Understanding Data Types
3588
Different object types have different specifications for their data types,
which are often incompatible with one another. For example, although
both COM objects and other object types have a data type called “float”,
the specifications are not necessarily the same.

Witango facilitates the use of COM objects, JavaBeans, and Witango class
files within the same application file by converting the various data types
to the Witango data types, whenever possible. When you use a
combination of data types from different object types, you do not have to
worry about their compatibility with one another. Witango handles the
conversion transparently.

Witango Studio displays native data type names. For example, if the
object is a COM object, you see the names of the COM object data types
in the Objects Workspace (see page 372) and Call Method Action
window. Refer to the respective object vendors for the details of these
native data types.

Setting up Security for Executing Objects
Setting up Security for Executing Objects
.
 For security reasons, you may want to control which objects can be
executed by Witango Server. The file that contains the control settings is
the object configuration file. The default name of this file is
objects.ini; this name is user-definable.

During execution of a Witango application file, if Witango Server
encounters a Create Object Instance action involving an object that it is
not allowed to run, it returns an error.
The control of object execution can take place at the system level
(system scope) or at the application level (application scope).
359359

Setting up Security for Executing Objects

360360

21
C H A P T E R T W E N T Y - O N E

Using Objects

Incorporating Objects in Application Files
You use objects in Witango by adding Create Object Instance and Call
Method actions to application files.

You can also use the <@CREATEOBJECT> and <@CALLMETHOD> meta tags
to create and use object instances in Witango. This alternative is
recommended for advanced users. For more information, see the
Witango Programmers Guide.

The basic concepts of objects in Witango are covered in the previous
chapter. This chapter focuses on the procedure and details of using
objects.

The topics covered in this chapter include:

• preparing to use objects
• adding objects to the Objects Workspace
• viewing object information in the Objects Workspace
• creating object instances
• using the Create Object Instance action window
• calling methods
• using the Call Method action window
• using the Objects Loop action.
361

Preparing to Use Objects in Witango

36
Preparing to Use Objects in Witango
Planning to Use
an Object
3622
Here are some issues to be aware of before using objects with Witango
application files:

• Before you use an object in Witango, you have to know what the
object can do for you, what the requirements of using the object are,
and whether the object suits your Witango application file. You may
have to consider several alternatives to select the object that is the
best for your situation.

• Read the documentation on the object, provided by the object
vendor. Find out about the methods you can use with the object and
the information on parameters. Understanding the parameters helps
you set up your Witango application file in order to use the object
effectively.
• Make sure the object you plan to use belongs to one of the types
supported by Witango : COM object, JavaBean, or Witango class file.
Installing an
Object
The following are some guidelines for installing objects before developing
and deploying Witango application files:

• It is best to install the objects you plan to use on your development
machine. At least, these objects must be visible on the network from
your machine.

• Some objects already exist on your machine. If the object you need is
not on the machine or visible on the network, you must install it first.
Follow the instructions provided by the object vendor.

Local and Remote Machines

The different object types that Witango supports areCOM objects,
JavaBeans, and Witango class files.

In most cases, you use objects installed on the local machine (same
machine as Witango Server). If your deployment machine is not the same
as your development machine, you need to install the objects on both
machines.

Depending on the object type, you may also be able to use objects
installed on remote machines. When deciding which machine to use,
consider load balancing and fault tolerance issues.

• COM object

Preparing to Use Objects in Witango
You can access and execute COM objects on both local and remote
machines. Use the DCOM environment to deploy COM objects on
remote machines.

• JavaBeans

Witango uses the CLASSPATH environment variable and the
beanpaths.ini file, maintained by Witango, to locate JavaBeans.

When using Witango Studio, adding a JavaBean to the Objects
Workspace prompts you to add the path to the JavaBean to the
beanpaths.ini file, if it is not already in the CLASSPATH
environment variable or the beanpaths.ini file.

When using Witango Server, you must manually add the path to the
.jar file to the beanpaths.ini file, if it is not already in the
CLASSPATH environment variable or in the beanpaths.ini file on
the Witango Server machine.

The beanpaths.ini file is located in the root folder of Witango (by
default, this is C:\PVSW\Witango\).

• Witango class files

While you can access Witango class files on both local and remote
machines, you are able to execute Witango class files only on the
local machine.
For more information, see
“Setting Search Paths for
Witango Class Files” on
page 416 and Objects on
page 137.
When using Witango Studio, use the Objects section of the
Preferences dialog box to list the search paths on various machines.
When using Witango Server, use the TCFSearchPath configuration
variable.
363363

Overview of Using Objects in Witango

36
Overview of Using Objects in Witango
3644
You use an object in Witango by adding Create Object Instance and Call
Method actions associated with an object to your Witango application file
or Witango class file. The procedure can be broken down into three
steps.

The following steps allow you to use the graphical interface of Witango
Studio to develop Witango application files with objects. Advanced
Witango users may want to use Witango meta tags to create and use
object instances. See the Witango Programmers Guide for details.

1 Add Objects to the Objects Workspace
For more information, see
“Adding an Object to the
Objects Workspace” on
page 365.
You can only use objects that are visible in the Objects
Workspace. If the objects you want to use are not there, you
have to add them first.
For more information, see
“Viewing Object
Information in the Objects
Workspace” on page 372.
Note Witango allows you to view object information in the Objects
Workspace, if the objects have already been added to the Objects
Workspace.

2 Add Create Object Instance Actions

Witango does not use the objects you see in the Objects
Workspace directly; it uses instances created from these objects.
The instances created from these objects are called “object
instances”, or simply “objects”.
For more information, see
“Using Available Object
Instances” on page 350.
Before you can call a method involving an object in a Witango
application file or Witango class file, an object instance must be
available.
For more information, see
“Adding a Create Object
Instance Action” on
page 377.
Depending on the circumstances, you may have to create an
object instance with a Create Object Instance action.

3 Add Call Method Actions
For more information, see
“Adding a Call Method
Action” on page 383.
Once an object instance is available, you can incorporate its methods
into your Witango application file or Witango class file by adding Call
Method actions associated with this object.

Adding an Object to the Objects Workspace
Adding an Object to the Objects Workspace
If the Workspace is not visible on your screen, choose Workspace from
the Windows menu.

To view the Objects Workspace, click the Objects tab in the
Workspace. The following is an example of the Objects Workspace:
COM Objects in
the Objects
Workspace
To add a COM object to the Objects Workspace

1 Do one of the following:

• From the Object menu, choose Add Objects, then choose
COM/DCOM Objects.

• From the Objects Workspace, right-click the COM/DCOM
Objects icon. Choose Add ... from the context-sensitive menu
that appears.
365365

Adding an Object to the Objects Workspace

366366
The Select Object dialog box appears:

You can choose which objects are displayed in this dialog box:

• Showing all COM objects
For more information, see
“Automation Servers” on
page 355.
By default, the dialog box shows a list of the installed
Automation Servers. If you want to see a list of all the installed
COM objects—including Automation Servers—check the Show
All Objects check box.

• Filtering objects

The Filter text box allows you to enter the name or partial
name of a COM object. The scroll-down list of the dialog box
then shows only the COM objects that match what you have
entered.

• Seeing additional information
For more information, see
Referenced
Objectspage 367on this
page.
The Library area shows the library to which this object
belongs. Objects in a library often work together; they make
references to one another. When added, objects in a library are
placed in the same folder, generally bearing the name of the
library.

The Details area gives you additional information about the
object you select. For example, it may state the program

Adding an Object to the Objects Workspace
identifier and indicate whether the object is programmable.

CautionIf the Details area indicates that the object is not
programmable, it means the object may not work properly with
Witango. It is strongly recommended that you do not use objects
described as not programmable.

1 From the scroll-down list in the dialog box, select the COM object
you want to use. (You can select more than one object
simultaneously by pressing Ctrl or Shift.)

2 Click OK.

In the Object Workspace, the name of the COM object you have

added appears under the COM/DCOM Objects object type.

Referenced Objects

In some cases, a COM object contains references to one or more related
COM objects. You probably need all these objects to work together as a
group, called a library. When you add one of these objects, the Add
Referenced Objects dialog box appears.

The dialog box asks whether you also want to add the related objects. It
is recommended that you click Yes, to add the entire group of COM
objects. When you add the group, these objects appear together in a
folder in the Objects Workspace.
JavaBeans in
the Objects
Workspace
To add a JavaBean to the Objects Workspace

1 Do one of the following:

• From the Object menu, choose Add, then choose JavaBeans.
• From the Objects Workspace, right-click the

JavaBeans icon. Choose

Add... from the context-sensitive menu that appears.
367367

Adding an Object to the Objects Workspace

368368
The Select JavaBean(s) dialog box appears:

2 Locate the Java archive files (.jar) and select the file you want to
use. Click Open.

The Select Bean(s) dialog box appears:

The dialog box displays all the JavaBeans found in the Java archive
file. You can add one or more JavaBeans from this archive file.

3 Select one or more JavaBeans from the list. (To select more than one
object simultaneously, press Ctrl or Shift. You can also select or
deselect all the JavaBeans on the list by clicking Select All or
Deselect All, respectively.) Click Add.

Adding an Object to the Objects Workspace
In the Objects Workspace, the name(s) of the JavaBean(s) you have
added appears under the JavaBeans object type. The JavaBeans that
belong to the same Java archive file (.jar) are contained in a folder
bearing the name of that Java archive file.

Note Witango Studio uses the CLASSPATH environment variable and
the beanpaths.ini file maintained by Witango for locating
JavaBeans. If the path to that JavaBean does not already exist in the
CLASSPATH, Witango Studio prompts you to add the path to
beanpaths.ini. Click Yes to add the path.
Witango Class
Files in the
Objects
Workspace
To add a Witango class file to the Objects Workspace

1 Do one of the following:

• From the Object menu, choose Add Objects, then choose
Witango Class Files.

• From the Objects Workspace, right-click the Witango Class
Files icon and choose Add... from the context-sensitive menu
that appears.

The Select Witango Class File(s) dialog box appears:
369369

Adding an Object to the Objects Workspace

370370
2 Locate the Witango class files (.tcf) in the dialog box and select
one or more Witango class files from the list. (To select more than
one object simultaneously, press Ctrlor Shift.) Click Open.

In the Objects Workspace, the name(s) of the Witango class file(s)
you have added appears under the Witango Class Files object
type.

Removing an Object From the Objects Workspace
Removing an Object From the Objects Workspace
If there are objects in the Objects Workspace that you do not need, you
can remove them.

When you remove an object from the Objects Workspace, you are not
deleting the object from your machine, just from the Objects Workspace.
You can easily add the object to the Objects Workspace again, when you
need it.

If you have already incorporated an object in a Witango application file or
a Witango class file, removing the object from the Objects Workspace
does not affect the application file or the Witango class file.

To remove an object from the Objects Workspace

Do one of the following:

• Select the object you want to remove. From the Object menu,
choose Remove.

• Right-click the object you want to remove, and choose Remove
from the context-sensitive menu that appears.
371371

Viewing Object Information in the Objects Workspace

37
Viewing Object Information in the Objects Workspace
3722
In the Objects Workspace, you can view information on objects by
successively expanding items at each level. The information you get from
the Objects Workspace includes the following:

• the objects available for each object type
• the methods available for each object

• the parameters for each method
• whether the method returns a result.
For more information, see
“Object Properties” on
page 374.
Additional object information is available to you in the Object Properties
window. For further information about objects, consult the
documentation supplied by the respective object vendors.

The following is an example of the Objects Workspace with expanded
items:

To view information on an object

1 In the Objects Workspace, click the plus sign (+) to the left of an

Object type

Objects

Folder containing
getter and setter

Methods

Input parameter

methods (may not
be present)

Folder containing
referenced objects
(may not be present)

Viewing Object Information in the Objects Workspace
object type to expand one of the three object types:COM/DCOM
Objects, JavaBeans, or Witango class files.

A list of all the objects available for the object type appears.

Note Different object vendors tend to use different icons to represent
their objects. Witango generally displays these icons next to the
respective object names.

Related objects may be grouped together in a folder. An example of
such a folder isa library of COM objects or a Java archive file of
JavaBeans.

2 Click the plus sign (+) to the left of an object to expand the object.

A list of all the methods available for the object appears.

Note If the Attributes folder exists under this object, click the
plus sign (+) to see additional methods in this folder.

3 Click the plus sign (+) to the left of a method to expand the method.
For more information, see
“Parameter List” on
page 387.
• A list of all the parameters for the method appears. Input,
output, and input/output parameters are shown with the
following icons:

input parameter

output parameter

input/output parameter

The data type of the parameter is indicated in brackets after the
parameter name, for example, [double].
For more information, see
“Result Variable” on
page 386.
• If the method returns a result, the data type is indicated in
brackets after the method name, for example, [text];
otherwise, it is indicated as [none] or [void].
Attributes
Folder
In some cases, the Attributes folder appears under an object. This
folder contains the getter and setter methods of the object.

The getter and setter methods let you get and set attributes (also known
as properties or data members). Unlike most methods of an object,
getter and setter methods are very simple methods:

• Getter method

A getter method returns the value of an attribute from the object.
An example of this is GetBalance.
373373

Viewing Object Information in the Objects Workspace

374374
• Setter method

A setter method lets you set the value of an object attribute. An
example of this is SetBalance.

Note If the object vendor does not classify these methods as
attributes, Witango does not place them in the Attributes folder.
Object
Properties
The Object Properties window displays a summary of the information
about the object you select. You cannot change the information in this
window.

Note Much information about objects is available in the Objects
Workspace. See Viewing Object Information in the Objects Workspace
on page 372.

To view object properties

1 Right-click an object in the Objects Workspace.

2 Choose Properties from the context-sensitive menu that appears.

3 From the Object Properties window, select the General tab or the
Details tab.

The General section or the Details section appears.

General

The General section of the Object Properties window displays the
following information:

Item Description

Object type
icon

This icon identifies the type of object as JavaBean, or Witango class
file. The icon may be provided by the object vendor.

Object name This field, located to the right of the icon, identifies the name of the
object.

Object type This field identifies the type of object as JavaBean, or Witango class
file.

Path This field shows the location of the object.

Viewing Object Information in the Objects Workspace
The following is an example of the General section (in this case, the
object is a JavaBean object):

Details

The Details section of the Object Properties window displays attributes
and their associated values. The attributes displayed in this section
depend on the object type and the object. For a detailed description of
the attributes, refer to the documentation from the object vendor.

Thread safe This field indicates whether the object is thread safe.
Witango Server can execute several Witango application files
simultaneously. Depending on its design, an object may or may not be
thread safe. An object instance that is not thread safe may interfere
with the execution of another Witango application file using the same
instance.
If this field indicates Yes (thread safe), Witango Server executes
multiple calls to the instance simultaneously. If the field indicates No
(not thread safe), Witango Server waits for one execution of the
instance to complete before it starts another, to avoid any
interference between the two. From the user’s perspective, the
difference is in performance only.

Item Description
Caching and
Refreshing of
Object
Information
When you add an object to the Objects Workspace, Witango stores the
introspection information about the object—including methods and
parameters—in the \Witango\Cache\ Object Cache file in the
Support Files folder within the Witango folder.

The cache offers you some advantages:

• Because Witango stores the object and introspection information in
the cache, it can access this information faster.

• The cache allows you to work away from your network or in a
location where objects are unavailable.
375375

Viewing Object Information in the Objects Workspace

376376
Developers of objects sometimes improve the design of their objects. If
you want to update the object information in the cache, you can refresh
the objects as follows:

1 From the Objects Workspace, select the object or objects you want
to update.

2 Do one of the following:

• From the Object menu, choose Refresh.
• Right-click the object(s), and choose Refresh Object(s) or

Refresh All from the context-sensitive menu that appears.

Note Refreshing does not update any actions that are already using the
object(s).

Adding a Create Object Instance Action
Adding a Create Object Instance Action
For more information, see
“Adding an Object to the
Objects Workspace” on
page 365.
Before you add a Create Object Instance action to your Witango
application file or Witango class file, make sure the object from which you
want to create an object instance is available in the Objects Workspace.

A Create Object Instance action is a Witango action. The action icon is
available on the Actions bar.

