
Witango Programmer’s Guide

August 2003

With Enterprise Pty Ltd

Level 1,

44 Miller Street,

North Sydney, NSW, 2060

Australia

Telephone:+612 9460 0500

Fax:+612 9460 0502

Email:info@witango.com

Web: www.witango.com

http://www.witango.com

Table of Contents
Table of Contents
1 Table of Contents . i

2 Introduction . 1
An Overview of This Manual

Conventions used in this manual . 1

3 Witango Studio Basics . 3
Introducing the basics of the Witango Studio Interface and Witango
Application Files

Witango Studio Window Components . 4

Viewing Interface Components . 5
Floating and Docking Interface Components . 6
Floating and Docking the Workspace Window . 6
Using Context-Sensitive Menus . 7
Properties Window . 7
HTML Editing Window . 7
Working With Multi-column Lists . 16
The SQL Query Window . 18
Finding and Replacing Text . 23
Keyboard Shortcuts . 29
Witango Actions . 31
The HTML Toolbar . 34
Working With Actions . 41
Adding an Action . 42
Naming an Action . 43
Deleting an Action . 44
Editing an Action . 44
Moving an Action . 45
Copying an Action . 45
Context-Sensitive Action Menu . 47
Action Properties . 47
Assigning Attributes to Actions . 48
Adding HTML (Results Action) . 54
Presentation Action . 54

Using Witango Application Files . 57

XML Format . 57
Application File Window . 58
Unsaved Changes Indicator . 59
Creating an Application File . 59
ii

Table of Contents

ii
Saving an Application File . 60
Saving a Witango Application File or Witango Class File as Run-Only . . 61
Executing Application Files . 62

Debugging Files . 63

Turning Debug On . 63
Viewing Debug . 64
 . 65
 . 65

4 Meta Tags . 67
A Reference to Witango Server Meta Tags

Where You Can Use Meta Tags . 68

Format of Meta Tags . 69

Syntax . 69
Naming Attributes . 69
Quoting Attributes . 70

Encoding Attribute . 72

NONE . 72
METAHTML . 72
MULTILINE . 72
MULTILINEHTML . 72
URL . 73
JAVASCRIPT . 73
SQL . 73
CDATA . 73

Format Attribute . 75

CASE: Case Reformatting . 75
NUM: Numeric Formatting . 75
Synonyms . 77
TEL: Telephone Numbers . 77
DATETIME . 78

