
Witango Application Server 5.0

What’s New

January 8th, 2002

With Enterprise Pty Ltd
44 Miller St

North Sydney NSW 2060
Australia

PH: +61 2 9460 0500
FX: +61 2 9460 0502

www.witango.com





WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 i

Table of Contents
GENERAL INTRODUCTION........................................................................................................................ 1

OVERVIEW OF MAJOR CHANGES ................................................................................................................... 1
IMPORTANT NOTES FOR BACKWARD COMPATABILITY ................................................................................ 1
NEW META TAGS ........................................................................................................................................... 2
RECOMMENDATIONS FOR CHANGES TO WITANGO PROGRAMMING STYLES ............................................... 2

MAJOR CHANGES IN DETAIL ................................................................................................................... 3

MULTITASKING .............................................................................................................................................. 3
Pre-emptive Multitasking Mode ............................................................................................................. 3

CONFIGURATION OF THE APPLICATION SERVER ........................................................................................... 3
Immediate Switching of the Witango Log File ...................................................................................... 3
Calculation of CACHESIZE Configuration Variable............................................................................ 3
Removal of ENABLETANGOUSERDOCS Configuration Variable................................................... 3
Locking of the witango.ini File............................................................................................................... 3
Change to VALIDHOSTS Configuration Variable ............................................................................... 3
Changes to Server Related Registry Configuration Keys ...................................................................... 3
Apache Module Name Change ............................................................................................................... 4
Module Name Changes ........................................................................................................................... 4
Configuration File Name Changes.......................................................................................................... 4
Log File Name Changes .......................................................................................................................... 5
OCI Shared Library Configuration Variable .......................................................................................... 5
Change in Default Scope of Variables.................................................................................................... 5

VARIABLE HANDLING.................................................................................................................................... 5
Scoping of Configuration Variables ....................................................................................................... 5
Change of Formula to Calculate the Variable Expiration...................................................................... 5
Change to Formula to Calculate VARIABLESTORESIZE .................................................................. 5
Defining a Variable ................................................................................................................................. 6
Introduction of Request Scope ................................................................................................................ 6

APPLICATION FILE ......................................................................................................................................... 6
Default Data Sources No Longer Supported .......................................................................................... 6
Predefined Search Argument ‘Form’ No Longer Supported................................................................. 6

FILE PATHS..................................................................................................................................................... 6
Mechanism to Resolve Paths During taf Execution............................................................................... 6
The Tango 2000 Mechanism ................................................................................................................... 6
The Witango Application Server 5.0 Mechanism ................................................................................... 7
CGI vs. Plug-In Paths .............................................................................................................................. 7
File Action Paths...................................................................................................................................... 8

DATA SOURCES .............................................................................................................................................. 8
Processing of Multiple Active ODBC Statements ................................................................................. 8
New Configuration Parameters ............................................................................................................... 8
Loading Oracle OCI Dynamic Libraries ................................................................................................ 8
Errors from DBMS Servers..................................................................................................................... 8

APPLICATION SCOPES .................................................................................................................................... 8
No Expiry of Application Scopes ........................................................................................................... 8

ACTIONS ......................................................................................................................................................... 9
Locking taf Files for Write Operations................................................................................................... 9
Deleting taf Files...................................................................................................................................... 9

CHANGES TO CUSTOM HTTP HEADER GENERATION................................................................................... 9
Change to Output of the <@CRLF> Meta Tag...................................................................................... 9

META OBJECTS............................................................................................................................................... 9
Change to Meta Object Handler Loading Mechanism........................................................................... 9
Concurrent Introspection Against Global Meta Objects...................................................................... 10
Handling of COM Objects .................................................................................................................... 10

ERROR REPORTING....................................................................................................................................... 10
Connections from Unauthorised Clients............................................................................................... 10
Retrieval of Formatted Error Messages ................................................................................................ 11



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 ii

Retrieval of Help on Error Messages ....................................................................................................11
Variation to the Default Value of DEFAULTERRORFILE ................................................................11
Variation to Logging of Error Messages...............................................................................................11
Requests to Witango Application Server 5 During Start-up or Shutdown ..........................................11
Handling of Unrecoverable Application Errors ....................................................................................11
Variation to LOGGINGLEVEL Values................................................................................................12

DEBUGGING ..................................................................................................................................................12
Revised Handling of DEBUGMODE Configuration Variable ............................................................12
Addition of a Meta Stack Report ...........................................................................................................12
Additional Debug Information...............................................................................................................13

WITANGO CLIENT.........................................................................................................................................13
Plug-In Architecture...............................................................................................................................13
Cross Platform Connections ..................................................................................................................13
ERROR_HTML .....................................................................................................................................13
Changes to Path Formats........................................................................................................................13
Addition of CLIENTIOTIMEOUT .......................................................................................................13

COMMAND LINE............................................................................................................................................13
CRON URLS..................................................................................................................................................14
CHANGES TO EXISTING META TAGS............................................................................................................14

Removal of Undocumented Meta Tags.................................................................................................14
New Parameter for <@TOKENIZE>....................................................................................................14
New Parameter for <@URL>................................................................................................................14
@CHOICELIST OPTIONEXTRAS.....................................................................................................14

NEW META TAGS .........................................................................................................................................15

<@DEFINE>................................................................................................................................................16
Syntax .....................................................................................................................................................16
Description..............................................................................................................................................16
Example ..................................................................................................................................................16

<@EMAIL> .................................................................................................................................................17
Syntax .....................................................................................................................................................17
Description..............................................................................................................................................17
Example ..................................................................................................................................................18

<@EMAILSESSION>.................................................................................................................................19
Syntax .....................................................................................................................................................19
Description..............................................................................................................................................19
Example ..................................................................................................................................................20

<@HTTPSTATUSCODE> .........................................................................................................................21
Syntax .....................................................................................................................................................21
Description..............................................................................................................................................21
Example ..................................................................................................................................................21

<@ HTTPREASONPHRASE >..................................................................................................................22
Syntax .....................................................................................................................................................22
Description..............................................................................................................................................22
Example ..................................................................................................................................................22