The procedure for adding a Create Object Instance action is the same
whether you are working with a COM object,JavaBean, or Witango class
file.

To add a Create Object Instance action

1 Create or open the Witango application file or Witango class file in
which you want to create an object instance.

2 Drag the Create Object Instance action icon from the Actions bar to
the location you want in your application file or Witango class file.

The Create Object Instance action window appears. The field
next to the Create Object Instance action icon displays a
message: “Drag an object from the Workspace.”

3 Click the Objects tab in the Workspace to view the Objects
Workspace.

4 Expand one of the object types—COM/DCOM Objects, JavaBeans,
or Witango class files—that you want to view, by clicking the plus
sign (+) to the left of this object type.

A list of all objects of this type appears.

5 Select the object from which you want to create an object instance
and drag it to the Create Object Instance action window.

The Create Object Instance action window displays the name of
the object. An example of the Create Object Instance action
window is shown on page 379.
For more information, see
“Completing the Create
Object Instance Action” on
page 379
6 Complete the information in the Create Object Instance action
window.

Note You can skip this step for the time being. At a later time, open
this action item and complete the information.

7 Close the Create Object Instance action window.
377377

Adding a Create Object Instance Action

378378
A Create Object Instance action appears in your application file
or Witango class file. The default name for the action is
Create_Object_Instance.
For more information, see
“Working With Actions”
on page 229.
8 If you want, you can change the default name to whatever is
appropriate in your case.
Shortcut to
Adding a
Create Object
Instance Action
An alternative approach to adding a Create Object Instance action from
the Actions bar is to do it directly from the Objects Workspace. This
procedure is a slight modification of the one described on page 365.

Skip the step involving the Create Object Instance action icon. Just drag
the object you want to use from the Objects Workspace to the location
you want in the application file or Witango class file.

Completing the Create Object Instance Action
Completing the Create Object Instance Action
The Create Object Instance action window contains important
information about a Create Object Instance action. It allows you to view
and edit this information.

You can open the Create Object Instance action window by doing one of
the following:
For more information, see
“Adding a Create Object
Instance Action” on
page 377.
• dragging the Create Object Instance action icon from the Actions bar
to an application file
(when you create a new Create Object Instance action)
For more information, see
“Shortcut to Adding a
Create Object Instance
Action” on page 378.
• dragging an object from the Objects Workspace to an application file
(when you create a new Create Object Instance action)

• double-clicking the name of a Create Object Instance action in your
application file
(when you edit an existing Create Object Instance action).

The title of the Create Object Instance action window consists of the
name of your Witango application file, followed by the name of the
action, separated by a colon.
For more information, see
“Working With Actions”
on page 229.
The default name of the Create Object Instance action is
Create_Object_Instance. You can change it in the application file
window.

The following is an example of the Create Object Instance action
window:
379379

Completing the Create Object Instance Action

380380
There are several sections to the Create Object Instance action window:
object name, object instance variable, instance, and expiry URL.
Object Name
 This is the field next to the Create Object Instance action icon. The
object name is the name of the object from which you create the object
instance. If no object has been assigned to this action, the field displays
the message Drag an object from the Workspace.
Object Instance
Variable
This section sets the name and the scope of the variable that refers to the
object instance once it is created.

Scope

.
 You can select a scope from the drop-down menu, or enter a custom

scope. The default is Request.

When you select a scope, consider how you plan to use the variable. For
example, you are using the object instance to calculate interest based on
principle and interest rate, and you want to get the balance later, in
another application file. In this case, you should select the User scope
instead of the Request scope, because the User scope makes the
variable available beyond the execution of the current application file.

Name

Enter the variable name in this dialog box.

The name that you enter in this box becomes available in the drop-down
menu in the Object Instance Variable section of Call Method action
windows in the same Witango application file or Witango class file.
Instance
 Create New Object
Create New Object is the default option. Witango Server creates a
new instance of the object when the application file is executed. The new
instance exists until the expiry time is reached—which is determined by
the variable scope that you specify in the Object Instance Variable
section—or until it is purged with a <@PURGE> meta tag.

This is the only selection, unless you are using a COM object. Even if you
are using a COM object, in most cases, this is the appropriate selection.

Get Existing Object

In some special cases, you may want Witango to connect to an object
instance that is already existing, instantiated by the operating system of

Completing the Create Object Instance Action
your machine, independent of your Witango application file. If you are
familiar with the way this process works and you want to use the object
instance in this manner, you can make this selection.

Currently, Witango supports this feature only in COM objects. If you are
using a JavaBean or a Witango class file, this selection is disabled.

If the object you specify is not registered properly as a global COM
resource when Witango Server executes the Create Object Instance
action, WitangoServer generates an error.

Initialization String

This feature allows you to bring up COM objects in some initialized state,
as implemented by the referenced moniker. (A referenced moniker is a
term used with COM objects; it is essentially a string of characters in a
special format for creating initialized COM objects. See your COM object
documentation for details.) Specifying an initialized state can combine
several actions into one, and thus save development time.

An example of using a referenced moniker is to specify an action based
on a spreadsheet file. When Witango Server executes this initialized
object instance, it opens the spreadsheet program and the spreadsheet
file, lets the spreadsheet program perform its operations and returns the
result to Witango.

Currently Witango supports the use of initialization string only in COM
objects. If the instance you are creating is from a JavaBean or a Witango
class file, the field is disabled.

You can do one of the following with the Initialization String text box:

• Leave the text box empty.

Witango creates an uninitialized instance of the COM object (the
object indicated in the Object Name field).

• Enter the referenced moniker in the text box. (Refer to the
documentation from your COM object vendor for the use of
referenced monikers.)

Witango reads the initialization string to create an initialized instance;
it ignores whatever COM object that you may have selected when
you started the Create Object Instance action (that is, the object
indicated in the Object Name field). The information you enter in
the Object Instance Variable section applies to this initialized
instance.
381381

Completing the Create Object Instance Action

382382
Username and Password

By default, a COM object uses the username and password of your
Witango Service login.

Tip You can view your Witango Server login information as follows.
From the Control Panel, choose Services, then select the Witango
Server you want to view, then click Startup. In the Service dialog box
that appears, you see the login information under Log on as. The
default is System Account.

However, you have the option to specify a different username and
password for this COM object.

The Username and Password text boxes allow you to enter optional
security information for this COM object. Both text boxes accept meta
tags and are encrypted in the Witango application file or Witango class
file. Username and password fields are limited to 128 characters.

Currently, Witango supports the use of username and password only in
COM objects.
Expiry URL
 When the object instance expires, Witango destroys the instance.

You can direct Witango Server to perform application-specific cleanup
operations prior to the destruction of the instance. Enter either a valid
URL or one or more meta tags that evaluate to a valid URL. The URL
must be a complete HTTP URL that Witango Server can access. For
example:

http://127.0.0.1mycleanup.taf?object=myobject

Adding a Call Method Action
Adding a Call Method Action
Before you add a Call Method action to your Witango application file or
Witango class file, make sure the following conditions are met:
For more information, see
“Adding an Object to the
Objects Workspace” on
page 365, Using Available
Object Instances on
page 350, and Completing
the Call Method Action on
page 385.
• the object associated with that method is available in the Objects
Workspace

• the object instance to which this Call Method action refers has
already been created earlier in the execution of your Witango
application file

• the information for the object instance is complete; in particular, the
object instance has been assigned to a Witango variable.

A Call Method action is a Witango action. The action icon is available on
the Actions bar.

The procedure for adding a Call Method action is the same whether you
are working with aCOM object, JavaBean, or Witango class file.

To add a Call Method action

1 Open the Witango application file or Witango class file in which you
want to call a method.

2 Drag the Call Method action icon from the Actions bar to the
location you want in your application file or Witango class file. (It
must be in a logical sequence after the Create Object Instance action
that this Call Method action refers to.)

The Call Method action window appears. The field next to the
Call Method action icon displays a message: “Drag a method
from the Workspace.”

3 Click the Objects tab in the Workspace to view the Objects
Workspace.

4 Locate the object and method you want to use, as follows:

• Expand one of the object types—COM/DCOM Objects,
JavaBeans, or Witango class files—that you want to view, by
clicking the plus sign (+) to the left of this object type.

Note The object you select for your Call Method action must be the
same as the object in the Create Object Instance action that you want
this Call Method action to refer to. Otherwise, Witango Server returns
an error during execution of the application file.

A list of all objects of this type appears. (A group of related
383383

Adding a Call Method Action

384384
objects may be contained in a folder.)

• Expand the object that you want to use by clicking the plus sign
(+) to the left of this object.

A list of available methods appears.

Note Some methods are listed under the Attributes folder, if this
folder exists. Expand the Attributes folder to see those methods.
For more information, see “Attributes Folder” on page 373.

5 Select the method you want to use and drag it to the Call Method
action window.

The Call Method action window displays the names of the object
and the method, as well as the list of parameters for this
method. An example of the Call Method action window is
shown on page 385.
For more information, see
“Completing the Call
Method Action” on
page 385.
6 Complete the information in the Call Method action window.

Note You can skip this step for the time being. At a later time, open
this action item and complete the information.

7 Close the Call Method action window.

A Call Method action appears in your application file or Witango
class file. The default name for the action is the name of the
method.
For more information, see
“Working With Actions”
on page 229.
8 If you want, you can change the name of the action to whatever is
appropriate in your case.
Shortcut to
Adding a Call
Method Action
An alternative approach to adding a Call Method action from the Actions
bar is to do it directly from the Objects Workspace. This procedure is a
slight modification of the one described on page 383.

Skip the step involving the Call Method action icon. Just drag the method
you want to use from the Objects Workspace to the location you want in
the application file or Witango class file.

Completing the Call Method Action
Completing the Call Method Action
The Call Method action window contains important information about a
Call Method action. It allows you to view and edit this information.

You can open the Call Method action window by doing one of the
following:
For more information, see
“Adding a Call Method
Action” on page 383.
• dragging the Call Method action icon from the Actions bar to an
application file
(when you create a new Call Method action)
For more information, see
“Shortcut to Adding a Call
Method Action” on
page 384.
• dragging a method from the Objects Workspace to an application file
(when you create a new Call Method action)

• double-clicking the name of a Call Method action in your application
file
(when you edit an existing Call Method action).

The title of the Call Method action window is the name of your Witango
application file, followed by the name of the Call Method action,
separated by a colon.
For more information, see
“Working With Actions”
on page 229.
You can change the name of the Call Method action in the application file
window.

The following is an example of the Call Method action window:

There are several sections to the Call Method action window: object/
method name, object instance variable, result variable, and parameter list.
385385

Completing the Call Method Action

38
Object/Method
Name
3866
This is a non-editable field at the top of the window, next to the Call
Method action icon. The object/method name consists of the name of the
object, followed by the name of the method, separated by a dot. If no
method has been assigned to this action, the field displays the message
Drag a method from the Workspace.
Object Instance
Variable
This section allows you to specify the object instance you want to use in
your Call Method action. You must have created the object instance in a
Create Object Instance action and given it a variable name.

Before you complete the information in this section, you need to know
the following:

• the variable name given to the object instance you want to use
• the scope of this variable.

You can view this information by double-clicking the appropriate Create
Object Instance action.

From the Scope and Name drop-down menus, select the appropriate
items or enter them.

CautionThe information you enter in the Object Instance
Variable section of the Call Method action window must be identical
to the corresponding section of the Create Object Instance action
window. (This includes the scope and the name of the variable.)
Otherwise, Witango Server returns an error when it executes the
application file.

Example

The Create Object Instance action creates an object instance,
MyObjectInstance, from the object, MyObject; the variable to
which this instance is assigned is MyVariable, in Local scope. To
specify a Call Method action using this object instance, drag
MyObject in from the Objects Workspace, and specify
MyVariable, in Local scope, in the Object Instance Variable
section of the Call Method action window.
Result Variable
 The Call Method action may generate a result. The data type of the
return result is indicated in parentheses after the Put Result into
Variable title. An example is (bool).

Completing the Call Method Action
For more information, see
“Viewing Object
Information in the Objects
Workspace” on page 372.
This information is also shown in the Objects Workspace.

Note If the Call Method action does not generate a result, it is
indicated as (none) after the Put Result into Variable title. The
Scope and Name drop-down menus are disabled.

If you plan to use the result later in your application file, put the return
result into a variable. From the Scope and Name drop-down menus,
select the appropriate items or enter them.

Example

You are using the Interest Calculator object to calculate the interest
on a customer account. When you get the result of the calculation,
you can store it in a variable called Interest. When you need to
use this result later to present a statement on a Web page, refer to
the Interest variable.
Parameter List
 A parameter allows a Witango application file to exchange data with an
object. The exchange can be an input (passing data from the application
file to the object), output (passing data from the object to the application
file), or input/output (passing data from the application file to the object
and putting the new value from the object in the original variable).

Name

This column shows the parameter names, and whether a parameter is an
input, output, or input/output parameter. The following icons are used:

input parameter

output parameter

input/output parameter
For more information, see
“Object Properties” on
page 374.
Parameter names are also listed in the Objects Workspace. If you want to
change a parameter name, do it in the Objects Workspace. After the
change, Witango updates the Call Method action window. (You have to
close and reopen the Call Method action window to see the new name.)

Type

This column shows the data type of each parameter. There are two
categories of data types:

• Fixed
387387

Completing the Call Method Action

388388
In most cases, the data type for a parameter is fixed. It does not vary
from one Call Method action to another. This is the data type
specified by the object vendor. For details, see the documentation
supplied by your object vendor.

• Variant

When using COM objects, you may encounter variant parameters. A
variant parameter is a parameter which does not have a fixed data
type assigned to it; the data type may vary from one Call Method
action to another. A variant parameter can be an input parameter or
an input/output parameter.

If you click the Type column of a variant parameter, you see a drop-
down menu of data types used in COM objects. Refer to the
documentation from your COM object vendor and select the
appropriate item from the menu. The default is Text.

Tip Instead of selecting from the drop-down menu, you can also type
in a meta tag which evaluates to a data type when Witango Server
executes the Witango application file.

The data type you select for the variant parameter applies to this
particular Call Method action only.
For more information, see
“Viewing Object
Information in the Objects
Workspace” on page 372.
Parameter data types are also listed in the Objects Workspace, in
brackets, after the respective parameter names. The exception is the
variant data type, which depends on the particular Call Method action.

Format

This column shows the format of a parameter. A parameter has one of
two formats: Variable and Value.

When you click the Format column of a parameter, the format for this
parameter becomes enclosed in a drop-down menu. If the parameter is
an input parameter, you can select Variable or Value; otherwise, it can
only be Variable.

Parameter Type Possible Formats

Input Variable or Value

Output or Input/Output Variable

Completing the Call Method Action
Value

This column shows the value or variable of a parameter. You can change
the values and variables in this column.

• Format is Value

If the format of a parameter is Value, you input a literal value or a
meta tag that evaluates to a literal value.

Examples of literal value are 237 (integer), John Smith (text), and
3.14159265 (floating point).
For more information, see
“Working with Meta Tags”
on page 143.
An example of a meta tag that evaluates to a literal value is
<@SUBSTRING STR="alpha" START="3" NUMCHARS="2">
(This meta tag evaluates to the literal value, ph.)

• Format is Variable
For more information, see
“Working With Variables”
on page 155.
If the format of a parameter is Variable, this column shows the
scope and the variable name of the variable.

When you click the Value column of a parameter, two cells appear.
The left-hand cell, which contains the scope name, becomes a drop-
down menu. You can make changes by selecting another scope or
entering a custom scope. The right-hand cell, which contains the
variable name, becomes a text box. Enter a variable name or change
the existing variable name.

When the Call Method action is executed, the value for this
parameter is taken from the variable specified (Input/Output or Input
type) and any output value is placed in the variable (Input/Output or
Output type).

Incl. Empty

This column is enabled for optional parameters. With an optional
parameter, you can specify whether or not to include this parameter in a
Call Method action. Only COM objects can have optional parameters.

It specifies whether a value is passed or not if the Value field evaluates to
empty at execution time.

• If the parameter is an optional parameter, you can select either True
or False as the value.
• True

You ask Witango to always use this parameter. Complete the
information in the Type, Format, and Value columns.