Array-to-Text Conversion Attributes . 79

<@ABSROW> . 80

<@ACTIONRESULT> . 81

<@ADDROWS> . 82

<@APPFILE> . 84

<@APPFILENAME> . 85

<@APPFILEPATH> . 86

<@APPKEY> . 87

<@APPNAME> . 88
ii

Table of Contents
<@APPPATH> . 89

<@ARG> . 90

<@ARGNAMES> . 91

<@ARRAY> . 92

Working with Arrays . 92
Examples . 93

<@ASCII> . 94

<@ASSIGN> . 95

Scope Attributes . 96

<@BIND> . 100

<@BREAK> . 103

<@CALC> . 104

<@CALLMETHOD> . 115

<@CGI> . 118

<@CGIPARAM> . 119

<@CHAR> . 122

<@CHOICELIST> . 123

<@CIPHER> . 128

<@CLASSFILE> . 132

<@CLASSFILEPATH> . 133

<@CLEARERRORS> . 134

<@COL> . 135

<@COLS> </@COLS> . 136

<@COLUMN> . 137

<@COMMENT> </@COMMENT> . 138

<@CONFIGPATH> . 139

<@CONNECTIONS> . 140

<@CONTINUE> . 143

<@CREATEOBJECT> . 144

<@CRLF> . 146

<@CURCOL> . 147

<@CURRENTACTION> . 148

<@CURRENTDATE>, <@CURRENTTIME>,
<@CURRENTTIMESTAMP> . 149

<@CURROW> . 150

<@CUSTOMTAGS> . 151

<@DATASOURCESTATUS> . 152
iiiiii

Table of Contents

iv
<@DATEDIFF> . 155

<@DATETOSECS>, <@SECSTODATE> . 156

<@DAYS> . 158

<@DBMS> . 159

<@DEBUG> </@DEBUG> . 160

<@DEFINE> . 161

Type Attribute . 161
Scope Attribute . 162

<@DELROWS> . 164

<@DISTINCT> . 166

<@DOCS> . 169

<@DOM> . 170

<@DOMAIN> . 171

<@DOMDELETE> . 172

<@DOMINSERT> . 173

<@DOMREPLACE> . 175

<@DQ>, <@SQ> . 176

<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP> 177

<@DSNUM> . 179

<@DSTYPE> . 180

<@ELEMENTATTRIBUTE> . 181

<@ELEMENTATTRIBUTES> . 183

<@ELEMENTNAME> . 185

<@ELEMENTVALUE> . 187

<@EMAIL> . 189

<@EMAILSESSION> . 192

<@ERROR> . 195

<@ERRORS> </@ERRORS> . 197

<@EXCLUDE> </@EXCLUDE> . 198

<@EXIT> . 199

<@FILTER> . 200

<@FOR> </@FOR> . 203

<@FORMAT> . 204

<@GETPARAM> . 205

<@HTTPREASONPHRASE> . 207

<@HTTPSTATUSCODE> . 208

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>,
iv

Table of Contents
<@ELSEIFEQUAL>, </@IF> . 209

<@IFEMPTY> <@ELSE> </@IF> . 213

<@IFEQUAL> <@ELSE> </@IF> . 214

<@INCLUDE> . 216

<@INTERSECT> . 217

<@ISALPHA> . 220

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP> . 221

<@ISMETASTACKTRACE> . 225

<@ISNULLOBJECT> . 226

<@ISNUM> . 227

<@KEEP> . 228

<@LEFT> . 229

<@LENGTH> . 230

<@LITERAL> . 231

<@LOCATE> . 232

<@LOGMESSAGE> . 233

<@LOWER> . 234

<@LTRIM> . 235

<@MAKEPATH> . 236

<@MAP> . 237

<@MAXROWS> . 239

<@METAOBJECTHANDLERS> . 240

<@METASTACKTRACE> . 241

<@MIMEBOUNDARY> . 242

<@NEXTVAL> . 243

<@NULLOBJECT> . 244

<@NUMAFFECTED> . 245

<@NUMCOLS> . 246

<@NUMOBJECTS> . 247

<@NUMROWS> . 248

<@OBJECTAT> . 249

<@OBJECTS></@OBJECTS> . 250

<@OMIT> . 251

<@PAD> . 252

<@PLATFORM> . 253

<@POSTARG> . 254
vv

Table of Contents

vi
<@POSTARGNAMES> . 255

<@PRODUCT> . 256

<@PURGE> . 257

<@PURGECACHE> . 258

<@PURGERESULTS> . 259

<@RANDOM> . 260

<@REGEX> . 261

<@RELOADCONFIG> . 263

<@RELOADCUSTOMTAGS> . 264

<@REPLACE> . 265

<@RESULTS> . 266

<@RIGHT> . 267

<@ROWS> </@ROWS> . 268

<@RTRIM> . 270

<@SCRIPT> . 271

<@SEARCHARG> . 274

<@SEARCHARGNAMES> . 275

<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS> 276

<@SERVERNAME> . 277

<@SERVERSTATUS> . 278

<@SETCOOKIES> . 282

<@SETPARAM> . 283

<@SORT> . 285

<@SQ> . 287

<@SQL> . 288

<@STARTROW> . 289

<@SUBSTRING> . 290