<@ISMETASTACKTRACE>....................................................................................................................23
Syntax .....................................................................................................................................................23
Description..............................................................................................................................................23
Example ..................................................................................................................................................23

<@METASTACKTRACE>........................................................................................................................24
Syntax .....................................................................................................................................................24
Description..............................................................................................................................................24
Example ..................................................................................................................................................24

<@MAKEPATH> .......................................................................................................................................25
Syntax .....................................................................................................................................................25
Description..............................................................................................................................................25
Example ..................................................................................................................................................25

<@MIMEBOUNDARY>............................................................................................................................26



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 iii

Syntax..................................................................................................................................................... 26
Description............................................................................................................................................. 26
Example ................................................................................................................................................. 26





WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 1

General Introduction

Welcome!  This is With Enterprise’s first formal code release of the Tango technologies.  Application
Developers worldwide will welcome the release of Witango Application Server 5.0 and will see that the
new ownership has a strong focus on:

• Optimising the performance and stability of the product suite;

• Keeping in touch with advances in technology;

• Growing the product feature set;

• Enhancing the product suite to ensure developers can continue to benefit from the
advantages of using a RAD development tool.

This document examines in detail the major changes that have been made to the product suite and
introduces the new meta tags and their syntax.

OVERVIEW OF MAJOR CHANGES
The major changes to features in the Witango Application Server 5.0 are as follows:

• The threading model has been updated.  Witango Application Server 5 now runs in pre-
emptive multitasking mode on operating systems that support it;

• The mail integration supporting international character sets in message text, MIME
encoding, file attachments, custom headers, POP3, IMAP4 and SMTP;

• The client interface to the server has been opened up to allow for C++ and Java interfaces
to facilitate integration of non-web interfaces to the server e.g. SOAP, XML-RPC;

• The debugging facilities have been improved to assist application developers when
debugging their code. In particular, Witango Application Server 5 introduces a full meta
stack Trace allowing developers to trace errors in nested meta tags;

• The error reporting options have been expanded to allow developers more control with
error messages and associated help text;

• The variable handling functionality has been tightened up to:

o Improved performance of applications;

o Encourage typing of variables by developers to assist in the migration to the
planned future releases of the Witango product suite.

IMPORTANT NOTES FOR BACKWARD COMPATABILITY
The release of Witango Application Server 5 includes a number of changes to default behaviours of the
server.  These changes have been made to tighten both the syntax and predictability of the execution of
affected functions.

NOTE:
It is highly recommended that developers test their applications for these issues before upgrading their production
servers.

A summary of the changes are set out below:

• Change to default scope in witango.ini;

• Change of request scope;

• Changes to <@CRLF>;

• Changes to <@APPFILEPATH>;



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 2

• Changes to <@WEBROOT>;

• Changes to <@CHOICELIST>;

• Caching is now defaulted to OFF;

• Change of calculation for Variable Store Size;

• Change of calculation for Variable Expiration;

NEW META TAGS
Witango’s meta tag library has been expanded to include the following new meta tags:

• <@DEFINE> for creation of typed variables;

• <@EMAIL> for manipulation of mail integration;

• <@EMAILSESSION> for manipulation of mail integration;

• <@HTTPREASONPHRASE> for manipulation of default headers;

• <@HTTPSTATUSCODE> for manipulation of default headers;

• <@ISMETASTACKTRACE> for testing availability of meta stack;

• <@MAKEPATH> for the normalisation of paths;

• <@METASTACKTRACE> for controlling meta stack;

• <@MIMEBOUNDARY> to generate a MIME boundary string.

RECOMMENDATIONS FOR CHANGES TO WITANGO PROGRAMMING
STYLES
Some of the new features of Witango Application Server 5 are introduced specifically to encourage
application developers to use stricter programming styles that will assist them in migrating to future
releases in the Witango products.

With Enterprise Pty Ltd have invested significant effort into the research and development of a new
Witango Compiler.  This new compiler allows the deployment of Witango application files to other
environments.  With Enterprise feel that Witango developers will significantly benefit from being able to
deploy their code base to platforms other than the Witango Application Server as this will:

• Increase the potential client base for Witango developers to tap in to;

• Increase the market for re-usable code modules that Witango developers have already built,
thus increasing the value of their intellectual property.

The first environment that the Witango Compiler will be released for is J2EE.  Further environments are
already in the planning phase.  Developers building future applications in line with these
recommendations will be rewarded when their code is compatible with the new Witango Compiler.

• It is recommended that Witango developers commence using the <@DEFINE> META tag
to create and initialise variables, and in particular specify the variable type.  Some
environments that the Witango Compiler will deploy to are typed languages and the code
will therefore require such definition before deployment with optimal performance.

• It is recommended that Witango developers scope all variables. This will both enhance the
performance of their application and prepare their code for more seamless deployment to
other more controlled environments.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 3

Major Changes In Detail

MULTITASKING

Pre-emptive Multitasking Mode
Unlike Tango 2000 which ran as a cooperatively threaded application, the new Witango Application
Server 5 now runs in a fully pre-emptive multitasking mode on operating systems that support it such as
Windows 2000, Mac OS X, Linux and Solaris.  This change to the server will deliver a higher level of
stability and performance compared to the Tango 2000 technologies.

CONFIGURATION OF THE APPLICATION SERVER

Immediate Switching of the Witango Log File
The Witango log file will now be switched immediately after the SYSTEM$LOGDIR variable has been
changed. The user will no longer need to stop the server to make the change effective.

Calculation of CACHESIZE Configuration Variable
This configuration variable is used to set how much memory is available to cache taf files and includes.
To date the algorithm has not apportioned the cache between the tafs and the include files in any way.
Witango Application Server 5 now utilises an algorithm to apportion the size of the Resource Cache
between taf and include files in a 2:1 ratio.

Removal of ENABLETANGOUSERDOCS Configuration Variable
NON-WINDOWS PLATFORMS ONLY

The configuration variable ENABLETANGOUSERDOCS has been removed.  All absolute, relative and
virtual paths are now handled the same way on all platforms.

Locking of the witango.ini File
The configuration file witango.ini is now locked for writing operations only.  Thus more than one
instance of Witango Application Server 5 can use the same configuration file.