• False
389389

Completing the Call Method Action

390390
You ask Witango to use this parameter only when the value
specified is non-empty.

• If the parameter is not an optional parameter (that is, you are
required to use this parameter) the value in this column is indicated
as True. This value is hard coded; you cannot change it. Complete
the information in the Type, Format, and Value columns.

Using the Objects Loop Action
Using the Objects Loop Action
In some cases, a method call returns several items collected into an
object, called a collection object. The purpose of a collection object is to
allow you to work with all the items or selected items in the collection,
one by one, in a loop action.
For more information, see
“Repeating a Set of Actions
(Loop Actions)” on
page 288.
The Objects Loop action is a loop action which works similarly to the For
Loop action. You can have nested Objects Loop actions (an Objects Loop
action within an Objects Loop action).

The Objects Loop action can work with appropriate objects retrieved
from COM objects and JavaBeans.
Example of
Using an
Objects Loop
Suppose there is a group of related objects that allow you to look up and
present all the product names in a product category. This involves the
following objects:

• ProductCollection

This is a collection object containing product objects.

• ProductCategory

This is an object which allows you to access the collection. This
object contains a method, getProduct, which puts the result into a
variable, x, assigned to ProductCollection.

• Product

This is an object which contains all the attributes of an individual
product. This object contains a method, getName.

You first create an object instance of the ProductCategory object,
using a Create Object Instance action. Then use a Call Method action to
call getProduct and to put the result of this method—the
ProductCollection collection object—into variable x.
See an example of the
Objects Loop action dialog
box on page 393.
Now you start an Objects Loop action to work with the items in the
collection object, which is the result of the aforementioned Call Method
action. This Objects Loop action uses the variable x to refer to the
ProductCollection collection object and the variable y to refer to
each individual item in the collection.

Place a Call Method action inside the Objects Loop action, to call
getName, so that it to looks up and presents the items in
ProductCollection. Use the variable y as the object instance variable
to refer to the current item in the collection.
391391

Using the Objects Loop Action

392392
The following diagram shows how you might incorporate a sequence of
actions in you Witango application file to use an objects loop:

Product.taf
Create Object Instance
- Object=ProductCategory
- Object Instance Variable=MyInstance
Call Method
- Method=ProductCategory.getProduct
- Object Instance Variable=MyInstance
- Result=ProductCollection
- Variable for Result=x
Objects Loop
- Collection Object=x
- Item Variable=y

Call Method
- Method=Product.getName
- Object Instance Variable=y

Partial application file

Objects loop for the
"ProductCollection"
collection object
Using an
Objects Loop
Using an objects loop requires a sequence of actions, generally including
at least a Create Object Instance action, a Call Method action, and an
Objects Loop action. The precise requirements depend on the collection
object you use and what you want to do with it. Refer to the
documentation from your object vendor for details.
For more information, see
“Using Available Object
Instances” on page 350
The heart of the sequence is the Objects Loop action, which works on a
collection object. Typically you get a collection object as the result or an
output from a Call Method action, which in turn needs to use an available
object instance.
For more information, see
“Adding a Create Object
Instance Action” on
page 377 and .
The use of Create Object Instance action and Call Method action is
covered in other sections. This section focuses on using the Objects
Loop action.

To specify an objects loop for a collection object

1 Open the Witango application file or Witango class file that you want
to use an objects loop.

Using the Objects Loop Action
2 Drag the Objects Loop action icon from the Actions bar to the
location you want in your application file or Witango class file.

Note The Objects Loop action must be placed in a logical sequence
after a collection object has become available. Typically, you get a
collection object as the result or an output from a Call Method action.
For an illustration of how this works, see Example of Using an Objects
Loop on page 391.

The Objects Loop action dialog box appears:

3 Complete the information in the Objects Loop action dialog box:

• Collection Object

The name and scope must be identical to those of the variable
assigned to the result or an output (a collection object) from the
Call Method action (or the <@CALLMETHOD> meta tag) to which
this Objects Loop action refer.

• Item Variable

This is the variable to which the current item in the collection is
assigned on each iteration of the loop. When the counter
advances, the same variable name is used for the next item in the
collection.

• Limits

Enter the numbers—or meta tags that evaluate to numbers—
which represent the items that you want the loop action to start
and stop with.

If the value is something other than a number, Witango ignores it
and uses the default value (1 for start and the last item in the
collection for stop). If you leave the boxes empty, the loop action
393393

Using the Objects Loop Action

394394
covers all the items in the collection.

22
C H A P T E R T W E N T Y - T W O

Witango Class Files

Creating Your Own Witango Modular Code
Witango class files are reusable software components that you can
incorporate in Witango application files. You can create and edit Witango
class files using Witango Studio.

Witango supports the use of several types of resusable software
components—called classes or “objects”—in Witango application files.
Witango allows you to use the Witango class files that you create
yourself, along with other objects that are available from third-party
vendors.
For more information, see
“Understanding Objects in
Witango” on page 345.
This chapter assumes you are familiar with the basic concepts of using
objects in Witango. The topics covered in this chapter include:

• an introduction to Witango class files

• the benefits of using Witango class files

• creating and editing Witango class files

• using editing windows for Witango class files

• setting search paths for Witango class files.
For more information, see
“Using Objects” on
page 361.
Once you have created your Witango class files, you can incorporate
them in your Witango application files.
395

What are Witango Class Files?

39
What are Witango Class Files?
3966
Witango class files are reusable software components that you can create
and edit using Witango Studio.
For more information, see
“Understanding Objects in
Witango” on page 345.
Witango supports several types of reusable software components
available on the market, such as COM objects and JavaBeans. These
software components are, strictly speaking, called classes. A class is a
category of objects; it defines all the common properties of the different
objects that belong to it. In industry, however, the term “object” is often
used loosely. What is called an object, such as a COM object, may in fact
be a class or a category of objects.

A Witango class file is a class or “object” you can use in Witango. You can
use a Witango class file in Witango in the same way that you use a COM
object or a JavaBean. The main difference is that, with Witango class files,
you can create and edit your own reusable software components using
Witango Studio.

Because Witango class files are treated like COM objects and JavaBeans
in Witango, they are generally called “objects” in the User’s Guide.

Example

To see how you might use a Witango class file, refer to Example 1:
Investment Scenarios on page 351. You are looking for an object to
organize your report in the invest.taf application file. Suppose
you cannot find a suitable object from a third-party vendor—you may
want to create your own Witango class file.

After you have created the Report Organizer as a Witango class file,
you can incorporate it in invest.taf.

Benefits of Using Witango Class Files
Benefits of Using Witango Class Files
When you use Witango class files in your Witango application files, you
obtain a number of benefits:

• Because Witango class files work like other objects—such as COM
objects and JavaBeans—in Witango application files, the benefits you
get from using these objects also apply when you use Witango class
files.

• You do not have to rely exclusively on third-party object vendors. If
the objects available on the market do not suit your purpose, you can
create your own.

• Any Witango class file you develop is potentially reusable in future
Witango application files. You can create a library of Witango class
files that you and others can use.
• In addition to the Witango class files that you develop, you can draw
on the Witango class files that others have developed.

• You do not have to know any of the programming languages—such as
C++, Visual Basic, or Java—commonly used for writing objects.
Developing a Witango class file is similar to developing a Witango
application file, a process you are already familiar with.

• You can mix and match different object types supported by Witango:
objects available from many vendors and objects you develop
yourself (that is, Witango class files) can be used in the same
Witango application file.

• You may modify the source code inside Witango class files to
improve their design. As long as you do not change the interface—
which is normal practice—you can benefit from the improved design,
without having to alter the code in your Witango application files.

• You can use Witango class files as “wrappers” for COM objects and
JavaBeans to simplify calling them from your application files. One
example is to replace several COM object or JavaBean method calls
with a single Witango class file method call. Another example of
using a Witango class file as a “wrapper” is to simplify the parameter
list of a COM object or JavaBean method by exposing in a Witango
class file only those parameters that you normally change and hard-
coding the others.
397397

Benefits of Using Witango Class Files

39
When to
Develop and
Use Witango
Class Files
3988
If the objects available from third-party vendors suit your purpose, it is
probably easiest to use them.

If you plan to reuse sections of your Witango application file in future
application files, it may be more efficient to develop Witango class files
and then use them in your current and future application files.

In general, Witango code that you often call by using a Branch action with
the return option set is a good candidate for encapsulation into a
Witango class file method.

You can incorporate Witango class files in any Witango application file, in
the same way you incorporate other objects that Witango supports.

Using Witango Class Files
Using Witango Class Files
There are two main steps in using Witango class files:

1 Creating and editing Witango class files

• If the Witango class file you plan to use is existing—that is, it has
been created by you or by others—go directly to step 2.
For more information, see
“To create a Witango class
file” on page 408.
• If the Witango class file you plan to use does not exist, you have
to create it first. Then go to step 2.
For more information, see
“Editing a Witango Class
File” on page 409.
• If an existing Witango class file does not meet your precise
needs, you can modify it. Then go to step 2.

2 Incorporating Witango class files in Witango application files

Once created, Witango class files can be incorporated in Witango
application files, just like other objects. Witango class files are treated
as “black boxes”; that is, as a user of Witango class files, you do not
need to know the source code inside the Witango class files. You
simply interact with a Witango class file through its interface, that is,
its methods.
For more information, see
“Overview of Using
Objects in Witango” on
page 364.
Using Witango class files in Witango is similar to using other objects
in Witango.
399399

Developing Witango Class Files

40
Developing Witango Class Files
4000
Two windows in Witango Studio are specially designed for developing
Witango class files:

• The Witango class file window is the main environment in which you
develop Witango class files. It allows you to set up the methods for
each Witango class file and specify actions for each method.

• The Method Definition window allows you to set up the return value
and parameters for each method.

This section focuses on the features available in the Witango class file
window and Method Definition window.
For more information, see
“Creating a Witango Class
File” on page 408 and
Editing a Witango Class File
on page 409.
The other sections in this chapter give you the procedures for creating
and editing Witango class files.

To open the Witango class file window

Do one of the following:

• New Witango class file: From the File menu, choose New, then
choose Witango Class File.

• Existing Witango class file: From the File menu, choose Open, then
locate and open the Witango class file you want.

The Witango class file window consists of three panes: Method List pane,
Instance Variables List pane, and Method Editing pane.

The following is an example of the Witango class file window:

Instance Variables List

Method List pane Method Editing pane

Developing Witango Class Files
Method List
Pane
The Method List shows the names of all the methods in the Witango class
file. Two types of methods are shown in the list: user-created methods
and default methods.

User-Created Methods

These methods constitute the Witango class file’s interface when you
incorporate the Witango class file into your Witango application file.
When you use a Call Method action, you are specifying one of the user-
created methods on this list.
For more information, see
“Editing a Witango Class
File” on page 409.
You can create as many methods for a Witango class file as you want. You
can delete the user-created methods that you no longer need. You can
also change the order in which the methods appear in the list.

Default Methods

The two default methods in the list are On_Create and On_Destroy.

• On_Create

When Witango Server creates an instance of the Witango class file,
it automatically calls the On_Create method before any further
processing.

The On_Create method is initially empty. When you select this
method and specify actions in the Method Editing pane, you direct
Witango Server to execute these actions prior to the creation of the
instance. An example of using the On_Create method is to initialize
certain instance variables.

The use of the On_Create method is optional. If you do not want to
use it, just leave the Method Editing pane empty.

• On_Destroy

When Witango Server destroys an instance, it automatically calls the
On_Destroy method just before it proceeds with the destruction.

The On_Destroy method is initially empty. When you select this
method and specify actions in the Method Editing pane, you direct
Witango Server to execute these actions prior to the destruction of
the instance. An example of using the On_Destroy method is to
perform certain clean up activities.

The use of the On_Destroy method is optional. If you do not want
to use it, just leave the Method Editing pane empty.

The default methods differ from user-created methods as follows:

• you cannot delete them
401401

Developing Witango Class Files

402402
• they have no parameters or return values

• you cannot edit the parameter list

• they are invisible when you view Witango class file information in the
Objects Workspace

• you cannot call them using Call Method actions or the
<@CALLMETHOD> meta tag.
Method Editing
Pane
When you select a method on the Method List, the Method Editing pane
shows the actions included in this method. (The root item in the Method
Editing pane is the method currently selected on the Method List.)

Because a method of a Witango class file is simply a reusable software
component that you insert into a Witango application file, the content of
a method looks like and behaves like part of the content of a Witango
application file.
For more information, see
“Witango Studio Basics” on
page 5.
Indeed, the Method Editing pane resembles the Witango application file
window. In most cases, you use the Method Editing pane similarly to the
way you use the Witango application file window: you drag actions from
the Action bar into the pane and edit them.

You can copy an action or a series of actions within the same Witango
class file and between Witango class files. You can also copy actions to
and from Witango application files. Other than a few exceptions, copying
actions involving Witango class files is similar to copying actions in
Witango application files.

Differences from Witango application files

Because Witango class files and Witango application files do not perform
identical functions, there are some differences between Witango class
files and Witango application files that you should be aware of:

• Executing a Witango class file. You cannot execute or branch to
a Witango class file directly. All access to Witango class file methods
is via Call Method actions or <@CALLMETHOD> meta tags and
executed in a Witango application file.

• Branch action. The Branch action, when used in a method, is
limited to branching within the current method. If you copy from a
Witango application file to a Witango class file, Witango Studio does
not allow you to copy a Branch action that branches to a location
outside the current method.
For more information, see
“Return Value” on
page 406.
• Return value/Results HTML. Each method call has its own
private Results HTML, which is empty at the start of its execution.

Developing Witango Class Files
Like Witango application files, the Results HTML associated with
each action is accumulated as execution progresses. Unlike Witango
application files, however, the Results HTML of a method is not
automatically appended to the Results HTML of the Witango
application file. You may return the Results HTML as the method’s
return value or in an output parameter (using <@RESULTS>). To
append the method’s Results HTML to the calling Witango
application files, you need to include the variable you stored it in the
Witango application files’s Results HTML, for example, <@VAR
NAME="myresults" ENCODING="none">.

• Push attribute. The Push attribute is disabled for actions inside a
method. If you copy from a Witango application file to Witango class
file, Witango Studio turns off the Push attribute automatically.

• Assign action. The Assign action in a Witango class file allows you
to set variables in the instance and method scopes, in addition to
those scopes available to Witango application files.

When copying Assign actions from a Witango class file to a Witango
application file, all the variables are copied; however, the scopes of
instance and method variables are changed from instance and
method to default.
• Meta tags to set and get parameters. Within a Witango class
file method, there are two meta tags available (<@GETPARAM> and
<@SETPARAM>) which set and return the value of a named
parameter. The tags get and set the named method variables, with
the added benefit of error checking; that is, if the variable specified is
not a parameter, an error occurs.
• Recursion. You can make recursive calls to a method. The
returnDepth configuration variable tracks recursive calls to
methods as well as Branches, and the maxActions configuration
variable includes actions in methods in its count of the total
executed.

• Error handling. When an error occurs in a Witango class file
method action:

• If the action has Error HTML, Witango processes it and stops
method processing.

• If the method's return value is the Results HTML, Witango
returns the Error HTML.

• If the action has no Error HTML, Witango passes the error up
the calling chain to the original Witango application file.
403403

Developing Witango Class Files

404404
Nested Method Calls

When you specify actions for a method, you can include Call Method
actions involving other methods. The calling of one method from another
is a nested method call.

Assuming method A calls method B, the following issues affect the nested
method call:

• The instance and method variables in method A become unavailable
until Witango Server has completed the execution of method B and
returns to method A.

The exception is that, if method A and method B are part of the
same instance, the instance variables are shared.

• Assignments to configuration variables in the instance and method
scopes of method A have no effect on method B.

If an assignment is made to method$dateFormat in method A, the
method$dateFormat in method B remains empty until set
explicitly. Further, the scope of method$dateFormat in method B is
determined by the default scoping rules, not the scope set in
method A.

Self-Referencing

When you specify actions for a method, you can include a Call Method
action that refers to the current Witango class file. In this case, the object
instance variable for this self-referencing Call Method action is set
automatically: the scope is Method and the name is this.
Instance
Variables List
Pane
The Instance Variables List shows the names of all the unique instance
variables for the Witango class file. All instance variables in the list are
available to all the methods in the Witango class file.
Instance variables (variables in the instance scope) are available only in
Witango class files; they are not available in Witango application files.