<@THROWERROR> . 291

<@TIMER> . 293

<@TIMETOSECS>, <@SECSTOTIME> . 294

<@TMPFILENAME> . 295

<@TOGMT> . 296

<@TOKENIZE> . 297

<@TOTALROWS> . 298

<@TRANSPOSE> . 299

<@TRIM> . 300
vi

Table of Contents
<@TSTOSECS>, <@SECSTOTS> . 301

<@UNION> . 303

<@UPPER> . 306

<@URL> . 307

<@URLDECODE> . 312

<@URLENCODE> . 313

<@USERREFERENCE> . 314

<@USERREFERENCEARGUMENT> . 315

<@USERREFERENCECOOKIE> . 316

<@VAR> . 317

<@VARINFO> . 322

<@VARNAMES> . 323

<@VARPARAM> . 324

<@VERSION> . 325

<@WEBROOT> . 326

<@!> . 327

5 Custom Meta Tags . 329
A Guide to Custom Meta Tags

Using Custom Meta Tags . 330

Attributes of Custom Meta Tags . 330
Tag Name Conflicts . 330
Custom Meta Tag Limitations . 330

Creating Custom Meta Tags: Tag Definition File . 331

Custom Tag Definition File Format . 331

Loading Tags . 335

Reloading Custom Meta Tags . 335
Returning Information on Custom Meta Tags . 335

Installing Custom Meta Tag Definition Files . 336

Application-specific Custom Meta Tags . 336

Custom Meta Tag Example: tabletag.xml . 337

1. Defining the Custom Meta Tag . 337
2. Installing the Custom Meta Tag . 338
3. Installing the Object . 338
4. Using the Custom Meta Tag in a Witango Application File 340

Custom Tag Generator . 342

6 Working With Variables . 343
viivii

Table of Contents

vii
Using Variables in Witango

About Variables . 344

Naming Variables . 344
Variable Types . 344
Understanding Scope . 345
Basic Witango Scopes . 346

Request Scope . 346
Cookie Scope . 347
User Scope . 348
Application Scope . 348
Domain Scope . 349
System Scope . 350

Witango Class File-only Scopes . 351
Instance Scope . 351
Method Scope . 351

Custom Scopes . 351
Example: Setting Up a Chat Room . 352
Specifying Custom Scope . 352
Timeout for Custom Scope . 352
Configuration Variables and Custom Scope 353

Returning Variable Values . 353
Default Scoping Rules . 353
Shortcut Syntax for Returning Variables -@@request$foo 354

Purging Variables . 354
Arrays . 354

Setting Arrays . 355
Array Formats . 355
Returning the Values of Arrays . 355
Special Array: resultSet . 357
Row Zero of Arrays . 358

How Witango Determines Default Scope in Variable Assignments . . . 358

Using Configuration Variables . 360

Using User Keys . 362

User Keys Specific to Transactions . 363

Changing the User Key . 364

Assigning Values to userKey and altUserKey . 364
Alternate User Keys . 364
Returning the Value of userKey and altUserKey 365
Using Application File User Keys . 365

7 Document Object Model . 367
Creating and Manipulating Document Instances Using DOM

What is DOM? . 368
viiii

Table of Contents
Overview of Using DOM . 369

Example . 370

XPointer Syntax . 372

Root . 372
ID . 372
Child . 372
Descendant . 372
Terms of Child or Descendant . 373
Example . 374

Manipulating a Document Instance . 375

Creating a Document Instance . 375
Using DOM Meta Tags . 376

Returning XML in Witango Applications . 377

Using <@VAR> and <@ASSIGN> With DOM 377
Using <@ELEMENT...> Meta Tags With DOM 379

Applications of DOM . 382

Creating Complex Data Structures . 382
Example . 382

Separating Business and Presentation Logic . 384
Reading and Writing Witango Application Files 385
Other Uses . 386