Change to VALIDHOSTS Configuration Variable
Changes to the configuration variable VALIDHOSTS now have immediate effect in Witango
Application Server 5.

Changes to Server Related Registry Configuration Keys
WINDOWS PLATFORMS ONLY

All server-related registry configuration keys and values have been changed to reflect the changes in the
server's name and ownership. The new keys are:

HKEY_LOCAL_MACHINE\SOFTWARE\WithEnterprise\WitangoServer\5.0\ *

HKEY_LOCAL_MACHINE\System\CurrentControlSet\WitangoServer

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Eventlog\Application\WitangoServer

* The rest of Witango Application Server 5 key is the same as the matching Tango 2000 registry key (after
the version key - e.g. 4.0), which can be saved and restored into the new key (i.e. point at 4.0 and save, then
point at 5.0 and restore using REGEDT32.EXE).



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 4

NOTE:

The services key shouldn't be created manually. Instead, run the following command from the
command line:

witango.exe -install -c WitangoServer

The current installation code within Witango Application Server 5 uses the -c option to specify both
the service display name and the internal name (all spaces in the display name will be replaced with
underscores to form the internal name). This means that the system list of services will display the
service name without spaces, simply as WitangoServer.!

Apache Module Name Change
The Apache module name has been changed to WitangoModule. In the example, the Apache
configuration file httpd.conf has to be changed to load the new plug.

Example:
WINDOWS PLATFORM

LoadModule WitangoModule c:/inetpub/scripts/wapache.dll
WitangoModule wapache.dll

NON-WINDOWS PLATFORMS

LoadModule WitangoModule /usr/libexec/httpd/wapache.so
WitangoModule wapache.so

Module Name Changes
The names of the modules listed below have been changed as follows:

MODULE FILE NAMES

Module Old Name Non-Windows Name Windows Name

Application Server t4server.exe witangod witango.exe

Apache plug-in t4apache.dll wapache.so wapache.dll

IIS plug-in t4iis.dll - wiis.dll

CGI t4cgi.exe wcgi wcgi.exe

Configuration File Name Changes
The names of the configuration files listed below have been changed as follows:

CONFIGURATION FILE NAMES

Configuration File Old Name New Name

Application Server t4server.ini witango.ini

Client t4client.ini clients.ini



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 5

Meta Object Handlers t4handlers.ini handlers.ini

The default configuration entry has been changed. The new default value for the server name is
WitangoServer. The old one (Tango_2000_Server) can be simply renamed in the t4server.ini
configuration file.

Log File Name Changes
The names of the log file listed below have been changed as shown in the following table:
LOG FILE NAMES

Log File Old Name New Name

System Event Log t4events.log witangoevents.log

Witango Application Server Log tango.log witango.log

OCI Shared Library Configuration Variable
A new configuration has been added to help the server locate the OCI shared library on non-Windows
platforms. The variable contains the directory where the OCI shared library is located (not including the
name of the shared library file). If the variable is missing from the file or is empty, the server will try to
load the OCI shared library at $ORACLE_HOME/lib. If none of these attempts succeeds, the OCI
functionality will be disabled and a warning logged to the witangoevents.log file.

Change in Default Scope of Variables
The default scope for variables has been changed from User to Request.  This change was made to
prevent the excessive memory consumption that occurs when variables are not explicitly scoped and
when an application file doesn't return any session identifiers (e.g. @USERREFERENCE, etc) to the
browser and a new user scope (which doesn’t expire for 30 minutes) is constantly created.

VARIABLE HANDLING

Scoping of Configuration Variables
The Witango Application Server maintains an in-memory list of valid scopes for each of the Witango
configuration variables.  It will now generate an error if there is an attempt to set a configuration variable
in an unregistered scope.

Change of Formula to Calculate the Variable Expiration
When Witango Application Server 5 is stopped, the data of the persistent scopes is now saved to a dump
file with a timestamp and details of the time left for the scope before it expires. When Witango
Application Server 5 is next started and reads the dump file, it calculates variable expiration time
according to the following formula:

expiry time left = expiry time left at shutdown - (now - shutdown time)

This ensures that variables will expire correctly even if the server has been shutdown for a period of time.

Change to Formula to Calculate VARIABLESTORESIZE
The parameter VARIABLESTORESIZE of the <@SERVERSTATUS> meta tag now returns the size
of all variables in all shared scopes and the local scope of the currently processed request.  (Tango 2000
Server returned the size of all variables in all scopes).



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 6

NOTE:

Witango Application Server 5 does not add the size of the memory required by the variable store to store the
variables when performing the calculation hence returning an accurate measure of the variable space.

Defining a Variable
A new <@DEFINE> meta tag has been introduced to allow the declaration of variables before they are
used in an assignment. The new tag is described in detail later in this document.  This has been
implemented primarily to allow developers to begin typing and scoping their variables.  This provides
more predictable outcomes within an application as an error will be thrown if an attempt is made to
change the type of a variable during the execution of an application without the developer explicitly
purging the variable first.

Introduction of Request Scope
The name for the Local scope (i.e. Local) has been replaced with the Request.

The old name is still supported so that both names, Local and Request, may be considered as aliases.
However, the name Request better reflects that the lifespan of the variables in this scope is limited by the
duration of the current http request.

APPLICATION FILE

Default Data Sources No Longer Supported
The default data source defined for an entire application file is no longer supported.  Each database action
must now have an explicit datasource defined.

Predefined Search Argument ‘Form’ No Longer Supported
The undocumented predefined search argument form is no longer supported.

FILE PATHS

Mechanism to Resolve Paths During taf Execution

The Tango 2000 Mechanism
To resolve paths during execution the Tango 2000 Server receives two paths from the HTTP server:

• The path in the URL line (either HTTP target in case of the plug-in or PATH_INFO in case of
the CGI)

• The physical path to the requested application file.

When these paths are compared, the first non-matching directory name indicates the end of HTTP server's
virtual directory and the end of the virtual directory's physical path. The following example shows how
the virtual directory is mapped to the physical one (the mapped parts are in the bold typeface).