The Instance Variables List in a new Witango class file is empty. It is
populated automatically if you assign instance variables in the Witango
class file by doing one of the following:

• using an Assign action

• using the Put result into variable section of a Call Method action
window

• using the Out or In/Out parameters of the Parameter List of a Call
Method action window.

Developing Witango Class Files
An item that appears in this list may be dragged into an Assign editing
window or Results HTML window, automatically assigning the instance
variable in that Assign action or creating a snippet with the <@ASSIGN>
meta tag in that Results HTML.

When you delete all references to an instance variable in all the Assign
actions of a Witango class file, this instance variable automatically
disappears from the Instance Variables List.

To use an instance variable in an assignment

1 Open an Assign editing window or a Results HTML window in the
Method Editing pane of the Witango class file window.

2 Drag an item from the Instance Variables List into the Assign editing
window or Results HTML window.

Tip When you click in the Witango class files window, the Witango
class files window is brought to the front, which may hide the Assign
editing window or Results HTML window. Rearrange the windows so
that both are visible at the same time.

A new assignment is added to that window.
Method
Definition
Window
The Method Definition window contains important information about a
Witango class file method. It allows you to view and edit this information.

To open the Method Definition window
For more information, see
“To open the Witango class
file window” on page 400.
1 Open the Witango class file window.

2 Do one of the following:

• In the Method List pane, double-click a user-created method.

• In the Method List pane, select a user-created method, right-
click it, and choose Open from the context-sensitive menu that
appears.

• From the Method List pane, select a user-created method. Then,
double-click the root item in the Method Editing pane.

• From the Method List pane, select a user-created method. Then
right-click the root item in the Method Editing pane, and choose
Open from the context-sensitive menu that appears.

NoteDefault methods have no return values or parameters.
405405

Developing Witango Class Files

406406
The Method Definition window consists of the return value section and
the parameter list for a method.

The following is an example of the Method Definition window:

Return Value

You return either the Results HTML or the contents of a method
variable, by choosing one of the options.

If you select Method Variable:

• The default variable name is returnValue.

• The default data type for this variable is Any. You can select the data
type you want from the Type drop-down menu. When returning
results, Witango generates an error if the value is not of the type
specified here.

Parameter List

The Parameter List is where you define the interface to a method of a
Witango class file.

A parameter allows a Witango application file to exchange data with a
Witango class file. The exchange can be an input (passing data from the
application file to the Witango class file), output (passing data from the
object to the application file), or input/output (passing data from the
application file to the object and putting the new value from the object in
the original variable in the application file).

Developing Witango Class Files
For more information, see
“Parameter List” on
page 387.
The Parameter List for a method of a Witango class file resembles the
Parameter List in the Call Method action window. When you perform a
Call Method action on a Witango class file, the information from the
Parameter List in the Method Definition window is transferred to the
Parameter List in the Call Method action window.

The Parameter List for a Witango class file consists of four columns: In/
Out, Name, Type, and Comments.

• In/Out

This column shows whether a parameter is an input (In), output
(Out), or input/output (In/Out) parameter.
The following icons are used:

input parameter

output parameter

input/output parameter.

When you click the In/Out column of a parameter, you see a
drop-down menu consisting of the three possible values. Select the
one you want to use.

• Name

This column shows the parameter names.
.
 Assign a unique name to each parameter. It is best to use friendly and
informative names. The rules for assigning parameter names are the
same as those for naming variables.

• Type
This column shows the data type for each parameter. You can accept
the default, which is Text, or select one of the following from the
drop-down menu: Any, Array, Object, and DOM.

If Any is selected, any type of value is allowed; otherwise, Witango
Server checks the input value for the parameter when it starts to
execute a method. If the value does not match the specified type,
Witango Server generates an error.

• Comments

This column allows you to enter your optional comments for each
parameter.
407407

Creating a Witango Class File

40
Creating a Witango Class File
4088
To create a Witango class file

1 From the File menu, choose New, then choose Witango
Application File, or, on the main toolbar, click the New Witango
Class File icon.

The Witango class file window opens. This window consists of
three panes: Method List pane, Instance Variables List pane, and
Method Editing pane.

An example of the Witango class file window is shown on page
400.
For more information, see
“Default Methods” on
page 401.
2 If you want to use the On_Create method, select On_Create from
the Method List. In the Method Editing pane, specify the actions
you want to include in this method.

3 If you want to use the On_Destroy method, select On_Destroy
from the Method List. In the Method Editing pane, specify the
actions you want to include in this method.
For more information, see
“Adding a New Method”
on page 410.
4 Add a method to the Method List.

The new method is automatically selected and becomes the root
item in the Method Editing pane.
For more information, see
“Method Editing Pane” on
page 402.
5 In the Method Editing pane, specify the actions you want to include in
this method.

6 Double-click the root item (that is, the selected method) in the
Method Editing pane to open the Method Definition window.
For more information, see
“Method Definition
Window” on page 405.
7 Complete the information in the Method Definition window.

8 Repeat steps 4 to 7 until you have added all the methods you want.

9 Save the Witango class file.
For more information, see
“Saving a Witango Application
File or Witango Class File as
Run-Only” on page 59.
Tip If you want, you can save the Witango class file as run-only. This
feature works in a way similar to that of the Witango application file.

Editing a Witango Class File
Editing a Witango Class File
There is a major difference between editing a Witango class file before and
after it is incorporated into a Witango application file, through a Call
Method action. Before you use a Witango class file in a Witango
application file, you can edit it any way you want to suit your purpose.
After you include a Witango class file in a Witango application file, you
are restricted in what you can do with the interface of the Witango class
file.

You can think of the interface of a Witango class file as a contract
between the Witango class file and the Witango application file that uses
the Witango class file. Once the contract is in effect, you can no longer
change the terms of the contract.

When you incorporate a Witango class file into a Witango application file,
the latter treats the former as a “black box” and interacts with it only
through its interface. Both the Witango class file and the application file
honor the interface like a contract. Thus, you have to be cautious when
altering the interface of a Witango class file once a Call Method action is
used on that Witango class file.

CautionDo not alter the parameters or variables of a method, or the
names of the Witango class file and the method, after using a Call
Method action on that method. Witango Server cannot execute the
Call Method action when these elements are altered; it returns an
error.

You can generally add new methods, parameters and variables without
affecting existing Call Method actions. In many cases, you can modify the
actions within a method, as long as you do not change the existing
parameters and variables.

The following windows and dialog box are used for editing Witango class
files:

• Witango class file window. This is where you do most of the
editing, with the exception of return values and parameters.

• Method Definition window. This is where you edit the return
value and parameters for each method.

• Method Properties dialog box. This is where you edit comments
of a method.

All the procedures in this section require you to start with an open
Witango class file window. To open a Witango class file window, choose
409409

Editing a Witango Class File

410410
Open from the File menu, then locate and open the Witango class file
you want to edit.
Adding a New
Method
To add a new method

1 Do one of the following:

• From the Edit menu, select New Method.

• Right-click anywhere in the Method List pane and choose New
Method from the context-sensitive menu that appears.

The new method appears at the bottom of the Method List. The
default name is new_method.

NoteWitango resolves name conflicts automatically. If new_method
already exists, the name becomes new_methodX, where X is an
integer.

2 If you want, change the name of the method to one that is more
meaningful.

Tip You can also drag the method to anywhere you want in the list.
The only restriction is that On_Create and On_Destroy are always
at the top of the list.
Renaming a
Method
The default name of a method is new_method or new_methodX, where
X is an integer. It is recommended that you change the method name to
one that is more meaningful.

To rename a method

1 From the Method List, select the method you want to rename.

NoteAlthough the name of a method also appears as the root item in
the Method Editing pane, you cannot change the name there.

2 Click the name of the method, or from the Edit menu, choose
Rename.

3 Type the new name.
The rules for assigning method names are the same as those for
naming variables.

Editing a Witango Class File
Deleting a
Method
You can delete a method from a Witango class file if you no longer need
it, provided that no Witango application file is including this method in its
Call Method actions.

CautionIf a Witango application file calls a method that no longer
exists, Witango Server returns an error when attempting to execute
that Call Method action.

To delete a method

1 From the Method List, select the method you want to delete.

2 Do one of the following:

• From the Edit menu, choose Delete.

• On the main toolbar, click the Delete icon.

• Press Delete.

NoteYou cannot delete the two default methods, On_Create and
On_Destroy. To prevent Witango from using either of these default
methods, delete all its actions.

3 When a dialog box appears, asking you to confirm the deletion,
choose OK.
Copying a
Method
You may want to create a method that performs a task similar to one
performed by an existing method in the current Witango class file or
another Witango class file. Instead of having to re-create the method—
along with all its actions and parameters—you can copy an existing
method to a new location, and then modify the newly created method.

To copy a method

1 From the Method List, select the method you want to copy.

2 Do one of the following:

• To copy to the same Witango class file, press Ctrl and drag the
method to the location you want on the same Method List.

• To copy to a different Witango class file, drag the method to the
location you want in the Method List of that Witango class file.

Tip Alternatively, you can copy and paste the method using the Edit
commands. Edit commands are available from the Witango Studio Edit
411411

Editing a Witango Class File

412412
menu and from the context-sensitive menu.
For more information, see
“Renaming a Method” on
page 410.
Witango resolves name conflicts automatically. If you want,
change the name of the new method to one that is more
meaningful to you.
For more information, see
Modifying a
Methodpage 412 and
Setting Return
Values and
Parameterspage 412
on this page.
3 Where appropriate, edit the actions in the new method (in the
Method Editing pane of the Witango class file window) and edit the
return value and parameters (in the Method Definition window) for
the new method.
Modifying a
Method
To modify the actions in a method

1 From the Method List, select the method you want to modify.
For more information, see
“Method Editing Pane” on
page 402.
2 Edit the actions in the Method Editing pane, similar to the way you
edit a Witango application file.
Setting Return
Values and
Parameters
For each selected method, you can specify where you want Witango
Server to put the return value; you can also insert, delete, or edit its
parameters.
For more information, see
“Method Definition
Window” on page 405.
In all cases, open the Method Definition window first.

To assign a return value

1 Select either Results HTML or Method Variable, using the
appropriate radio button.

2 If you select Method Variable, enter a name for this variable (the
default is returnValue), and select the data type for this variable
from the Type drop-down menu (the default is Any).

To add a parameter

1 Right-click anywhere on the Parameter List and choose Insert from
the context-sensitive menu that appears.
For more information, see
“To edit a parameter” on
page 413.
2 Enter the required information in the new parameter.

To delete a parameter

1 Right-click the parameter you want to delete. (You can select more
than one parameter for deletion by pressingΧΤΡΛ or ΣΗΙΦΤ, and
then right-click.)

2 Choose Delete from the context-sensitive menu that appears.

Editing a Witango Class File
To edit a parameter

1 Click in the In/Out column of the parameter you want to edit. Select
In, Out, or In/out from the drop-down menu that appears.

2 Click in the Name column of the same parameter and edit the
parameter name.

3 Click in the Type column of the same parameter. Select the Witango
data type you want to use, from the drop-down menu that appears. If
you want the parameter to accept all Witango data types, select Any.

4 If you want, edit the comments in the Comments column.

5 Repeat steps 1 to 4, for each parameter you want to edit.

Getting and Setting Parameters Within a Witango Class
File Method

Inside a method, you must get the values of parameters and set the values
of parameters, if your method uses them.

To get parameter values within a Witango class file method

Do one of the following:

• Use <@GETPARAM NAME=myparam> to return the value.
<@GETPARAM> retrieves the value of a parameter within a Witango
class file. This tag is similar to <@VAR>, but performs error checking
to ensure that only parameters in the current method can be
retrieved.

• Use <@VAR NAME=myparam SCOPE=method> to return the value.

Parameters are always method variables.

To set parameter values within a Witango class file method

Do one of the following:

• Use <@SETPARAM NAME=myparam VALUE=myvalue>.
<@SETPARAM> sets the value of a parameter within a Witango class
file. This tag is similar to <@ASSIGN>, but performs error checking to
ensure that only Out and In/Out parameters in the current method
can be set.

• Use <@ASSIGN NAME=myparam SCOPE=method
VALUE=myvalue> to set the value.
413413

Editing a Witango Class File

41
For more information, see
“Assigning Variables With
the Assign Action” on
page 156.
4144
• Use the Assign action to set a parameter (method scope).

Parameters are always method variables.
Method
Properties
The Method Properties dialog box displays the name of the method you
selected. It allows you to enter or edit comments on this method.

To view method properties

1 Select a method (either the name on the Method List or the root
item in the Method Editing pane).

2 Do one of the following:

• From the Windows menu, choose Properties.

• Right-click the name of the method and choose Properties
from the context-sensitive menu that appears.

The following is an example of the Method Properties dialog box:

Debugging Methods
Debugging Methods
This feature allows you to see useful information about the execution of a
method. The debug mode applies to an entire Witango class file, not a
particular method or a particular action within a method.
For more information, see
“Debugging Files” on
page 61.
In general, debugging a method works in a way similar to debugging a
Witango application file. The following characteristics are specific to
debugging methods:

• When you enable or disable the debug mode for any method in a
Witango class file, it applies to all the methods in the Witango class
file.

• The debug mode for a Witango class file operates independently
from the debug mode for an application file. If an application file
includes a method from a Witango class file and you want to debug
both the application file and the method, you have to enable the
debug mode in both files.

To set the debug mode in a Witango class file

Do one of the following:

• From the Attributes menu, choose Debug File.

• Right-click the Method Editing pane and choose Debug File from
the context-sensitive menu that appears.

• Type CTRL-D.

When the debug mode is enabled, the debug icon appears in the
Attributes column of the Method Editing pane. You can repeat this
procedure to alternate between enabling and disabling the mode.
415415

Setting Search Paths for Witango Class Files

41
Setting Search Paths for Witango Class Files
4166
Setting search paths for Witango Studio and Witango Server are two
separate tasks. You need to do both.
Witango Studio
 The list of search paths for Witango class files is stored on your machine
and displayed in the Objects section of the Preferences dialog box.
Witango uses this list to locate Witango class files when a Witango
application file refers to them.

Adding Paths to the List

For more information, see
“Objects” on page 137.
When you add a Witango class file to the Objects Workspace, Witango
Studio automatically adds the absolute path to that object to the list of
search paths. You can view this list in the Objects section of the
Preferences dialog box.

In a team development environment, there may be Witango class file
libraries on other machines that you want to use; you can manually add
the paths to these libraries to your list.

Setting the Search Order

When searching for a Witango class file, Witango Studio starts from the
path at the top of the list and moves down the list. Because Witango
identifies Witango class files by names, the search stops as soon as
Witango finds the first Witango class file with that name.

If you have more than one version of a Witango class file in your system,
you may want to order the paths so that Witango finds the one you want
to use for a particular purpose. Re-ordering of the paths is important if
you want to use one version for development and another for
deployment.
Witango Server
 When locating Witango class files in Witango Server, a configuration
variable called TCFSearchPath defines the search path for Witango
application files. This variable is valid in all scopes: local, user, application,
cookie, domain, and system.
The TCFSearchPath configuration variable contains a semi-colon
separated list of web root relative paths in which to look for the Witango
class files. Witango Server’s treatment of this configuration variable is the
same as all others; that is, it uses the narrowest scope in which the
variable is first defined to do its search.

Setting Search Paths for Witango Class Files
Because Witango class files are stored on the Web server, the paths in
the TCFSearchPath configuration variable are always relative to the
Web root, as mentioned. For example, a valid TCFSearchPath is:

TCFSEARCHPATH=MyApp/TCFs/Logon/;MyApp/TCFs/
GuestBook/;
FoneList/Objects/;DougApp/OtherStuff/MyObjects/

If the object is not found in the Witango class file search path, Witango
Server tries to find the object in the Web server document root folder as
a last resort.
417417

Setting Search Paths for Witango Class Files

418418

S E C T I O N V I

Witango Compiler

How to Configure Witango Server
This section contains details on the operation of the Witango compiler
operations which are available in Witango Studio Professional Edition.
This functionality has been built to allow Witango applications to be
deployed to J2EE environments. This section contains a single chapter:

• Chapter 23, Compiling Witango Application Files on page 421.