8 Configuration Variables . 387
Setting Witango Options With Configuration Variables

A Note on Scope . 387

A Note on Default Locations . 388

Alphabetical List of Configuration Variables, With Scopes 390

absolutePathPrefix . 393

altUserKey . 393

appConfigFile . 393

applicationSwitch . 394

aPrefix . 394

aSuffix . 394

cache . 395

cacheIncludeFiles . 395

cacheSize . 395

cDelim . 396

configPasswd . 396

cPrefix . 397
ixix

Table of Contents

x

crontabFile . 397

cSuffix . 397

currencyChar . 398

customScopeSwitch . 399

customTagsPath . 399

dataSourceLife . 399

dateFormat, timeFormat, timestampFormat . 400

DBDecimalChar . 402

debugMode . 403

decimalChar . 403

defaultErrorFile . 404

defaultScope . 405

docsSwitch . 405

domainConfigFile . 405

domainScopeKey . 406

DSConfig . 406

DSConfigFile . 408

encodeResults . 409

externalSwitch . 409

FMDatabaseDir . 409

fileDeleteSwitch . 409

fileReadSwitch . 410

fileWriteSwitch . 410

headerFile . 411

httpHeader . 411

itemBufferSize . 411

javaScriptSwitch . 412

javaSwitch . 412

license . 412

licenseErrorHTML . 412

listenerPort . 413

lockConfig . 413

logDir . 413

loggingLevel . 414

logToResults . 415

mailAdmin . 415
x

Table of Contents
mailDefaultFrom . 415

mailPort . 416

mailServer . 416

mailSwitch . 416

maxActions . 417

maxHeapSize . 417

maxSessions . 417

noSQLEncoding . 418

objectConfigFile . 418

passThroughSwitch . 418

persistentRestart . 419

pidFile . 419

postArgFilter . 420

queryTimeout . 420

rDelim . 420

requestQueueLimit . 421

returnDepth . 421

rPrefix . 421

rSuffix . 422

shutdownUrl . 422

startStopTimeout . 422

startupUrl . 423

staticNumericChars . 423

stripCHARs . 424

TCFSearchPath . 424

thousandsChar . 424

threadPoolSize . 425

timeFormat . 426

timeoutHTML . 426

timestampFormat . 426

transactionBlocking . 426

useFullPathForIncludes . 427

userAgent . 427

userKey, altuserKey . 428

validHosts . 429

varCachePath . 430
xixi

Table of Contents

xii
variableTimeout . 430

variableTimeoutTrigger . 431

9 Witango Server Error Codes . 433
A Listing of Witango Server Error Numbers and Messages

10 <@CALC> Expression Operators 441
A List of Expression Operators for use with the <@CALC> Meta Tag

Numbers . 442

Hexadecimal, Octal and Binary Numbers . 444

Strings . 445

Calculation Variables . 447

Operators . 448

Built-in Functions . 450

Numeric functions of the form func(expr) 451
String functions of the form func(string) . 451
Array functions of the form func(expr|array expr|array) 452

Array Operators . 452
Contains Operator . 452
Foreach Operator . 452
Meta Tag Evaluation . 453
Ordering of Operation Evaluation With Parentheses 453

11 Lists of Meta Tags . 455
A listing of Witango Server Meta Tags

Alphabetical List of Meta Tags . 456

Alphabetical List of Meta Tags, With Attributes . 464

Meta Tags List by Function . 468

Action/Application File Information . 468
Application Scope . 468
Array Operations . 468
Conditionals . 468
Custom Meta Tags . 468
Data Sources . 469
Database Output . 469
Date and Time . 469
Document Instance (XML) . 469
Email . 470
Error Handling . 470
File Access . 470
Formatting . 470
xii

Table of Contents
HTML Processing . 470
HTTP Processing . 470
Loop Processing . 471
Numeric Operations . 471
Objects . 471
Paths . 471
Server . 471
Script Execution . 471
String Operations . 471
Witango Class Files . 472
Witango Information . 472

12 Using DLLs With Witango . 473
Programmer Reference for Extending the Functionality of Witango Using
DLLs

TExtParamBlock . 474

DLL Functions . 475

13 Index . 479
xiiixiii

Table of Contents

xiv
 xiv

1
C H A P T E R 1

Introduction

An Overview of This Manual
This manual provides detailed explanations of Witango meta tags, which
are used to construct Witango application files and Witango class files,
and also provides details on configuration variables, which are used to
configure Witango Server.