Example:
Target or PATH_INFO /virtual_dir/dir4/file.taf
Physical Path           d:/dir1/dir2/dir3/dir4/file.taf

Tango 2000 saves the name of the virtual directory and removes it from the paths it is trying to resolve.

Example:
when the path in the <@INCLUDE FILE="/virtual_dir/dir4/include.inc"> statement is being resolved, the part
/virtual_dir/ will be removed and the rest will be added to the physical path of that virtual directory.

This make application files dependent unnecessarily on the virtual directory settings in the HTTP server.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 7

The Witango Application Server 5.0 Mechanism
Witango Application Server 5 treats all file references the same way as the HREF parameter in HTML. If
the file reference begins with a leading slash character, the requested file will be retrieved relatively to the
virtual directory's root. Otherwise, the file will be read from the directory relative to the directory of the
requested application file. In the case of one application file branching to another (or calling a TCF) the
relative paths will be resolved with respect to the original application file not the branch or TCF call
target.

Virtual directories are processed on all platforms with minimum differences. If a virtual directory is
encountered in either an <@INCLUDE> tag or in a Branch action, it will be removed at run time before
the tag or the action is processed.!

On OS X, the USEFULLPATHFORINCLUDE switch controls whether the file will be treated as a full
path or a relative path.

The meaning of the <@APPFILEPATH> is NOT changed. It still returns the directory of the currently
executed taf file in URL-path format and may be changing with every new Branch action executed.

NOTE:

<@APPFILEPATH> in the TCF shows the application file path of the calling taf not the TCF file.

Examples:
The request URL: http://www.website.com/virtual_dir/dir1/dir2/file.taf
The matching physical path: d:\phys_dir\dir1\dir2\file.taf

The following table shows the URL paths specified in the <@INCLUDE> tag in a taf file and the
corresponding physical paths.

<@INCLUDE> URL AND PHYSICAL PATHS

<@INCLUDE> Physical Path

/dir1/file.inc d:\phys_dir\dir1\file.inc
file.inc (relative to /dir1/dir2) d:\phys_dir\dir1\dir2\file.inc
/virtual_dir/dir1/file.inc d:\phys_dir\dir1\file.inc
volume/any_dir/file.inc
(Mac: USEFULLPATHFORINCLUDE == true)

volume:any_dir:file.inc

NOTE:

Please see the new <@MAKEPATH> tag which is described in the last section of this document to assist in any
conversion of Tango 2000 files.

CGI vs. Plug-In Paths
If Witango Application Server 5 is configured to use the plug-in, the extra path information cannot be
passed as if it would be a CGI program.

Example:

If a CGI program is requested, the path after the request target and before the optional question mark is
treated as extra path (or PATH_INFO):

http://www.website.com/cgi-bin/cgi.exe/path/file.ext?name=value

In this case, /cgi-bin/cgi.exe is the target of the request and /path/file.ext is the extra path that is passed to
the CGI program (target) through the environment variable PATH_INFO. However, in case of Tango's
plug-in, the URL above would be impossible to process unambiguously when Tango CGI is used:

http://www.website.com/tango-bin/t4cgi.exe/path/appfile1.taf/path/appfile2.taf?name=value



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 8

In this case there is no additional information available on where the application file ends and where the
extra path begins (e.g. the first appfile1.taf may be a directory).

The current requirement is that the application files should be executed the same way regardless whether
the CGI or the plug-in mechanism is used.

File Action Paths
File action path is relative to the path specified by the SYSTEM$ABSOLUTEFILEPREFIX system
variable. If this variable is empty the file action path must be a fully qualified path. For example, on
Windows, it must begin either with a drive specification or be in the UNC format e.g.
\\computer\directory\file

Specifying relative file paths will not work as the current directory is a process-level entity and changing
it from multiple worker threads will create racing conditions with unpredictable results.

DATA SOURCES

Processing of Multiple Active ODBC Statements
Under certain circumstances Tango 2000 allowed multiple active ODBC statements per connection (an
active statement is defined as the one that has pending results). Witango Application Server 5 allows only
one active statement per ODBC connection. Consequently, <@DATASOURCESTATUS> and
<@CONNECTIONS> return similar information and the parameter NUMCONNECTIONS is always
one for all data source types.

New Configuration Parameters
Two new configuration parameters have been added to the OS X and Linux servers to allow the system
administrator to select which drivers to load. OCILIBPATH and ODBCDMLIBRARY should be
configured with absolute paths to the libraries for OCI and ODBC respectively and not to an alias of the
library.

Example:
OCILIBPATH=/usr/lib/OCI/8.1.7.1/lib/libclntshdylib

ODBCDMLIBRARY=/usr/lib/libiodbc.dylib

Loading Oracle OCI Dynamic Libraries
Tango 2000 Server loaded Oracle's OCI dynamic libraries on the first connection attempt. Witango
Application Server 5 tries to load the libraries at the start-up time.  If the library cannot be loaded it is
logged to the Witango event log. If the OCI library failed to load or initialize it will not be loaded and
visible in the server environment.

Errors from DBMS Servers
When SQL query execution failed under Tango 2000 Server a Function Sequence Error message would
appear and not the actual error returned by the DBMS server (sometimes combined with the actual error
message depending on the driver). Witango Application Server 5 server returns the correct error text
reported by the DBMS driver.

APPLICATION SCOPES

No Expiry of Application Scopes
Application scopes in Tango 2000 Server expired after the VARIABLETIMEOUT time regardless of
whether the application still existed. The Witango Application Server 5 Server does not allow application
scopes to expire. The <@RELOADCONFIG> meta tag behaviour is not changed. The start-up URL
will be called when the server is starting up and when <@RELOADCONFIG> is processed.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 9

ACTIONS

Locking taf Files for Write Operations
Witango Application Server 5 allows multiple threads to read the same taf file simultaneously whilst the
file is not being written to.  However, it will lock an individual taf file during write operations to:

• Prevent more than one thread writing to the file at any one time

• Stop other threads reading the file while it is being updated.

When a conflict occurs (i.e. simultaneous writing and reading operations or multiple simultaneous write
operations to the same taf file) then the first thread to access the file is allowed to finish it’s write
operation and the remaining threads are forced to wait for the operation to complete.