420420

23
C H A P T E R T W E N T Y - T H R E E

Compiling Witango
Application Files

Compiling taf files for deployment on J2EE
About Witango
Compiler For
Java
Witango Compiler For Java compiles Witango application files into java
servlets which can be executed on J2EE compliant application servers.

Witango Compiler For Java is written in java language and consists of two
parts:

• A compiler which is contained by Witango Studio 5.5 Professional. It
can compile Witango application files (.taf files and .tcf files) into java
servlet files (.class files).

• A runtime library which resides in the J2EE compliant application
server you choose. It can execute compiled java servlet files.

This chapter takes the user through the process of syntax checking the
Witango application file (taf and tcf files), and compiling a Witango web
application for deployment on J2EE servers.
Before you
start
Before you will be able to compile your Witango Application Files you
will need to have the Java 2 Runtime Environment (at least JVM 1.4.1)
installed on your machine. This can be downloaded from http://
java.sun.com. For more information, see “To create an JDBC data
source” on page 89.
421

The Compilation Process

42
The Compilation Process
4222
The compilation process works around 2 main steps being conducted on
a source directory which contains a Witango web application. The steps
are:

1 Syntax Checking - which checks all the taf and tcf files which
are located in the specified source directory (and sub-directories
contained therein) to ensure that all Witango meta tags exhibit
correct syntax.

2 Compiling for J2EE - which takes all the taf and tcf files that are
located in the specified source directory (and sub-directories
contained therein) and compiles them into java class files and
javabeans. The files that are created are located in a destination
directory as specified by the user.

Note Step 2 includes step 1, however, it is recommended that as a
matter of good practice, step 1 is performed prior to step 2.

Syntax Checking
Syntax Checking
Witango Studio Professional has syntax checking functionality. This
function checks all the taf and tcf files which are located in the
specified source directory (and sub-directories contained therein) to
ensure that all Witango meta tags exhibit correct syntax. A report is
generated for the user.

NoteWitango Syntax checking only reviews taf and tcf files in the
source directory and sub-directory, .thtml, .tml and .inc files are
NOT checked by this function.
Creating a
Syntax Check
Report
1 Select Build/Compile from the Project menu, a sub-menu of
compiling options as shown below will appear.

2 Select the Syntax Check option and the Syntax Check window will
appear:
423423

Syntax Checking

424424
3 Complete the following information in the Syntax Check Window
and select the CHECK button.

Location Information

• Source Directory

Use the BROWSE button to locate the source directory for
your syntax check. That is, the directory which contains the
taf and tcf files you wish to check.

NoteYou cannot specify just one taf file, all taf and tcf files in the
directory and sub-directories will be syntax checked.

Note If the taf or tcf files reference include files using
<@INCLUDE> or Presentation action or File action, these include files
will not be syntax checked.

• Custom Tags Directory

Use the BROWSE button to locate the directory which
contains custom meta tag definition files (.xml files). All .xml
files under this directory and sub-directories will be validated
against Witango ctags.dtd.

Syntax Checking
Report Information

• Show Information

Check this checkbox if you want the Syntax Report to show
information such as the status of the syntax check, ie, which file
it is currently working on.

• Show warnings

Check this checkbox if you want the Syntax Report to show
warnings.

• Show Errors

Check this checkbox if you want the Syntax Report to show
errors.

NoteThese checkboxes will not prevent you accessing the information
once in the syntax report, they only affect which part of the report is
immediately visible to the user.
The default values for the
settings can be customised
in user preferences.For
more information, see
“Compile” on page 138.
4 The Syntax Check window as pictured below will appear.

The above report shows a Syntax Report which has been run
with the error and warning reporting option checkboxes
checked. The Report can also be filtered to assist the processing

Report
Option
Buttons
425425

Syntax Checking

426426
of the results by selecting the appropriate report option button,
see the above picture.
Filtering the
Syntax Check
Report
The Syntax Check Report can be filtered to show any combination of the
three reporting options available.

To filter the Syntax Check Report, the user simply presses the Report
Option Buttons which toggle on/off the information.

The image below shows the report being filtered to show only errors:

The Syntax Report can be similarly filtered on errors and warnings, or,
any combination of the three reporting options.
Understanding
a Syntax Check
Report
The Syntax Report lists a series of entries detected in the Syntax Check
followed by an overall report summary.

Syntax Checking
Report Entries

Report Entries have the following information contained in them:

• An icon which graphically represents to the user the type of entry
this is. It can be either an information entry, a warning entry or an
error entry.

• A description which outlines the issue detected by the Syntax
Checker;

• Where appropriate, a full path of the taf or tcf file to which this
entry relates.

• Where appropriate, the action where this entry issue is located, the
output option (Results HTML, No ResultsHTML or Error HTML)
and the line number in that output HTML which causes the issue.

For entry in the example pictured below:

The error would be located on line 2 of the Results HTML of the action
Invalid Funcion in search.taf.

Note Some entries will not be able to be tied to a specific action, when
this happens, no information relating to line number or action will
appear.

The entry in the example pictured below demonstrates that some errors
may not be linked directly to an action and will therefore not include
specific location information.

Icon

Action

Line of Output

Output

Description

File
427427

Syntax Checking

428428
Overall Summary Report

The report is finished with an overall summary at the end, this summary
briefly states the outcome of the Syntax Check. This summary identifies:

Status of the Syntax Check

• Successful: it is considered that the Syntax Check was successful
and no errors or warnings were encountered.

• Successful with warnings: it is considered that the Syntax Check
was successful and no errors were encountered. However issues
were encountered which may cause execution time errors.

• Unsuccessful: it is considered that the Syntax Check was
unsuccessful and issues were encountered which will definitely cause
errors upon execution.

Summary of the Syntax Check

• count on the number of errors and the number of warnings
detected.

For example, in the entry pictured below:
Correcting
Issues located
in a Syntax
Check Report
Where a syntax issue is located in the output HTML of an action, the
syntax report will identify the location of the issue. For more information,
see “Understanding a Syntax Check Report” on page 426. In these cases
the Syntax Check Report allows the user to double-click on an issue to
open the corresponding taf or tcf file at the location of the issue.

Syntax Checking
The image below shows an error which has been selected. By double
clicking on this error Witango will open the associated taf file at put the
cursor at Line 1 of the Results HTML screen of action Redirect.

Double
Click
Here
Rechecking the
Syntax
Once a syntax issue has been fixed and saved within your taf or tcf file
you can simply push the start button to execute the Syntax Check again.
429429

Syntax Checking

430430

Start Button

Compiling you Witango Application
Compiling you Witango Application
Witango Studio Professional has the functionality to compile your
Witango applications for deployment on J2EE compliant web servers.
This function compiles all the taf and tcf files which are located in the
specified source directory (and sub-directories contained therein) into
java servlets which can be executed on J2EE compliant web servers which
have the Witango runtime library installed.
Executing a
compile for
J2EE
1 Select Build/Compile from the Project menu, a sub-menu of
compiling options as shown below will appear.

2 Select the Compile for J2EE option and the Compile for J2EE
window will appear.
431431

Compiling you Witango Application

432432
3 Complete the following information in the Compile for J2EE Window
and select the COMPILE button.

Location Information

• Source Directory

Use the BROWSE button to locate the source directory you
wish to compile to J2EE. That is, the directory which contains
the taf and tcf files you wish to compile.

NoteYou cannot specify just one taf/tcf file, all taf/tcf files in
the directory and subdirectories will be compiled.

Note If the taf or tcf files reference include files (images, .html,
.thtml, .inc .tml etc), these files will NOT be included in the compile.
They will be included at execution time, and will therefore need to be
manually deployed to the deployment directory before execution.

• Destination Directory

Use the BROWSE button to locate the destination directory
you wish Witango to place the resulting servlets in. If such a
directory does not exist it will be created on behalf of the
current user.

• Custom Tags Directory

Compiling you Witango Application
Use the BROWSE button to locate the directory which
contains definition files (.xml files) of any custom meta tags
which may be referenced in the taf and tcf files you are
compiling.

Report Information - prior to the source being compiled a
syntax check is run against them. This syntax check results in a
syntax report. The syntax report can be filtered to show any
combination of general information, warnings and errors.

Show Information

• Check this checkbox if you want the Syntax Report to show
information such as the status of the syntax check, ie, which
file it is currently working on.

Show warnings

• Check this checkbox if you want the Syntax Report to show
warnings. Warnings are issues which will not stop the
compile process but may cause issues when the resulting
servlets are executed.

Show Errors

• Check this checkbox if you want the Syntax Report to show
errors. Errors are issues which will definitely cause
problems during runtime, therefore, if errors are
encountered during the syntax check, the compile process
does not continue.

NoteThese checkboxes will not prevent you accessing the information
once in the syntax report, they only affect which part of the report is
immediately visible to the user.
The default values for the
settings can be customised
in user preferences.For
more information, see
“Compile” on page 138
Compile Information - the compile information settings allow
the user to customise the compile function such that.

• Compile All

Check this checkbox if you want the entire directory of source
files to be compiled. If the checkbox is not checked, then only
those files which have been modified since the last compile was
run will be compiled.

• Retain Intermediate Files

Once a successful syntax check is run on the source directory,
there are two steps which the compile facility undertakes to
generate the servlets. The first step is to take the .taf and
433433

Compiling you Witango Application

434434
.tcf files to .java files. The second step is to take the

.java files to .class files. If the user wishes to retain the

.java files, this checkbox should be checked. The more usual
approach would be to run the compile without this option
checked.
The default values for the
settings can be customised
in user preferences.For
more information, see
“Compile” on page 138.
4 The Compile for J2EE window as pictured below will appear.

You will receive a report as to whether the compile process was
successful. There are 3 possible outcomes:

1 Successful compilation - this is where no issues were
encountered and the resulting servlets will now exist in your
destination directory ready for deployment.

2 Successful compile with warnings - this is where the compile
process is complete, but issues have been flagged to the user. These
issues may result in errors when executed and should therefore be
carefully reviewed by the user. See Correcting Issues located in a
Syntax Check Reportpage 428 for more information on how to
correct these issues.

3 Unsuccessful compile - this is where the compile process was not
completed because errors were encountered in the source file which
would definitely cause runtime errors . See Correcting Issues

Compiling you Witango Application
located in a Syntax Check Reportpage 428 for more information on
how to correct these issues.
435435

Compiling you Witango Application

436436

C H A P T E R A

Glossary of Terms

An Alphabetical Reference of Common Witango and Internet Terms
action
 This is short for Witango action. Witango Studio has a suite of actions
which do many different tasks, including: getting data from or sending data
to a database, invoking external actions (such as reading and writing files
and sending email), and controlling application file execution. Actions
form the basis of an application file in Witango Studio.
applet
 A small Java program that can be embedded in an HTML page. Applets
differ from full-fledged Java applications in that they are not allowed to
access certain resources on the local computer, such as files and serial
devices, and are prohibited from communicating with most other
computers across a network. The current rule is that an applet can only
make an Internet connection to the computer from which the applet was
sent.
application
 In the software industry, an application generally means a program for
end-users. In Witango, application has specific meanings depending on the
context. See also scope, Witango application and Witango application file.
application file
 See Witango application file.
ASCII
 American Standard Code for Information Interchange
This is the de facto world-wide standard for the code numbers used by
computers to represent all the upper- and lower-case Latin letters,
numbers, punctuation, and related data. There are 128 standard ASCII
codes each of which can be represented by a seven-digit binary number.
AST
 Application-Specific Witango
An AST is a Witango Server that you can distribute with a branded
Witango application. This gives an end-user the ability to execute your
solution without having to purchase a full Witango Server for that single
437437

438438
application. All files that are accessed this way must have an AST
signature. Other Witango application files can not be run with an AST.
attribute
 In the context of an HTML window, an attribute is the Results HTML, No
Results HTML, or Error HTML. These windows allow you to enter
messages for the various outcomes.

In the context of meta tags, an attribute is a name/value pair that specifies
certain required or optional criteria.
CGI
 Common Gateway Interface
A set of rules that describes how a Web server communicates with
another piece of software, often on the same machine, and how the
other piece of software (the “CGI program”) talks to the Web server.
Any piece of software can be a CGI program if it handles input and output
according to the CGI standard.

Usually a CGI program is a small program that takes data from a Web
server and does something with it, like putting the content of a form into
an e-mail message, or turning the data into a database query.

You can often see that a CGI program is being used when “cgi-bin”
appears in a URL.
cgi-bin
 The most common name of a directory on a Web server in which CGI
programs are stored.

The “bin” part of “cgi-bin” is a shorthand for “binary”, because once
upon a time, most programs were referred to as “binaries”. In real life,
most programs found in cgi-bin directories are text files—scripts that are
executed by binaries located elsewhere on the same machine.
class
 A category of objects defined by all the common properties of the
different objects that belong to that category.
client
 A software program that is used to contact and get data from a server
software program on another computer, often across a network or the
Internet. Each client program is designed to work with one or more
specific kinds of server programs, and each server requires a specific kind
of client. A Web browser is a specific kind of client.
COM object
 Component Object Model object
Objects that conform to the COM objects specifications developed by
Microsoft. COM objects can run only on the Windows platform. Witango

Studio and Witango Server support the use of COM objects on
Windows.
configuration
variables
Special values that control aspects of Witango behavior. System variables
affect system wide settings. They apply to all users of Witango Server.
cookie
 The most common meaning of cookie on the Internet refers to a piece of
information sent by a Web server to a Web browser that the browser
software is expected to save and to send back to the Web server
whenever the Web browser makes additional requests from the Web
server.

Depending on the type of cookie used and the Web browser’s settings,
the Web browser may accept or not accept the cookie, and may save the
cookie for either a short time or a long time.

Cookies might contain login or registration information, on-line shopping
cart information, or user preferences.

When a Web server receives a request from a Web browser that
includes a cookie, the Web server is able to use the information stored in
the cookie. For example, the Web server might customize what is sent
back to the user, or keep a log of particular users’ requests.

Cookies are usually set to expire after a predetermined amount of time
and are usually saved in memory until the Web browser software is
closed down, at which time they may be saved to disk if their expire time
has not been reached.
data source
 An abstraction or description of the database that Witango Studio and
Witango Server are referencing.
data type
 In programming, a data type is a classification of data based on certain
characteristics. You normally do not have to be concerned with data
types when you develop Witango application files. However, you
encounter data types when you use objects because object vendors often
specify data requirements for using their object. Witango facilitates the
use of COM objects (Windows-only), JavaBeans, and Witango class files
with the same application file by converting the various data types to
Witango data types, whenever possible.
DCOM object
 Distributed COM object
The DCOM environment deploys COM objects on machines other than
439439

440440
the one running Witango Server. Witango supports the DCOM
environment on Windows.
document
instance
An XML document represented using DOM. Once an XML document
has been converted to a document instance, you can manipulate the
document instance using Witango meta tags.
DOM
 Document Object Model
A World Wide Web Consortium (W3C) standard for the manipulation
of structured data, including XML.

DOM, as the name implies, allows Witango developers to manipulate the
elements of a structured document (for example, XML) as if they were
objects. Developers can build document instances, navigate their
structure, and add, modify, or delete elements and content. DOM creates
a representation of an XML document that is an object tree, and gives
you the tools to create and manipulate the object tree in Witango using
Witango variables and meta tags.
domain name
 The unique name that identifies an Internet site. Domain names always
have two or more parts separated by dots. The part on the left is the
most specific, and the part on the right is the most general. A given
machine may have more than one domain name, but a given domain name
points to only one machine. For example, the domain names

example.com
training.example.com
mail.example.com

can all refer to the same machine, but each domain name can refer to no
more than one machine.

Usually, all of the machines on a given network share the right-hand
portion of their domain names (example.com in the examples above). It
is also possible for a domain name to exist but not be connected to an
actual machine. This is often done so that a group or business can have an
Internet e-mail address without having to establish a real Internet site. In
these cases, some real Internet machine must handle the mail on behalf of
the listed domain name.
DNS
 Domain Name Server
A machine on the Internet that converts (“resolves”) domain names to IP
address numbers.