• Meta tags: Chapter 3 (page 67), including custom meta tags (page
329).

• Configuration Variables: Chapter 7 (page 387).

This manual is intended as a reference for users who are familiar with
Witango.

Some topics in this manual apply only to Witango for OS X, Witango
for Windows, Witango Server on UNIX, or are specific to FileMaker data
sources under Mac OS X.

The Mac™ OS X, Microsoft™ Windows™, UNIX™, and
FileMaker Pro™ graphics identify those topics, respectively; otherwise,
topics apply equally to all versions.
1

Introduction

2

Conventions used in this manual
2

WITANGO_PATH is used throughout this document to indicate the
filepath to where the Witango Application Server executable is location
on the machine. eg:

For Windows:

c:\Program Files\Witango\Server\

For Linux:

/usr/local/witango

For Mac OS X:

/Applications/Witango/Server

2
C H A P T E R T W O

Witango Studio Basics

Introducing the basics of the Witango Studio Interface and
Witango Application Files
This chapter helps you orient yourself to the Witango Studio interface
and some of the common operations available to you, looks at how
Witango actions work and describes Witango application file operations.

The topics covered in this chapter include:

• Witango Studio window components

• overview of the Witango Studio window

• using context-sensitive menus

• using HTML editing windows

• using Word Wrap

• working with multi-column lists in action editing windows

• using the SQL Query window

• finding and replacing text or regular expressions

• keyboard shortcuts.

• Working with actions:

• the Actions bar

• working with actions

• assigning attributes to actions

• the Results action

• the Presentation action.

• Using Witango application files

• XML file format details

• the Witango application file window

• creating and saving Witango application files

• debugging Witango application files

• executing Witango application files
2

Witango Studio Window Components

3

Witango Studio Window Components
3

To start Witango Studio, do one of the following:

• In the Witango folder, double-click the Witango Studio icon.

• From the Start menu, choose Programs, choose Witango, then
choose Witango Studio.

The main Witango Studio window appears:
1 The main title bar displays the Witango Studio name and the name
of the current (front most) Witango application file or the SQL
Query window.

2 The menu bar contains pull-down menus for Witango Studio
commands. Click a menu title to open it, then click a command to
select it. Commands appearing in gray are disabled and do not apply
to the operation you are trying to perform.

3 Click icons on the Actions bar and drag them into an open
Witango application file to add them to the file.

4 Click icons on the toolbar to select the main Witango Studio
Standard File commands. For example, to save a Witango
Witango
Studio

Witango Studio Window Components
application file, you can either choose Save from the File menu, or
click the Save icon on the toolbar.

5 Click icons on the Attributes bar to assign attributes to selected
actions.

6 The Workspace includes tabs for Data Sources, Objects, Snippets,
and Projects, if any exist. You switch among the four sections of the
Workspace by clicking the corresponding tab. The four sections are
called Data Sources Workspace, Object Workspace, Snippets
Workspace, and Project Workspace, respectively.

7 The Main Window Area displays one or more Witango
application file windows, action editing windows, attribute editing
windows, or the SQL Query window.

8 The Status bar displays messages about the Witango Studio
environment, such as when connecting to a data source, the
currently connected data source, or when passing the cursor over a
toolbar icon to display its name/function. It also shows if CAPS LOCK,
NUM LOCK, and SCROLL LOCK on the keyboard are switched on.
Viewing
Interface
Components

Y
t
c
i

ou can choose to show or hide the Workspace window and any of the
oolbars, the status bar, or the Properties window by enabling the
omponent’s name from the View menu. A check mark beside the name
ndicates the component is visible in the interface. Uncheck the name to
hide the component.