Deleting taf Files
Witango Application Server 5 will fail a delete file operation on a taf file if the file is open for either
reading or writing by any other threads.

CHANGES TO CUSTOM HTTP HEADER GENERATION
Witango Application Server 5 always returns a complete set of HTTP response headers to the client as a
special separate transaction. The owner of the client (e.g. IIS plug-in) may choose to return this error to
the server or not.

NOTE:

Some browsers may show  a user friendly interpretation of an HTTP error instead of the error text. If it is desirable
that the error text is shown, the browser's settings must be adjusted.

The Witango Application Server 5 has two new meta tags that help to form a proper HTTP response
header:  <@HTTPSTATUSCODE> and <@HTTPREPONSEPHRASE>.  These new meta tags are
outlined in detail in last section of this document.

Change to Output of the <@CRLF> Meta Tag.
Tango 2000 used to return either CR or CRLF depending on the OS type. Witango Application Server 5
always returns CRLF as required by the HTTP RFC (RFC-2616) on all platforms. The external HTTP
header file (by default header.htx) should use <@CRLF> and should not contain any OS line breaks.

Example:
HTTP/1.1 301 Moved Permanently<@CRLF>Content-type: text/html<@CRLF><@CRLF>

META OBJECTS

Change to Meta Object Handler Loading Mechanism
The Meta Object Handler loading mechanism has been changed in Witango Application Server 5 to load
handler plug-ins (DLLs) at start-up.  This is no longer done on first request as it was under Tango 2000.
This allows the server to verify whether a plug-in can be loaded and initialized or not on start-up. Plug-ins
that fail to load or initialize are not visible in the server environment.

Several new parameters have been included in the handlers.ini file.  They include:

LoadHandler Controls whether the handler is to be loaded by the server (value 1) or not (value 0).
The default value is 0 (not to load) for all handlers so as to minimise the
maintenance workload of the server;

ShortName Specifies a user-friendly name for the server that will be used for error reporting;

SupportsScanning Indicates whether the object is capable of detecting new implementations of it’s
functionality or other objects of it’s type;

ServerPath Specifies the path where the server can locate handler shared library files;



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 10

VirtualMachine Specifies the path where the server can locate the Java Virual Machine library file.

Example:

In this example the COM handler will be loaded and the Bean handler will not be.

[Handlers]
COM=
JAVABEAN=

[COM]
LoadHandler=1
ShortName=COM / DCOM Objects
SupportsScanning=0
ServerPath=c:\\Tango2000\\W3hcm100.dll
COMAttrib=My COM parameter

[JAVABEAN]
LoadHandler=0
ShortName=JavaBeans
SupportsScanning=1
ServerPath=c:\\Tango2000\\W3hbn100.dll
BEANAttrib=My BEAN parameter
VirtualMachine=c:\\path to JVM\\jvm

The <@METAOBJECTHANDLERS> meta tag in Witango Application Server 5 will now display only
those handlers whose plug-ins were successfully loaded by the server on start-up as well as static handlers
(e.g. the TCF handler).  Using the sample handlers.ini file shown above, the meta tag would return a two-
row result array - one row for TCF and one for COM.

<@METAOBJECTHANDLERS> in Tango 2000 Server returned the description of the static handlers
(i.e. TCF) and the contents of the t4handlers.ini file without checking whether the plug-ins can be loaded
and initialized or not.

Concurrent Introspection Against Global Meta Objects
Tango 2000 maintained a global meta object method information cache (e.g. method names, parameters,
return types, etc) that was accessible to all loaded object handlers. Moreover, the cache was flushed on
every CloseIntrospect call and had to be retrieved again during an OpenIntrospect call. Augmenting this
model Witango Application Server 5 now supports concurrent introspection done against the same
physical object handler by securing the introspection cache for multithreaded access.

Handling of COM Objects
A meta object constructed from a VARIANT returned by a collection object (i.e. the one created when
processing <@OBJECTS> and <@OBJECTAT>) doesn't have an associated object identity string.
This prevents such a meta object from being introspected using the global introspection cache because
there is no ID to look up the introspection information.  If the returned collection object is derived from
IDispatch (the kind of objects Witango supports as COM objects), then an actual CLSID of the object
will be retrieved using IDispatch's functionality. If other types of objects are returned, such as
IUnknown, they will receive an identity of IUnknown, which is not useful in the server environment, but
may be used to pass IUnknown back to the plug-in.

ERROR REPORTING

Connections from Unauthorised Clients
Attempts to connect to a server by an unauthorized client (i.e. not registered in the VALIDHOST
parameter of the Witango.ini file) will now be reported to the witangoevents.log file.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 11

Retrieval of Formatted Error Messages
A new error part called ErrorMessage has been added to the Witango <@ERROR> meta tag that allows
for the retrieval of a formatted error message, in addition to the standard message1 and message2.

Example:

<@ERROR PART=”ErrorMessage”> might return:

“The configuration variable (logdir) can not be set in the (local) scope”

Retrieval of Help on Error Messages
A new error part called HelpMessage has been added to the Witango <@ERROR> meta tag that allows
for the retrieval of a free style optional string describing possible ways to resolve the error.

Example:
<@ERROR PART=”HelpMessage”> might return:

“Consult the documentation for a list of valid scopes that can be used with this variable”.

Variation to the Default Value of DEFAULTERRORFILE
The default value for the DEFAULTERRORFILE configuration variable has been modified to show the
new parts for the <@ERROR> meta tag - ErrorMessage and HelpMessage - when those values are not
empty.

Both message1 and message2 will still be available through the <@ERROR> tag to maintain the
backward compatibility.

NOTE:

The HelpMessage text is not written into the log file.

Variation to Logging of Error Messages
There are two variations to the logging of error messages:

• If the ERRORMESSAGE parameter for <@ERROR> is not empty, it will be written into
the log file instead of the usual message1 and message2;

• The 255 character limit on the message length has been removed.!

Requests to Witango Application Server 5 During Start-up or Shutdown
Witango Application Server 5 no longer returns an empty screen if a request is made of the server during
start-up or shutdown.  It now reports one of the following three errors:

• The server is starting up;

• The server is shutting down;

• The server is not available to process regular requests.