DTD
 Document Type Definition
SGML and XML specifications require a DTD, which defines the structure
of the various elements that make up an XML document, and ensures
that all applications that read from and write to it do so in a consistent
way. It is, in effect, the schema of the document.
firewall
 A combination of hardware and software that separates a LAN into two
or more parts for security purposes. See also proxy server.
FTP
 File Transfer Protocol
A standard method for transferring files between machines or between a
client machine and a file server on the Internet. FTP allows a client
machine to log in to a server machine to send or retrieve files.

Within a Witango project, you can define an FTP site and deploy (upload)
files defined in your project to another computer while preserving the
hierarchy structure of your project files. You can also download files from
a remote site to replicate a project or share projects with other
developers.
gateway
 A hardware or software setup that translates between two dissimilar
protocols. For example, Prodigy has a gateway that translates between its
internal, proprietary e-mail format and Internet e-mail format. Another
meaning of gateway is to describe any mechanism for providing access to
another system, for example, AOL might be called a gateway to the
Internet.
hit
 Each time a Web server sends a file to a Web browser, it is recorded in
the Web server log file as a hit. Hits are generated for every element of a
requested page (including graphics, text and interactive items). If a page
containing two graphics is viewed by a user, three hits are recorded (one
for the page itself and one for each graphic).

Hits are often used as a rough measure of load on a Web server, such as
300,000 hits per month. Because each hit can represent anything from a
request for a tiny document (or even a request for a missing document)
all the way to a request that requires some significant extra processing
(such as a complex search request), the actual load on a machine from
one hit is almost impossible to define.
HTML
 HyperText Markup Language
The coding language used to create hypertext documents for use on the
World Wide Web. HTML looks a lot like old-fashioned typesetting code,
441441

442442
where you surround a block of text with codes that indicate how it
should appear. Additionally, in HTML you can specify that a block of text,
or a word, is linked to another file on the Internet. HTML files are meant
to be viewed using a World Wide Web client program, such as Netscape
Navigator or Microsoft Internet Explorer.
HTTP
 HyperText Transfer Protocol
The protocol for moving hypertext files across the Internet. Requires a
HTTP client program on one end (Web browser), and an HTTP server
(Web server) program on the other end. HTTP is the most important
protocol used in the World Wide Web.
HTTP header
 Header fields in HTTP requests and responses. A request header
contains information about the request and about the client itself (such as
e-mail address, Web browser type, and platform). A response header
contains information about the Web server and the HTML document
returned to the client. Headers can also contain cookies.
HTTP method
 HTTP methods are used by Web browsers to request and submit
information on the World Wide Web (WWW). Web browsers request
information from a Web server when they want to display information
(such as pages). Web browsers can submit information as well. For
example, a visitor may fill out a form on a Web site and submit this
information to the Web server. Common methods include:

• GET, which is used to retrieve a page from a Web server

• HEAD, which is used to check whether a page has been changed

• POST, which is used to submit form data.
HTTP request
 Sent by a client, typically a Web browser, to a Web server asking the Web
server to retrieve some unit of content (for example, HTML pages,
images, or files).
HTTP response
 Sent by a Web server in response to a request by a client, typically a Web
browser. For example, a Web server may return HTML pages, images,
sound files or video files to a client.
HTTP result
code
HTTP result codes indicate whether a Web transaction is successful.
Transactions occur whenever visitors request information from a Web
server and the Web server returns this information. For example, a
typical transaction occurs when a visitor clicks on a link to access a Web
page and the Web server returns that page to the visitor.

Every transaction has a result code. If the transaction is successful, the
visitor never sees the result code. If there is an error, the visitor may see
the result code, however. A common result code seen by visitors is “404
Page Not Found”. HTTP success codes begin with 2 or 3, and error
codes begin with 4 or 5.
intranet
 A private network inside a company or organization that uses the same
kinds of software that you would find on the public Internet, but that is
only for internal use.

As the Internet has become more popular many of the tools used on the
Internet are being used in private networks, for example, many
companies have Web servers that are available only to employees.
IP address
 Internet Protocol Address
A unique number consisting of four parts separated by dots, such as
207.107.95.106. Each of the four sections is a number from 0 to 255.
Every system connected to the Internet has a unique IP address. Most
people use domain names in addition to IP addresses, and the resolution
between domain names and IP addresses is handled by Domain Name
Servers.

It is difficult to use IP addresses to accurately identify visitors. IP
addresses are reused and redistributed to visitors who use Internet
Server Providers and dial-up servers to access the Internet. This is called
dynamic IP addressing. However, visitors can be recognized persistently
with cookies even if they use different IP addresses.
ISDN
 Integrated Services Digital Network
A way to move more data over existing regular phone lines. It can provide
speeds of roughly 128,000 bits per second over regular phone lines. In
practice, most people will be limited to 56,000 or 64,000 bits per second.
JAS
 Java Application Server
A JAS is an application that accepts requests from Witango to execute
Java class files, and returns the results of that execution back to Witango.
Witango comes with a JAS.
Java
 Java is a network-oriented programming language invented by Sun
Microsystems that is specifically designed for writing programs that can
be safely downloaded to your computer through the Internet and
immediately run without fear of viruses or other harm to your computer
443443

444444
or files. Using small Java programs (called applets), Web pages can include
functions such as animations, calculators, and other fancy tricks.
JavaBean
 A component technology for Java that lets developers create reusable
software objects. These objects can be shared. A database vendor can
create a Java bean to support its software, and other developers can
easily drop the bean into their own projects. You can incorporate
JavaBeans in Witango application files on all platforms.
Java class
 In Java, a type that defines the implementation of a particular kind of
object. A class definition defines instance and class variables and methods,
as well as specifying the interfaces the class implements and the
immediate superclass of the class. If the superclass is not explicitly
specified, the superclass will implicitly be Object.
JRE
 Java Runtime Environment
A type of virtual machine, a JRE allows the running of Java classes or
JavaBeans. See also JVM and virtual machine.
JVM
 Java Virtual Machine
An interface between the Java language and the hardware platform
processing the data. Once a specific platform has a JVM, it can run any
Java program. In Witango, a JVM is an environment where you can run
Java classes or JavaBeans. See also virtual machine.
link
 Any text on a Web site that can be chosen by a visitor and which causes
another document to be retrieved and displayed. Also known as a “hot
link” or “hypertext link”.
Linux
 A freely-distributed implementation of UNIX that runs on a number of
hardware platforms.
load-splitting
 Splitting a Web site amongst two or more Witango servers in order to
improve processing speed and performance as the site’s size and traffic
volume increase.

Witango is scalable; it allows you to do load-splitting without having to
alter your Witango application files. As your Web site grows, you do not
have to go through another cycle of development and testing of your
applications every time you add a Witango Server.

meta tag
 The basic component of a tag language unique to Witango Server. Meta
tags communicate with Witango Server in the same way that HTML
communicates with a Web server.
method
 The interface of an object consists of one or more methods. A method
allows you to tell the object to input data, get data, or carry out any
other action.
MIME
 Multipurpose Internet Mail Extensions
A standard for attaching non-text files to standard Internet mail
messages. Non-text files include graphics, spreadsheets, formatted word-
processor documents, sound files, and most other files.

An e-mail program is said to be MIME Compliant if it can both send and
receive files using the MIME standard.

Generally speaking, the MIME standard is a way of specifying both the
type of file being sent (for example, a Quicktime video file), and the
method that should be used to turn it back into its original form.

Besides e-mail software, the MIME standard is also universally used by
Web Servers to identify the files they are sending to Web clients. In this
way, new file formats can be accommodated simply by updating the Web
browsers’ list of pairs of MIME-types and appropriate software for
handling each type.
object
 A reusable software component. Witango supports the use of objects in
Witango application files. The use of objects can simplify the development
process and reduce development time.

Witango supports different object types:

• COM objects (Windows-only)

• JavaBeans

• Witango class files.
object instance
 When Witango Server executes a Call Method action in a Witango
application file, it creates an object instance (or simply, instance) for a
class—such as a COM object—as soon as it encounters a Call Method
action associated with that class.
ODBC
 Open Database Connectivity
A standard set by Microsoft that allows applications to communicate with
a variety of databases from different vendors. An ODBC client application
445445

446446
talks to the ODBC driver manager, which in turn talks to a database
driver for a specific type of database.
parameter
 The basic data elements of a method. A parameter defines what the
object takes as input, output, or both. Each method consists of one or
more parameters.
plug-in
 A (usually small) piece of software that adds features to a larger piece of
software. A common example of a plug-in is for the Netscape Navigator
Web browser and Web server. The idea behind plug-ins is that a small
piece of software is loaded into memory by the larger program, adding a
new feature, and that users need only install the few plug-ins that they
need, out of a much larger pool of possibilities. Plug-ins are usually
created by people other than the publishers of the software the plug-in
works with.
port
 In TCP/IP and networks, it is an endpoint to a logical connection. The
port number identifies what type of port it is. For example, port 80 is
generally used for HTTP traffic.
proxy server
 A server that sits between a client application, such as a Web browser
and a real server. It intercepts all requests to the real server to see if it
can fulfill the request itself. If not, it forwards the request to the real
server. Witango allows you to route files through a TIS (Trusted
Information Server) proxy server. See also firewall.
scope
 In Witango, a scope refers to a characteristic of variables that determines
where they are valid. The following scopes are available for variables in
Witango application files and Witango class files: local, user, cookie,
application, domain, system, and custom. In addition, the following scopes
are available for variables in Witango class files only: method and instance.
See Chapter 8 for details.
search
argument
A search argument is the part of a URL used when a set of arguments are
sent to an executing program, such as a CGI, or Web server. Search
arguments are commonly used for forms and searches. The search
argument follows a question mark (?) in the URL and can be used to
track dynamic content or CGI variables being passed between client and
server.

For example, in this URL:

http://www.example.com/test.taf?function=form

the search argument is function=form.
security
certificate
Information (often stored as a text file) that is used by the SSL protocol
to establish a secure connection.

Security certificates contain information about who it belongs to, who it
was issued by, a unique serial number or other unique identification, valid
dates, and an encrypted fingerprint that can be used to verify the
contents of the certificate.

For an SSL connection to be created, both sides must have a valid
Security Certificate.
server
 A computer, or a software package, that provides a specific kind of
service to client software running on other computers. The term can
refer to a particular piece of software, such as a Web server, or to the
machine on which the software is running. A single server machine could
have several different server software packages running on it, thus
providing many different servers to clients on the network.
server push
 A way to deliver information from a Web server to a Web browser. The
information is sent to the Web browser without a client request; for
example, a site that automatically updates a Web browser with the latest
news.
Server Watcher
 A watching process that works with Windows- and UNIX-based Witango
Servers to ensure that Witango is always running. While Witango
attempts to recover from a fatal error automatically, it does not always
succeed for various reasons. When this happens, the watching process
provides a simple and robust external process to relaunch Witango
automatically.
SGML
 Standard Generalized Markup Language
The International Organization for Standardization (ISO) chose SGML as
the tool used to organize and tag elements (for example, titles, sections,
and paragraphs) of a document. SGML specifies the rules for tagging
elements, but not the formatting of documents. These tags can then be
interpreted to format elements in different ways.

SGML is useful for managing large documents that are subject to frequent
revisions and that need to be printed in different formats.
447447

44
SMTP
4488
Simple Mail Transfer Protocol
The main protocol used to send mail on the Internet. SMTP consists of a
set of rules for how a program sending mail and a program receiving mail
should interact.

Almost all Internet mail is sent and received by clients and servers using
SMTP, thus if one wanted to set up an e-mail server on the Internet one
would look for e-mail server software that supports SMTP.
Solaris
 A UNIX-based operating system developed by Sun Microsystems.
Originally developed to run on Sun’s SPARC workstations, Solaris now
runs on many workstations from other vendors.
SQL
 Structured Query Language
A unified language for defining, querying, modifying and controlling the
data in a relational database. Most industrial-strength relational databases
and many smaller database applications are addressed using SQL. Each
specific application has its own version of SQL implementing features
unique to that application, but all SQL-capable databases support a
common subset of SQL.
SSL
 Secure Sockets Layer
A protocol designed by Netscape to enable encrypted, authenticated
communications across the Internet.

SSL is used mostly (but not exclusively) in communications between Web
browsers and Web servers. URLs that begin with “https” indicate that an
SSL connection will be used.

SSL provides three important features: privacy, authentication, and
message integrity.

In an SSL connection each side of the connection must have a Security
Certificate, which each side’s software sends to the other. Each side then
encrypts what it sends using information from both its own and the other
side’s Certificate, ensuring that only the intended recipient can decrypt it,
and that the other side can be sure the data came from the place it claims
to have come from, and that the message has not been tampered with.
Witango
application
A group of Witango application files in a particular application folder that
can share variables in an application scope.
Witango
application file
Witango application files are written using Witango Studio and are
composed of one or a series of actions that are executed by Witango

Server. Each action’s reaction or response from a database, server,
external program, and so on, can be posted in HTML. When a Witango
application file is completed, the results are returned to the client.
Witango application files are sometimes called application files. They
generally have a .taf file extension.
Witango CGI
 The CGI that links Witango Server and your Web server. Not necessary
if you use one of the Web server plug-ins.
Witango class
file
Reusable software components that you can incorporate in Witango
application files. You can create and edit Witango class files using Witango
Studio. Witango class files generally have a .tcf file extension.
Witango client
 The Witango client receives requests made by a Web browser, then
redirects the request to a specified Witango Server. This allows your
Witango configuration to perform load-splitting. The Witango client is
either a CGI or a plug-in, and is located on the Web server machine. See
also load-splitting.
Witango Server
 Executes and serves up the application files by which clients can interact
with HTML pages to perform a variety of tasks; for example, querying the
data source.
TCP/IP
 Transmission Control Protocol/Internet Protocol
This is the suite of protocols that defines the Internet. Originally designed
for the UNIX operating system, TCP/IP software is now available for
every major kind of computer operating system. To be truly on the
Internet, your computer must have TCP/IP software.
Unix
 A computer operating system (the basic software running on a computer,
underneath programs such as word processors and spreadsheets). Unix is
designed to be used by many people at the same time (it is multi-user)
and has TCP/IP built-in. It is the most common operating system for
servers on the Internet.
URL
 Uniform Resource Locator
The “address system” used by the World Wide Web (WWW). A URL is
the address of a piece of information stored on a Web server. This
information can include HTML pages, graphics, multimedia files, Java
classes, downloadable files or any other type of file you have stored.