To hide the Workspace window, you can also right-click the window and
choose Hide from the context-sensitive menu that appears.
44

Witango Studio Window Components

5

Floating and
Docking
Interface
Components

T
W
u
t

T

5

he Workspace window and toolbars are, by default, docked to the
itango Studio interface. You can drag them from the interface to

ndock, or float, them anywhere on your desktop. You can also dock
hem again.

o float an interface component on your desktop, simply click the
undocking bars and drag the component to the desktop. If you want, you
can then resize the component. Position the cursor over the
component’s border, and when the cursor changes to the resize arrow,
click and drag its border.

To dock the component to the interface again, drag it anywhere in the
toolbar area.
Floating and
Docking the
Workspace
Window

Y
w
t
w

T

ou can float the Workspace window in the Witango Studio main
indow or anywhere on your desktop, or dock it to the interface. To do

his, you check or uncheck commands appearing in the Workspace
indow’s context-sensitive menu.

o float the Workspace window only in the Witango Studio main
window, right-click the Workspace window, and click Float in Main
Window. A check mark appears beside the command indicating the
option is on. This prevents you from dragging the Workspace window
beyond the borders of Witango Studio.

If you want to drag the Workspace window on your desktop, disable
Float in Main Window, and drag the Workspace window to another
position.

To dock the Workspace window to the interface, drag the Workspace
window to the toolbar area.

Note You cannot dock the Workspace window to the interface with
the Float in Main Window option checked.

To avoid inadvertently docking the Workspace window to the interface,
right-click the Workspace window and deselect Allow Docking.

Witango Studio Window Components
Using Context-
Sensitive Menus

I
c
t

n many Witango Studio windows and dialog boxes, you can position the
ursor on a particular area of the screen and clickthe right mouse button
o display a context-sensitive menu of commands. The commands that

appear relate to the item you click. Grayed-out commands are not
applicable to the current item.
Properties
Window

T
c
s

he Properties window allows you to view information about and add
omments to a selected item. Selectable Witango items include data
ources (including tables and columns), application files, and actions. In

general, the Properties window changes to show the properties of the
currently selected item.

The following is an example of an Action Properties window for a Search
Builder action:

To open any Properties window

1 Select the item you want to view information about.

2 Do one of the following:

• From the View menu, choose Properties.

• Right-click the item, and choose Properties from the
context-sensitive menu that appears.

• Type ALT+ENTER.

The Properties window can be left open. Clicking an item with properties
updates the window to show information about that item.
HTML Editing
Window

M
W
c

ost actions in an application file can have HTML associated with them.
henever you open the assigned attribute of an action, the

orresponding HTML editing window appears. You can create or edit any
HTML using this window. This example shows the HTML editing window
66

Witango Studio Window Components

77
for the Results HTML of a Search action named “RecordList” within
the Example.taf application file:

The title of the window follows the form:

<Document> : <Action> : <HTML>

Witango Studio supports the standard editing commands. The Edit menu
displays the following editing commands:

Witango Studio Window Components
Context-sensitive Menu

You can also right-click the HTML editing window to display a context-
sensitive menu at the cursor position in the window. The following table
lists the commands available in the menu:

Closing the editing window automatically saves any changes you make. To
cancel any changes, you can choose Undo or close the file without saving
it.

Syntax Coloring

Command Function

Undo Undoes the last change made to the text.

Redo Re-performs an action that was just undone.

Cut Removes the selected text from the window.

Copy Copies the selected text to the clipboard.

Paste Pastes text on the clipboard at the cursor position.

Delete Deletes the selected text.

Select All Selects all text within the HTML editing window.

Insert Meta Tag Displays the Insert Meta Tag dialog box.
T
o make editing of your files easier and clearer, many of the HTML and
text components that appear are color-coded—HTML, Witango meta
tags, attributes, default text, and comments. You can change the specified
colors.

You can enter any amount of text in an HTML editing window. You can
also drag and drop text from elsewhere, for example, from other editing
windows.

Word Wrap

Word wrap is available in the HTML editing window as well as many
other windows. See Word Wrap page 15 for further details.