Handling of Unrecoverable Application Errors
Previously the timeout.html file in Witango Application Server 5.0 was only returned on a recoverable
exception (e.g. timed out query, memory allocation error, etc).  Unrecoverable application errors resulted
in a blank screen being presented back to the user.  timeout.html is now also used for unrecoverable
application errors.  If the configuration variable TIMEOUTHTML is empty, the default error message
Unrecoverable Application Error is returned to the user, otherwise the contents of the file will be used.
The name of the configuration variable has not been changed for backward compatibility and
timeout.html has been kept even though it is now used in a wider set of circumstances.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 12

WINDOW PLATFORMS ONLY

Every time the Unrecoverable Application Error exception is caught, an entry will be added into the
witangoevents.log file with the error description, the application file name and the action name, if
available, that caused an unrecoverable exception.  In case of a fatal exception (i.e. crash) the server tries
to recover instead of restarting unless a restart is absolutely necessary.

Variation to LOGGINGLEVEL Values
The five values that can be assigned to the LOGGINGLEVEL configuration variable are now numeric
rather than textual.  The following table lists each value and describes what information is logged.

LOGGING LEVEL VALUES

Level Information Logged

0 None.

1 Application file execution, search and post argument
values.

2 Level 1 information plus application file actions.

3 Level 2 information plus generated SQL, variable and
action result values.

4 Level 3 information plus ResultsHTML.

If the LOGGINGLEVEL value is set incorrectly in the configuration file, a warning will be reported to
the witangoevents.log file and logging will be turned off.  If the system variable
SYSTEM$LOGGINGLEVEL is assigned an incorrect value in an application file, the request will fail
with an error.

DEBUGGING

Revised Handling of DEBUGMODE Configuration Variable
The DEBUGMODE configuration variable no longer affects the output to the log file.  It is now used
exclusively to manage the debug output in the result HTML.  The variable is now only evaluated once for
every action executed by Witango Application Server.  This means that users can no longer rely on debug
in the log file.

Addition of a Meta Stack Report
When an error occurs during the processing of the result HTML, the meta stack of nesting meta tags will
be reported in the log file and the log results in the debug section of the result HTML.  This is known as a
meta stack report.

The meta stack is reported at all log levels, except NOLOGGING.

Example:

[Meta Stack] [16] (0003):<@ASSIGN system$threadpoolsize 5>
[Meta Stack] [16] (0002):<@INCLUDE FILE=errors.inc>

The numbers in parenthesis is the line number of the corresponding result HTML block.  If the error
occurred in one of the nested tags, as is shown in the example, the entire meta stack will be reported
starting at the inner tag (i.e. the one that caused the error) and ending with the outer tag.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 13

In this case, the line number against each line is relative to the beginning of the HTML fragment
associated with the reported meta tag.  The assignment meta tag that caused the error is located on the line
3 in the errors.inc file. The include meta tag is located on the line 2 of the action's result HTML.

Witango Application Server 5 can report the meta stack using two new meta tags. These meta tags are
<@ISMETASTACKTRACE> and <@METASTACKTRACE>.  They are defined in detail later in
this document.

Additional Debug Information
Reporting debug information about external data source actions has been improved to display the action
command and parameter details.

WITANGO CLIENT

Plug-In Architecture
Plug-ins and CGI have been completely redesigned and largely replaced with the Witango API code. See
the Witango.h file for details on the API.

Cross Platform Connections
Different platforms use different symbol conventions in their path names.  Windows platforms use the
convention of / (forward slash) as opposed to the Unix convention of using \ (back slash).  This means
that you cannot use a Witango client on a Unix platform to connect to a Windows based Witango server
and vice versa.  However, you can connect the Witango client on a OS X box to a Linux or Solaris based
server and vice versa as they are using the same path format.

ERROR_HTML
The entry ERROR_HTML in the client configuration file may be overridden by setting the
REPORTCLIENTERROR entry for a particular plug-in to YES, TRUE or 1.  If it is set this way the
Witango client error text will be reported regardless of whether ERROR_HTML is present or not.

Changes to Path Formats
Tango 2000's client used to convert the physical application file path reported by the web server
(path_translated) to URL format (by replacing the backslashes to forward slashes on Windows.  The
server did the opposite operation for each request.  Witango Application Server 5 sends the physical paths
in the form they are provided by the web server.

Addition of CLIENTIOTIMEOUT
A new client configuration variable has been introduced to control how long the client waits for the server
to respond with either the result HTML or any intermediate requests such as application or include file
requests.  The name of the configuration variable is CLIENTIOTIMEOUT and the value is expected in
seconds.  If the variable is missing or set to a zero, the default value will be used (which is typically quite
small).

COMMAND LINE
Witango Application Server 5 can now call command line functionality on all platforms including OS X.
On OS X, the script file must:

• be executable by the owner of the witangod process (i.e have rx permissions)

• use Unix  syle line endings, not MacOS9-style line endings

• have the interpreter as its first line (e.g. #!/bin/sh)

For example the following script called via the external action and passed an environment variable
DIR=/Users would return a list of all user’s home directories  on the server:



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 14

#!/bin/sh
ls –al $DIR

CRON URLS
The Tango 2000 limitation of 256 characters per cron job entry in the crontab file has been removed and
URLs greater than 256 characters long can be used in the crontab file.  The format of the file has not
changed.

CHANGES TO EXISTING META TAGS

Removal of Undocumented Meta Tags
The undocumented and unsupported<@PUSH>, <@POP>, <@SHIFT> and <@UNSHIFT> meta tags
are no longer recognized as valid tags.

New Parameter for <@TOKENIZE>
A new parameter NULLTOKENS can be used with the <@TOKENIZE> meta tag to recognize empty
tokens. The parameter may be set to true to process empty tokens or to false to skip them. If
NULLTOKENS is omitted, the behaviour will be compatible with that of the previous versions of server.
The meta tag syntax now is:

<@TOKENIZE VALUE=text CHARS=delimiters [NULLTOKENS={true|false}] [{array parameters}]>

New Parameter for <@URL>
< @URL> has been modified to take an additional optional parameter MAXRESULTSIZE, which
limits the size of the results retrieved from the @URL target server. The default value for
MAXRESULTSIZE is 64K, the minimum value may vary, but in general is as small as 512 bytes.!