For example, this URL:
449449

450450
http://www.example.com/path/subdir/file.htm

specifies the resource file.htm located on the server
www.example.com.
virtual hosting
 With virtual hosting, one physical host is actually many virtual hosts. With
hardware virtual hosting, a single machine can act like multiple machines
(with multiple domain names and IP addresses). With software virtual
hosting, a single machine can act as multiple servers, but only use one IP
address.
virtual machine
 A virtual machine acts as an interface between a code and
microprocessor. It is program that functions as a machine without having
any physical properties. The machine is an abstract, as opposed to a
physical, entity. A Java Virtual Machine (JVM) is an example of a virtual
machine.
Web browser
 A software program that can request, load and display documents
available on the World Wide Web. Web browsers are typically operated
by people, but can also be run by robots, such as Web crawlers and
intelligent agents.
Web server
 A computer that stores the files comprising a Web site. It sends
information to, and accepts information from, Web browsers.
Web Server
document root
All files that are served on the Web server must be placed in the Web
Server document root. When the files are needed, the Web Server looks
in the root or its subfolders to access them. A Witango 2000 folder is
created inside the Web server document root when Witango is installed
on your machine.
Web site
 The collection of elements (such as HTML files, images, video or audio
files) the comprise an entity on the Internet. A Web site is equivalent to a
Web domain. It is identified by its domain name, for example
www.example.com. One or more Web sites can run on a physical
machine under one Web server process.
XML
 Extensible Markup Language
XML is a text-based and widely-endorsed standard markup language,
similar to HTML, but much more flexible and robust. It is a subset of
SGML. Its goal is to enable generic SGML (that is, structured documents)
to be served, received, and processed on the Web in the way that is now

possible with HTML. XML has been designed for ease of implementation
and for interoperability with both SGML and HTML.
451451

452452

Index
Index

Symbols
@ and /@ 143
¥ 123

A
absolutePathPrefix 302, 308, 314, 315,

319, 320, 322, 323
action

See also Group action and builder
about 225, 226
adding 40, 229
assigning data source to 101, 115
attribute 40, 229

See also results HTML, no results HTML,
error HTML, and push

assigning 46, 236
indicator icon 47, 237

copying 43, 44, 232, 233
deleting 42, 231
dragging into SQL query text window 25
editing 42, 232
generated by builder 167, 206, 220
jumping to another

See Branch action
moving 43, 232
multi-column list 19
naming and renaming 41, 230
nested 282, 290
organizing

See Group action
properties 45, 107, 234
redirecting flow of

See control action
repeating

See loop action
setting development or deployment data

source 106
action, name of

See also the names of the specific actions
Assign 155, 227
Begin Transaction 226, 325
Branch 228, 274
Break 228, 294
Call Method 227, 350
conditional action 280
control action 273
Create Object Instance 227, 349
database 251, 325
Delete 226, 270
Direct DBMS 226, 325
Else 227, 280
Else If 227, 280
End Transaction 226, 325
External 227, 297
File 227, 317
For Loop 227, 289
Group 227, 245
If 227, 280
Insert 226, 266
loop action 288
Mail 227, 309
Objects Loop 227, 391
Presentation 227
Results 227
Return 228, 295
Script 227, 297
Search 226, 252
transaction 325
Update 226, 268
While Loop 227, 289

ACTIONRESULT meta tag 153
actions bar 226, 228
alias

Oracle data source 114
and operator 258, 284
application file

See also action, Group action, builder, and
project

about 1, 55
assigning AST signature to file 76
changed but not saved 57
creating 57
debugging 46, 61, 236
dirty file indicator 57
dragging column into 21
inserting meta tag 148
run-only 59
saving 58
specifying URL of 60
479479

Index

48
window 39, 56, 229
XML format 55

ARG meta tag 149, 150, 206, 220, 261
array

about 155
Assign action 156, 227

defining variable 155
in Witango class file 403

ASSIGN meta tag 144, 155
AST signature

for application file 76
for project 79, 82
overwriting 76, 79
valid characters 80

attribute
contextual menu 13

attribute, associated with action 46, 236
attribute, associated with meta tag 144, 147
attribute, associated with object 373, 375, 384
Attributes menu

attribute HTML 13
automation server 355, 366
AVG function 255

B
beanpaths.ini 363, 369
Begin Transaction action 226, 325, 326
begins with operator 259, 260
BIND meta tag 335
Branch action 228, 274

destination rules 274
executing 276
in Witango class file 274, 402
selecting destination 278
setting up 277
to action group 248
to another application file 274, 276

Break action 228, 294
builder

See also Search Builder and New Record
Builder

about 165
adding to application file 166
behaving like action group 167
generating actions 169
naming 166
page format 131, 167
replacing existing actions 170
4800
snippet 119
business logic 52, 243

C
cache

object information 375
CALC meta tag 286
Call Method action 227, 347, 350

adding 364, 383, 384
completing information for 385
nested method call 404
object instance variable 386
parameter list 387
result variable 386
self-referencing in Witango class file 404
window, example of 385

CALLMETHOD meta tag 347, 350, 361, 393
CGIPARAM meta tag 152
class and object 348, 396
CLASSPATH environment variable 363, 369
COL meta tag 49, 239, 265

for non-ODBC data source 334
collection object 391, 393
column

See also Search action, Search Builder, Search
page, Record List page, Record Detail
page, primary key, and join

custom 272
grouping 255
ordering 253, 255
properties 112
selecting 253, 254, 257

from multiple tables 338
snippet 119, 128

COLUMN meta tag 47, 49, 128, 144, 218,
237, 239, 265

for ODBC data source 334
COM object

about 348, 355
adding to workspace 365
automation server 355, 366
executing 362
initialization string 381
library 366, 373
licensing 356
non-programmable 367
optional parameter 389
referenced object 367

Index
username and password 382
variant parameter 388

command, in menu 6
See also menu

COMMIT command 326
Component Object Model

See COM object
component, Witango

See Witango component
conditional action 280

See also If action, Else If action, and Else action
nested 282

configuration variable
snippet 119

configuration variable, name of
absolutePathPrefix 302, 308, 314,

315, 319, 320, 322, 323
mailDefaultFrom 310
mailPort 314
mailServer 314
passThroughSwitch 103, 105, 109
stripChars 173
TCFSearchPath 363

contains operator 259, 260
context-sensitive menu

for action 234
for action attribute 236
for Branch action 278
project 68
showing Insert Meta Tag 145

contextual menu
attribute 13
for action 45
for action attribute 47

control action 273
See also conditional action, loop action, Branch

action, Break action, and Return action
cookie

properties 159
setting up 159

cookie scope 158
COUNT function 255
Create Object Instance action 227, 346, 349

adding 364, 378
completing information for 379
initialization string 381
object instance variable 380
window, example of 379

CREATEOBJECT meta tag 346, 347, 349, 361
CURRENTDATE meta tag 151
CURRENTTIME meta tag 151
CURRENTTIMESTAMP meta tag 151

D
data source

See also development data source and
deployment data source

about 83
assigning to action 101, 115
connecting 113
deleting 99
editing 111
handling unknown 100
icon 102
information stored in application file 114
logging on 102
modifying 98, 99
properties 102, 110
reloading 100
selecting column 21
selecting table 113, 132
types supported by Witango 84
using on different computers 114
workspace 21, 85, 110

data source, name of
See also the names of the specific data sources
JDBC 84
ODBC 84
Oracle 84

data type, of object
about 358
converting 358
in parameter list 387, 407

database
joining tables 325, 336
searching record and retrieving data 252

database action 251
See also Search action, Insert action, Update

action, Delete action, transaction action,
and column

advanced 325
commit 326, 329
rollback 326

database transaction
See transaction action

DCOM environment 356
debugging

application file 46, 61, 236
481481

Index

48
icon 62
Witango class file 415

default method, in Witango class file 401
Delete action 226, 270

executing 271
setting up 270

delete response HTML 202
dependencies

about 74, 82
referenced by application file 76
resolving 74, 75

deployment data source 103
setting parameters for action 106
using meta tag 103, 105

development data source 102, 103
setting parameters for action 106

Direct DBMS action 226, 325, 330
calling stored SQL procedure 335
executing 334
ODBC and non-ODBC sources 334
results HTML 334
setting result option 333
setting up 330
SQL encoding on meta tag value 332
using meta tags within 331

dirty file indicator 57
Distributed Component Object Model

See DCOM environment
DLL 301

calling with External action 297
document type definition

See DTD
DTD 56
dynamic linked library

See DLL

E
editing

command 11
error HTML 13
file in project 73
finding and replacing 27, 73
no results HTML 13
results HTML 13
selecting text editor 131
snippet

See snippet, editing
using tab character 12
4822
word wrap 12
editing window

INCLUDE meta tag 16
Else action 227, 280
Else If action 227, 280

setting up 283
e-mail address syntax 311
e-mail, sending from Witango

See Mail action
End Transaction action 226, 325

setting up 328
ending file processing

See Return action
ends with operator 259, 260
error HTML

See also error message, custom
associating with an action 46, 50, 236, 240
creating or editing 50, 240
using meta tag 50, 240
window 13

error message, custom 51, 241
ERROR meta tag 50, 240
ERRORS meta tag 50, 240
executing

application file, using plug-in and CGI
application file
executing, using plug-in and CGI 60

Branch action 276
Delete action 271
Direct DBMS action 334
For Loop action 293
Group action 249
Insert action 267
JavaScript 297, 298
Script action 299
Search action 264
SQL statements 330
transaction action 329
Update action 269
While Loop action 293
Witango class file 402

exiting loop
See Break action

expanding and collapsing parent objects 35
expiry URL 382
Extensible Markup Language

See XML
External action 227, 297

assigning attribute 305
deleting parameter 306

Index
enabling and disabling 308
error HTML 305
executing 306, 308
no results HTML 305, 307
results HTML 305, 306
setting up 301

command line 302
DLL call 301
Java 304

F
field properties

in New Record Builder 214
in Search Builder 180

file
creating 15
opening 16
reading, writing, and deleting

See File action
saving 15

File action 227, 317, 318
adding 318
enabling and disabling 323
security 323
setting

for deleting 321
for reading 319
for writing 319

using meta tag 318
file, application

See application file
file, special

beanpaths.ini 363, 369
error.htx 51, 241
objects.ini 359

file, under project
See project and presentation page

find and replace text or regular expression
See editing

folder, under project
See project

footer HTML
for New Record Builder 218
for Record Detail page 202
for Record List page 196
for Search page 187

For Loop action 227, 289, 291
executing 293

function, name of
AVG, COUNT, MAX, MIN, SUM, and
none 255

G
GETPARAM meta tag 413
getter method 373
graphical user interface 6

viewing component 7
greater than operator 259, 260, 285
greater than or equal to operator 259,

260, 285
Group action 227, 246

adding action to group 247
adding group to application file 247
branching to 248
deleting group 248
executing 249
removing action from group 247
ungrouping actions 248

GUI
See graphical user interface

H
header HTML

for New Record Builder 218
for Record Detail page 202
for Record List page 196
for Search page 187

help, on-line 132
HTML

Attribute menu 13
color-coding 12
editing window 9

HTTP
server

See Web server

I
If action 227, 280

parameter
logical operator 284
operator 284

setting up 283
specifying advanced parameters 285
specifying basic parameters 284
483483

Index

48
IF meta tag 144, 332
IFEMPTY meta tag 144, 332
IFEQUAL meta tag 144, 332
INCLUDE

HTML editing window 16
meta tag 16

include empty
optional parameter 389
search criteria 261

INCLUDE meta tag 145, 299
included files

opening in HTML editing window 16
initialization string 381
Insert action 226, 266

executing 267
results returned 267
setting up 266

instance scope 403, 404
interface

viewing component 7
interface, Tango Editor 6
introspection of object 347
is empty operator 285
is equal to operator 259, 260, 285
is in operator 259, 260, 261
is not empty operator 285
is not equal to operator 259, 260, 285
is not null operator 259, 260
is null operator 259, 260
item variable, Objects Loop action 393

J
Java 304

enabling and disabling 308
executing 306

Java action
configuring 304

Java class file
calling with External action 297

Java server 304, 305
JavaBean

about 348, 356
adding to workspace 363, 367
executing 363
Java archive file 368, 369, 373

JavaScript 297
enabling and disabling 308
executing 298
4844
object and variable scope 298
using meta tag 299

join
about 336
and data sources 338
creating 337

in Search action 338
in Search Builder 205, 341

deleting 340
editing 337, 340
standard and outer 325, 336

join operator 339

K
keyboard shortcut 34

L
less than operator 259, 260, 285
less than or equal to operator 259,

260, 285
logical operator 258

See also operator
loop action 288

See also For Loop action, While Loop action,
and Objects Loop action

nested 290

M
Mail action 227, 309

attaching file 313
enabling and disabling 315
setting up 310
specifying options 312
using meta tag 310, 314

mailDefaultFrom 310
mailPort 314
mailServer 314
MAX function 255
menu

See also keyboard shortcut
Attributes 13
Edit 10
File 15
View 7
Windows 7

Index
meta tag
about 143, 144
attribute 147
case sensitivity 144
category

action result item 152
current date/time value 151
form field or URL argument value 149
request parameter 152
variable value 150

color-coding 12
combining with other meta tags 146
in data source 109
in deployment data source 105
in error HTML 50, 240
in External action 305
in JavaScript 299
in no results HTML 49, 239
in results HTML 47, 49, 237, 239
inserting 105, 148
using with Direct DBMS action 331
where to use 145

meta tag, name of
ACTIONRESULT 153
ARG 149, 150, 206, 220, 261
ASSIGN 144, 155
BIND 335
CALC 286
CALLMETHOD 347, 350, 361, 393
CGIPARAM 152
COL 49, 239, 265, 334
COLUMN 47, 49, 128, 144, 218, 237,

239, 265, 334
CREATEOBJECT 346, 347, 349, 361
CURRENTDATE 151
CURRENTTIME 151
CURRENTTIMESTAMP 151
ERROR 50, 240
ERRORS 50, 240
GETPARAM 413
IF 144, 332
IFEMPTY 144, 332
IFEQUAL 144, 332
INCLUDE 16, 145, 299
POSTARG 144, 149, 150
PURGE 349, 380
ROWS 49, 144, 239, 265, 334
SCRIPT 298, 299
SEARCHARG 149, 150
SETPARAM 403, 413
TOTALROWS 264
VAR 150

method
See also object and Call Method action
about 347
actions included 402
default and user-created 401
defining and editing 405, 410, 411, 412
getter 373
list of, in Witango class file 401
on_create 401
on_destroy 401
parameter

See parameter, in method
properties 414
renaming 410
return value 406, 412
setter 374

method definition window 400, 405, 406
method scope 403

this, in Witango class file 404
MIN function 255
multi-column list 19

N
naming

action 41, 230
builder 166

nested action
Call Method 404
conditional 282
loop 290

New Record Builder 55, 228
See also builder
about 165, 209, 210, 212
adding to application file 212
customizing messages 218
formatting new record entry form 217
generating actions 220
including HTML snippet 222
relationship to Web browser 210
specifying columns 212

new record entry form 209, 210
See also New Record Builder

new record response HTML
for New Record Builder 218

no results HTML
associating with an action 46, 49, 236, 239
485485

Index

48
creating or editing 49, 239
Search action 265
Search page 187
using meta tag 49, 239
window 13

O
object

See also method, Create Object Instance action,
Call Method action, and workspace,
objects

about 346, 349, 355, 396
adding to workspace 364, 365
as black box 346
attributes folder 373, 384
benefits of using 354
caching information 375
collection object 391, 393
example of using 351, 352
expiry URL 382
general requirements 357
installing 362
introspection 347
method

See method
object instance

See object instance
properties 374
refreshing 376
removing from workspace 371
security 359
steps in using 364
thread safety 375
types supported in Witango 355
when to use 354

object instance
about 346, 348
availabilty 350
creating 349

object instance variable
for Call Method action 386
for Create Object Instance action 380
for self-referencing 404

Objects Loop action 227
about 391
collection object 393
item variable 393
using 392
4866
objects.ini 359
ODBC data source

about 84
creating 88
information in application file 114

on_create method, in Witango class file 401
on_destroy method, in Witango class file 401
opening

included files 16
operator 259, 260

See also logical operator and join operator
operator, name of

and 284
begins with 259, 260
contains 259, 260
ends with 259, 260
greater than 259, 260, 285
greater than or equal to 259, 260,

285
is empty 285
is equal to 259, 260, 285
is in 259, 260, 261
is not empty 285
is not equal to 259, 260, 285
is not null 259, 260
is null 259, 260
less than 259, 260, 285
less than or equal to 259, 260,

285
or 284

option, in using Witango Studio
See Witango Studio, setting preference

optional parameter 389
or operator 258, 284
Oracle data source

about 84
alias 114
creating 97
information in application file 114

P
parameter, in method

about 347, 348
adding, deleting, and editing 412, 413
data type 387, 407
getting and setting value 413
input and output 373, 387, 406
list of

Index
for Witango class file 406
in Call Method action window 387

optional 389
variable and value 388
variant 388

passThroughSwitch 103, 105, 109
POSTARG meta tag 144, 149, 150
preference, in using Witango Studio

See Witango Studio, setting preference
Presentation action 227

about 53, 243
setting up 53, 244

presentation logic 52, 243
presentation page

about 53, 77, 243
adding file 77
in Presentation action 53, 244
removing file 78

primary key
about 87
using to create new record 218

project
See also workspace, project
about 65
adding

file 71
folder 70

AST signature 79, 82
closing 72
context-sensitive menu 68
creating new 68
dependencies

See dependencies
editing file 73
file type supported 71
find and replace text 73
opening 72
path name 67
project file 67
removing file or folder 72
renaming folder 71

properties
action 45, 107, 234
application file 75
column 112
cookie 159
data source 102, 110
file 77
method 414
object 374
project FTP sites 79
project root 81
snippet 125
snippet folder 125
table 112
window 8