Even though the allocated buffer will be released after the results have been processed, specifying large
values may disrupt server's operations by consuming too much memory. Caution should be exercised
when MAXRESULTSIZE is set to large (tens of megabytes) values.

@CHOICELIST OPTIONEXTRAS
The missing  implementation of the OPTIONEXTRAS parameter in @CHOICELIST has now been
added and operates as documented in the Meta Tags manual.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 15

New Meta Tags
Witango’s meta tag library has been expanded to include the following new meta tags, each of which is
described in detail in this section:

• <@DEFINE> for creation of typed variables;

• <@EMAIL> for manipulation of email;

• <@EMAILSESSION> for manipulation of email integration;

• <@HTTPREASONPHRASE> for manipulation of default headers;

• <@HTTPSTATUSCODE> for manipulation of default headers;

• <@ISMETASTACKTRACE> for testing availability of meta stack;

• <@MAKEPATH> for the normalisation of paths;

• <@METASTACKTRACE> for outputting meta stack;

• <@MIMEBOUNDARY> to generate a MIME boundary string.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 16

<@DEFINE>

Syntax
<@DEFINE [NAME=]varname
[[SCOPE=]scope]
TYPE={TEXT | OBJECT | DOM | EMAIL | ARRAY}
[ROWS=rows] [COLS=columns]
>

Description
The meta tag creates an empty variable of the specified type in the specified scope. The type of variables
created with <@DEFINE> cannot be changed without purging a variable first. That is, an existing TEXT
variable can not be used in <@ASSIGN> on the left-hand side if the right-hand side variable is not
TEXT.

Two optional parameters ROWS and COLS are available to create an array of a required size. They are
ignored for all types, except ARRAY.

Objects created with <@DEFINE> are NULL objects (i.e. @ISNULLOBJECT returns "1") until they
are reassigned to a valid object.!

Example
Given the following code defining an array and a text variable followed by assigning the test variable the
value of the array:

<@DEFINE NAME='firstnameArray' SCOPE='user' TYPE='array' rows='1' cols='5'>
<@DEFINE NAME='firstname' SCOPE='user' TYPE='text'>
<@ASSIGN user$firstname "@@user$firstNameArray">

This code will throw the following error message.

File: define.taf

Position: Results

Class: Internal

Main Error Number: -627

The types of variables used in the assignment do not match.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 17

<@EMAIL>

Syntax
<@EMAIL [COMMAND=] {

STRUCTURE |!
GETENTITYBODY |!
GETFIELD |!
ADDFIELD |!
APPENDFIELD |!
REPLACEFIELD |
REMOVEFIELD |!
IMPORT |!
EXPORT}

NAME=emailname
SCOPE=scope
[PARTID=partid]
[FIELDNAME=fieldname]
[FIELDVALUE=fieldvalue]
[TYPE={XML | ARRAY*}]
[DECODEDATA={true | false*}]
[MESSAGE=messagesource]

>

Description
@EMAIL is one of three new meta tags (<@MIMEBOUNDARY>, <@EMAIL> and
<@EMAILSESSION>) which have been added to allow the user to send or receive email messages
using the email protocols SMTP, POP3 and IMAP4.

These tags are structured similarly to the @CIPHER with it’s ACTION parameter in the sense that they
perform various functions depending on the value of the first parameter of the tag and different
parameters are require depending on the ACTION selected.  In the case of <@EMAIL>, and
(<@EMAILSESSION>, it is the COMMAND parameter.  Each Tag and Command pair could be
considered to be the equivalent of a simple meta tag.

PARAMETERS

Parameters Value

COMMAND Specifies the function to be executed. Required. (See
table of for command options).

NAME Specifies the mail to be used.

SCOPE Specifies the scope of the email.

PARTID Is the ID of the part of the email you are referencing

FIELDNAME Used with command=getfield

FIELDVALUE Used with command=getfield

TYPE

DECODEDATA Optional.  Either true or false. If set to true the data
being returned is decoded.

MESSAGE



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 18

COMMAND OPTIONS

Command Command Function

GETENTITYBODY Gets the body of the entity specified.

GETFIELD Specifies the field in the email to be returned.

ADDFIELD Used with the structure command when creating a
new mail

APPENDFIELD Append a value to a field. Used with the structure
command.

REPLACEFIELD Replace a value of a field. Used with the structure
command.

REMOVEFIELD Remove a field. Used with the structure command.

IMPORT Imports a text file structured as an email into a email
variable.

EXPORT Exports an email variable into a text file structured as
an email.

Example
<@EMAIL STRUCTURE NAME=request$loopemailvar SESSIONID='POP3 Session: <@USERREFERENCE>'
TYPE='ARRAY'>

<@EMAIL GETENTITYBODY PARTID=@@request$EMPartID[<@CURROW>,1]
NAME=request$loopemailvar>

<@EMAIL GETFIELD NAME=request$loopemailvar FIELDNAME="subject">



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 19

<@EMAILSESSION>

Syntax
<@EMAILSESSION [COMMAND=] {

OPEN |!
CLOSE |!
LIST |!
RETRIEVE |!
SEND |!
DELETE}

SESSIONID=sessionid
PROTOCOL={SMTP | POP3 | IMAP4}
SERVER=server-address
[PORT=server-port]
[USERNAME=username]
[PASSWORD=password]
[MAILBOX=mailbox]
[MODE={COMMIT | ROLLBACK*}]
[FIELDS=field-list]
[MESSAGEID=mesageid]
[NAME=emailname]
[SCOPE=emailscope]

>

Description
This is one of three new meta tags (<@MIMEBOUNDARY>, <@EMAIL> and
<@EMAILSESSION>) which have been added to allow the user to compose and manipulate an email
message  to send or receive email messages using such email protocols as SMTP, POP3 and IMAP4 .

These tags are structured similarly to the @CIPHER with it’s ACTION parameter in the sense that they
perform various functions depending on the value of the first parameter of the tag and different
parameters are require depending on the ACTION selected.  In the case of <@EMAIL>, and
(<@EMAILSESSION>, it is the COMMAND parameter.  Each Tag and Command pair could be
considered to be the equivalent of a simple meta tag.

PARAMETERS

Parameters Value

COMMAND Specifies the function to be executed. Required. (See
table of for command options).

SESSIONID Optional. Defined using the open command and used
by the other commands to identify the open session.

PROTOCOL The protocol being used. (SMTP, POP3 or IMAP4) to
make the connection with the mailserver.

SERVER Required when using the open command. Host name
(developer.witrango.com) or IP address
(196.142.203.1) of the POP/SMTP/IMAP4 server.

PORT Optional. Defaults to the standard port 110. Used with
the open command.

USERNAME Optional. If no user name is specified, the connection
is made anonymously.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 20

Parameters Value

PASSWORD Optional. Password corresponds to the user name.

MAILBOX Optional. Specifies the mail box on the server to be
used.

MODE Required when using the close command. Used to
either commit or rollback the changes to the mail
account since the session was opened (delete read
messages)

FIELDS Optional. Specifies which fields are to be used with
the chosen command.

MESSAGEID Required with the delete and retrieve commands to
identify the desired message. (COMMAND=delete
MESSAGEID=12345)

NAME Specifies Email Name.

SCOPE Specifies Email Scope.

COMMAND OPTIONS

Command Option Command Function

OPEN

Open an email session. To perform an interactions
with the mail server this command needs to be use
first. This command requires values for sessionid,
protocol, server.

CLOSE Closes the email session. This command requires
values for sessionid and mode.

LIST Returns the list of messages currently in the mail
account.

RETRIEVE Retrieve a specific message as specified by the
messageid parameter.

SEND Sends a mail that has been constructed.

DELETE Deletes mail from mail server. This command needs
the session id and the message id.

Example
<@EMAILSESSION OPEN PROTOCOL="POP3" SESSIONID="POP3 Session: <@USERREFERENCE>"
SERVER="10.1.2.10" USERNAME="username" PASSWORD="password">

<@EMAILSESSION LIST SESSIONID="POP3 Session: <@USERREFERENCE>">

<@EMAILSESSION RETRIEVE NAME=request$loopemailvar MESSAGEID='<@VAR
request$messageList[@@local$loopcnt,1]>' SESSIONID="POP3 Session: <@USERREFERENCE>">



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 21

<@HTTPSTATUSCODE>

Syntax
<@HTTPSTATUSCODE>

Description
<@HTTPSTATUSCODE> is used in conjunction with <@HTTPREASONPHRASE> to form a
proper HTTP response header.

<@HTTPSTATUSCODE> evaluates to either 200 or 500.  The primary use of this meta tag is in the
default header returned by Witango Application Server 5.

When a custom HTTP header is returned, it can be formed using <@HTTPSTATUSCODE> and <@
HTTPREASONPHRASE >.

Example
HTTP/1.1 <@HTTPSTATUSCODE> <@HTTPREASONPHRASE><CRLF>... the rest of the custom header ...



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 22

<@ HTTPREASONPHRASE >

Syntax
<@HTTPREASONPHRASE>

Description
<@ HTTPREASONPHRASE > is used in conjunction with <@HTTPSTATUSCODE> to form a
proper HTTP response header.

<@ HTTPREASONPHRASE > reports the matching status phrase: OK or Application Server Error.
The primary use of this meta tag is in the default header returned by Witango Application Server 5.

Example
HTTP/1.1 <@HTTPSTATUSCODE> <@HTTPREASONPHRASE><CRLF>... the rest of the custom header ...



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 23

<@ISMETASTACKTRACE>

Syntax
<@ISMETASTACKTRACE>

Description
Returns 1 if the meta stack trace is available (i.e. if the error occurred while processing the results HTML
as opposed an action error) otherwise 0 is returned.

Example
<@ISMETASTACKTRACE>



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 24

<@METASTACKTRACE>

Syntax
<@METASTACKTRACE>

Description
Returns a two-dimensional array representing the meta stack trace. The first column of this array is a line
number on which the error occurred and the second one is the meta tag that caused an error.
<@METASTACKTRACE> takes the usual array formatting parameters that allow the user to change
the array's appearance.!

Example
<@METASTACKTRACE>



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 25

<@MAKEPATH>

Syntax
<@MAKEPATH [PATH1=]path1 [[PATH2=]path2] [TYPE={URL|FILESYSTEM}]>

Description
In its simplest form, when only one path is provided, the path is normalized - all path delimiters are
converted to the requested type (URL path or physical path) and the end of the path is appended with a
path delimiter character.

When two paths are provided, each one of them will be normalized (except that the second path will not
be appended with the delimiter, so that a file name can be used) and combined into a single path, returned
by the meta tag. For example

Example
Non-Windows:

<@MAKEPATH "c:\inetpub/wwwroot/" “<@APPFILEPATH>” TYPE=”FILESYSTEM”>

will evaluate to

c:\inetpub\wwwroot\appfilepath\

Windows:

<@MAKEPATH "c:\inetpub/wwwroot/" "<@APPFILEPATH>filename.ext" TYPE=”FILESYSTEM “>

will evaluate to

c:\inetpub\wwwroot\appfilepath\filename.ext.

Note:  There is no trailing slash in this case.



WHAT’S NEW - WITANGO APPLICATION SERVER 5.0

WITANGO APPLICATION SERVER 5.0 26

<@MIMEBOUNDARY>

Syntax
<@MIMEBOUNDARY LEVELID=levelid [BOUNDARY=boundary]>

Description
The meta tag generates a MIME boundary string that can be used when composing multipart messages. If
the parameter BOUNDARY is omitted (recommended), the value of the request scope identifier will be
used to generate boundary. The LEVELID parameter is a number that identifies the boundary level (if a
multilevel message is being composed).

Example
The resulting boundary will take the following form where the first number is the level ID and the
following alphanumeric sequence is the request scope identifier at the time when the
<@MIMEBOUNDARY> was being processed:

<@MIMEBOUNDARY LEVELID=1>

would return:

----=_MimePart_0001___33A8F4D74DE30EF93CBEFAA4