PURGE meta tag 349, 380
push

associating with an action 46, 51, 236, 241
disabled in WItango class file 403

R
record

adding to a table 266
deleting 200
modifying 268
removing 270
updating 198

Record Detail page
about 176, 197
customizing messages 202
formatting Record Detail Web page 201
record maintenance 200
relationship to Web browser 176
specifying columns 197

record detail Web page 174, 176
See also Record Detail page

Record List page
about 175, 189
customizing header HTML and footer

HTML 196
formatting record list Web page 195
relationship to Web browser 176
specifying columns 189
specifying number of matches 193

record list Web page 173, 176
See also Record List page

referenced object 367
regular expression 28, 29, 31

See also editing
renaming

action 41, 231
method, in Witango class file 410
snippet 125

result
returned by Insert action 267
returned by Update action 269
returning to Web browser 51, 241
487487

Index

48
sorting 253, 255
Results action 227

See also results HTML and no results HTML
adding HTML 52, 242

results HTML
associating with an action 46, 47, 236, 237
creating or editing 47, 237
Direct DBMS action 334
in Witango class file 402
Search action 265
using meta tag 47, 49, 237, 239
window 13

resultSet
for Mail action 314
in External action 307
in File action 319, 321
in Script action 300

retrieving data
See Search action

Return action 228, 295
ROLLBACK command 326
row

See record
ROWS meta tag 49, 144, 239, 265, 334
run-only file, creating

application file 59
Witango class file 408

S
scope

See also variable
about 155
for JavaScript 298

scope, name of
See also the names of the specific scopes
instance 403
method 403

Script action 227, 297, 298
executing 299
setting up 298

SCRIPT meta tag 298, 299
Search action 226, 252

See also column and join
creating join 338
criteria

about 257
column 258
grouping 255
4888
include empty 261
logical operator 258
operator 259
quote value 262
separator 259
value 261

executing 264
joining tables 338
no results HTML 265
result returning option 263
results HTML 265
search type 252

normal 253
summaries of groups 254
summary of all rows 256

using multiple tables
See join

Search Builder 55, 228
See also builder, Search page, Record List page,

and Record Detail page
about 165, 171, 172
adding to application file 178
creating join 205, 341
generating actions 206
including HTML snippet 208
relationship to Web browser 176
using multiple tables

See join
using simplified steps 204
using standard steps 176

search form 172, 176
See also Search page

Search page
about 175, 178
customizing messages 187
formatting search form 186
relationship to Web browser 176
specifying columns 178

SEARCHARG meta tag 149, 150
security

in File action 323
object 359

self-referencing, in Witango class file 404
server, HTTP

See Web server
SETPARAM meta tag 403, 413
setter method 374
simple mail transfer protocol

See SMTP
SMTP 309
SMTP server 314

Index
snippet
about 117, 118
copying, deleting, duplicating, and moving 126
creating

folder 124
snippet 121

editable and non-editable 121
editing 121, 123
for New Record Builder 222
for Search Builder 208
inserting 120
organizing 124
placeholder or yen symbol 123
properties 125
renaming 125
workspace 118

snippet, name of folder
builder snippets 119, 121
column snippets 119, 121, 126, 128
configuration variables 119, 121, 126
my snippets 119, 121, 124, 126
standard snippets 119, 121, 126

SQL
calling stored procedure 335

SQL keyword
See also operator and function
COMMIT 326
DISTINCT 264
HAVING 255
ROLLBACK 326

SQL query
executing 330
performing 26
setting up 23
using meta tag 332
window 22

string, find and replace 28
studio, Witango

See Witango Studio
SUM function 255

T
tab, in editing text

See editing
table

See also join
adding records to 266
filtering 114
modifying record in 268
page format used in builder 167
properties 112
removing record from 270
selecting from data source 113
setting primary key 87

Tango Editor
interface 6

TCF
 See Witango class file

TCFSearchPath 363
text file

font, size, and color option 133
text, editing

See editing
TOTALROWS meta tag 264
transaction action 325

See also Begin Transaction action, End
Transaction action, and database action

commit and rollback 328
executing 329
impact on database connection 326

U
Update action 226, 268

executing 269
results returned by 269
setting up 268

update response HTML 202
user-created method, in Witango class file 401

V
value

of operator 260
search criteria 261

VAR meta tag 150
variable

See also scope, array, and configuration variable
about 155
adding variable assignment 157
assigning 156
deleting variable assignment 157
editing assignment 156
moving variable assignment 157
selecting variable assignment 157
489489

Index

49
W
While Loop action 227, 289, 290

executing 293
pitfalls to avoid 291

window
application file 56
error HTML 13
HTML editing 9
method definition 400, 406
no results HTML 13
properties 8
results HTML 13
SQL query 22
Witango class file 400

Windows menu shortcut 34
Witango

about 1
Witango builder

See builder
Witango application file

See application file
WItango application server

See Witango Server
Witango class file 55

See also application file, method, and parameter,
in method

about 348, 356, 396
adding to workspace 369
Assign action 403
benefits of using 397
Branch action 402
creating 408
debugging 415
developing 400
differences from application file 402
editing 409
error handling 403
executing 363, 402
list of actions 402
list of instance variables 404
push attribute disabled 403
recursion 403
results HTML 402
scope 403
4900
setting search path 137, 363, 416
steps in using 399
when to use 398
window 400

Witango component
See also Witango Studio,Witango Server,

Witango CGI, and Witango plug-in
Witango Server

about 1
Witango Studio

about 1
setting preference 129, 130

builder page format 131
on-line help 132
selecting table from data source 132
selecting text editor 131
text font. size, and color 133

word wrap 12
workspace

about 6
data sources 85, 110
objects

adding 364, 365
COM object 365
example of 372
JavaBean 367
removing 371
viewing information 372
Witango class file 369

project 66
moving file or folder 68
opening file 67
presentation pages 77

snippets 118

X
XML

See also Document Object Model and
document instance

about 55
DTD 56
folder 56
format 55

advantages 55

	Witango Studio 5.5 User Guide
	Table of Contents

	Introduction
	Using Witango Studio
	Witango Studio Basics
	Witango Studio Interface Components
	Viewing Interface Components
	Contextual Menus
	Properties Window
	HTML Editing Window
	<@INCLUDE> in HTML Editing Windows
	Working With Multi-column Lists
	The SQL Query Window
	Finding and Replacing Text
	Keyboard Shortcuts
	Windows Menu Shortcuts
	Expanding and Collapsing Parent Objects
	Witango Actions
	Working With Actions
	Adding an Action
	Naming an Action
	Deleting an Action
	Editing an Action
	Moving an Action
	Copying an Action
	Contextual Action Menu
	Action Properties
	Assigning Attributes to Actions
	Adding HTML (Results Action)
	Presentation Action

	Using Witango Application Files
	XML Format
	Application File Window
	Creating an Application File
	Saving an Application File
	Saving a Witango Application File or Witango Class File as Run- Only
	Executing Application Files

	Debugging Files
	Turning Debug On
	Viewing Debug

	Using Projects and Source Control
	Basics of Witango Projects
	Understanding the Project File
	Using the Project Workspace
	Creating a New Project
	Adding a Folder to a Project
	Adding Files to a Project
	Removing Files and Folders From a Project
	Opening and Closing a Project
	Editing HTML and Text Files

	Additional Features of Witango Projects
	Working With Project Dependencies
	Working With Application Files
	Working With Presentation Pages
	Working With Project Data Sources
	Working With Project Objects
	Working With Project FTP Sites
	Application- Specific Witango (AST) Signatures for Projects
	Project Root Properties

	Using Data Sources
	About Data Sources
	The Data Sources Workspace
	Using Primary Key Columns
	Data Source Operations
	Creating a Data Source
	Modifying a Data Source
	Deleting a Data Source
	Reloading a Data Source
	Handling Unknown Data Sources

	Assigning Data Sources to Actions
	Setting Up Deployment Data Sources
	Setting Deployment Data Source Properties
	Meta Tags and Deployment Data Sources

	Setting Data Sources for Actions
	Using the Data Source Selection Dialog Box
	Using the Action Properties Dialog Box

	Disabling the Use of Meta Tags in Data Sources
	Working With Data Source Properties
	Data Source Properties
	Table Properties
	Column Properties

	Connecting to Data Sources
	Connecting to Large Data Sources
	Editing and Executing Files on Different Computers

	Using Snippets
	About Snippets
	The Snippets Workspace

	Working With Snippets
	Inserting Snippets
	Creating and Editing Snippets
	Managing Snippets and Snippets Folders
	Copying, Moving, and Deleting Snippets

	Column Snippets

	Setting Preferences
	Using the Preferences Dialog Box
	Selecting Options
	General
	Text
	Objects
	Compile

	Witango Building Blocks
	Working with Meta Tags
	About Meta Tags
	Where You Can Use Meta Tags
	Combining Meta Tags
	Quoting Attribute Values
	Inserting Meta Tags

	Working With Variables
	Assigning Variables With the Assign Action
	Editing Variable Assignments

	Shortcuts to Configuration Variable Assignments: Snippets

	Witango Builders
	Building Actions Using Witango Builders
	Adding a Builder to an Application File
	Page Format Table Settings

	Building the Actions

	Configuring the Search Builder
	About the Search Builder
	What Users See in Their Web Browser
	How You Create These Web Pages
	Main Steps to Use the Search Builder

	Setting Search Options
	Search Columns List
	Column Options
	Fixed Value
	Summary: Setting Column Options

	Formatting the Search Form
	Customizing Your Search Form and Response Messages
	Header, Footer, and No Results HTML
	Changing Button Titles

	Setting Record List Options
	Display Columns
	Order By
	Column Options
	Maximum Matches

	Formatting the Record List Web Page
	Customizing Your Record List Web Page
	Header and Footer HTML

	Setting Record Detail Options
	Display Columns
	Column Options
	Record Maintenance Options

	Formatting the Record Detail Web Page
	Customizing Your Record Detail Web Page and Response Messages
	Header, Footer, Update Response, and Delete Response HTML
	Button Titles

	Simplified Steps to Use the Search Builder
	Defining Joins
	Actions Built by the Search Builder
	HTML Snippets

	Configuring the New Record Builder
	About the New Record Builder
	Main Steps to Use the New Record Builder

	Setting New Record Options
	Summary: Setting Column Options

	Formatting the New Record Entry Form
	Customizing Your Form and Response Messages
	Header, Footer, and New Record Response HTML
	Changing Button Titles
	Actions Built by the New Record Builder
	HTML Snippets

	Witango Actions
	Using Actions
	About Actions
	Working With Actions
	Adding an Action
	Naming an Action
	Deleting an Action
	Editing an Action
	Moving an Action
	Copying an Action
	Context- Sensitive Action Menu
	Action Properties

	Assigning Attributes to Actions
	Results HTML
	No Results HTML
	Error HTML
	Push
	Debug File

	Adding HTML (Results Action)
	Presentation Action
	Uses of the Presentation Action
	How the Presentation Action Works
	Setting Up a Presentation Action

	Grouping Actions
	About Grouped Actions
	Working With Action Groups
	Adding an Action Group
	Adding an Action to a Group
	Removing an Action From a Group
	Ungrouping Actions
	Deleting an Action Group
	Effects of Editing an Action Group
	Branching to an Action Group

	Executing Grouped Actions

	Using Basic Database Actions
	Searching a Database
	Setting Up a Search Action
	Executing a Search Action

	Adding Records to a Database
	Setting Up an Insert Action
	Executing an Insert Action

	Modifying a Database Record
	Setting Up an Update Action
	Executing an Update Action

	Removing a Database Record
	Setting Up a Delete Action
	Executing a Delete Action

	Adding Custom Columns to Database Actions

	Using Control Actions
	Jumping to a Designated Action (Branch Action)
	Branch Action Destination Rules
	Executing a Branch Action
	Branch and Return
	Setting Up a Branch Action
	Branch Action Destination Navigation

	Deciding Course of Actions (Conditional Actions)
	Example: Sports Fan Web Site
	General Forms of Conditional Actions
	Nested Conditional Actions
	Performing Operations on Conditional Actions
	Setting Up Conditional Actions

	Repeating a Set of Actions (Loop Actions)
	Example: Music Store
	General Forms of Loop Actions
	Nested Loop Actions
	Setting Up Loop Actions
	Executing Loop Actions
	Performing Operations on Loop Actions

	Exiting a Loop (Break Action)
	Ending File Processing (Return Action)

	Extending Witango Functionality
	Executing JavaScript
	Setting Up a Script Action
	Executing a Script Action

	Using an External Action
	Setting Up an External Action
	Configuring a DLL Call
	Using a Command Line
	Configuring a Java Action
	Assigning Attributes
	Deleting Parameters
	Executing an External Action

	Disabling JavaScript, Java and External Actions

	Sending Electronic Mail From Witango
	Setting Up a Mail Action
	General Tab
	Options Tab
	Attachments Tab

	Disabling Mail

	Reading, Writing, and Deleting Files
	Setting Up a File Action
	Setting Up Read Options
	Setting Up Write Options
	Setting Up Delete Options

	Handling File Security

	Using Advanced Database Actions
	Using Database Transactions
	Setting Up a Transaction Action
	Executing a Transaction Action

	Using SQL Directly
	Setting Up a Direct DBMS Action
	The Direct DBMS Action Editing Window
	Executing a Direct DBMS Action

	Joining Database Tables
	Working With Joins
	Creating a Join in a Search Action
	Inserting a Join
	Editing a Join
	Deleting a Join
	Creating a Join in the Search Builder

	Witango and Objects
	Understanding Objects in Witango
	What are Objects?
	Objects as Black Boxes
	Object Interface: Methods
	Method Elements: Parameters
	Class, Object, and Object Instance
	Creating Object Instances
	Using Available Object Instances
	Calling Methods
	Example�1: Investment Scenarios
	Example�2: More Investment Scenarios

	Benefits of Using Objects in Witango
	When to Use Objects

	Object Types Supported in Witango
	Object Type Independence
	COM Objects
	JavaBeans
	Witango Class Files
	General Requirements

	Understanding Data Types
	Setting up Security for Executing Objects

	Using Objects
	Preparing to Use Objects in Witango
	Planning to Use an Object
	Installing an Object

	Overview of Using Objects in Witango
	Adding an Object to the Objects Workspace
	COM Objects in the Objects Workspace
	JavaBeans in the Objects Workspace
	Witango Class Files in the Objects Workspace

	Removing an Object From the Objects Workspace
	Viewing Object Information in the Objects Workspace
	Attributes Folder
	Object Properties
	Caching and Refreshing of Object Information

	Adding a Create Object Instance Action
	Shortcut to Adding a Create Object Instance Action

	Completing the Create Object Instance Action
	Object Name
	Object Instance Variable
	Instance
	Expiry URL

	Adding a Call Method Action
	Shortcut to Adding a Call Method Action

	Completing the Call Method Action
	Object/Method Name
	Object Instance Variable
	Result Variable
	Parameter List

	Using the Objects Loop Action
	Example of Using an Objects Loop
	Using an Objects Loop

	Witango Class Files
	What are Witango Class Files?
	Benefits of Using Witango Class Files
	When to Develop and Use Witango Class Files

	Using Witango Class Files
	Developing Witango Class Files
	Method List Pane
	Method Editing Pane
	Instance Variables List Pane
	Method Definition Window

	Creating a Witango Class File
	Editing a Witango Class File
	Adding a New Method
	Renaming a Method
	Deleting a Method
	Copying a Method
	Modifying a Method
	Setting Return Values and Parameters
	Method Properties

	Debugging Methods
	Setting Search Paths for Witango Class Files
	Witango Studio
	Witango Server

	Witango Compiler
	Compiling Witango Application Files
	The Compilation Process
	Syntax Checking
	Creating a Syntax Check Report
	Filtering the Syntax Check Report
	Understanding a Syntax Check Report
	Correcting Issues located in a Syntax Check Report
	Rechecking the Syntax

	Compiling you Witango Application
	Executing a compile for J2EE

	Glossary of Terms
	Index