Indenting and Selecting Text

You can also position text using tab characters. Tabs are stored as tab
characters and are not converted to spaces. Tabs have no effect on the
display of HTML in the Web browser; they are used to make the HTML
you enter more readable.
88

Witango Studio Window Components

9

Y

9

ou specify the number of space characters that equal one tab character
in the Preferences dialog box. You can also specify whether you want
Witango to insert tab characters to start a new line at the same indent
level as the previous line.

Selecting lines of text in an editing window is easy. You simply use the
selection strip next to the line to select the entire line. When you select
a line, it is highlighted. The following describes the operations you can
perform using the selection strip.

• To select a single line, click the selection strip beside the line you
want to select. The entire line is highlighted.

• To select multiple lines, hold down the mouse button in the
selection strip next to the first line you want to select, and drag the
cursor up or down the selection strip to highlight subsequent lines.

Selection strip

Witango Studio Window Components
To indent selected lines, press the TAB key. All selected lines are
indented the number of characters equal to one tab character. Press
the TAB key again to indent the selected lines further; press the
SHIFT+TAB keys to reduce the indentation.

All selected lines are indented
the value of a tab character
You set the number of characters equal to a tab character in the
Preferences dialog box.

CautionYou can only use the TAB key to indent the selected lines.
Using the SPACE BAR instead replaces all the selected lines with a single
space character.

• To move the selected lines elsewhere in the editing window, simply
drag them to a new position. When you drag the selected lines, the
cursor changes to . Release the mouse button where you want the
selected lines to appear.

Note You can also use the standard editing commands (such as Undo,
Cut, Copy, Paste, and Delete) on text selected using the selection
strip.
1010

Witango Studio Window Components

1111
HTML Windows: Attributes of Actions

The HTML editing window is common for any of the HTML attributes
that may be assigned to an action—Results HTML, No Results HTML,
and Error HTML. Only the applicable attribute tabs for the selected
action appear at the bottom of the window.

You switch among the HTML editing windows by clicking the appropriate
tab.

You can also open the attribute HTML associated with an action by doing
one of the following:

• Select an action icon/name, and choose the attribute type from the
Attributes menu.

• Right-click the action icon/name, and choose the attribute type from
the context-sensitive menu that appears.

• Double-click the attribute icon in the application file.

The corresponding HTML editing window opens.

Witango Studio Window Components
Working with HTML and Text Files

In addition to editing an action’s associated HTML, you can also use
Witango’s editing capabilities to create and edit HTML and text files. The
editing capabilities and window settings described for HTML action
attributes apply equally to HTML and text files opened for editing with
Witango Studio.

To create a new HTML or text file

From the File menu, choose New, then HTML or Text File from the
submenu.

:A blank editing window opens
1212

Witango Studio Window Components

1313
The default window name is “Untitled1”, until you save it as another
name. Subsequent new windows are named “Untitledn”, where n is the
next number in the series, that is, the second window opened is
“Untitled2”, and so on.

To save a new HTML or text file

1 From the File menu, choose Save or Save As. The Save As dialog box
appears.

2 In the File name field, type the name of your file and an appropriate
extension. The default extension is *.txt.

The Save as type drop-down menu includes file types: *.txt,
*.html, *.xml, *.dtd, *.java,*.inc.

3 When you save a text file and a project is open, Witango
automatically asks if you want to add the saved file to the open
project.

To open an HTML or text file

1 From the File menu, choose Open. The Open dialog box appears.

2 Select the file to open.

3 Click Open.

Tip You can also open a file of a supported type simply by dragging it
from the Windows Explorer into Witango Studio or onto the Witango
Studio icon, if Witango Studio is not already open.

The Browser Window View

The Browser Window allows the user to view the taf file logic, the HTML
editing window and the current action properties window
simultaneously.

Witango Studio Window Components
To access the Browser Window

1 Select the Browser Tab at the bottom of the taf file window.

The window will split to arrange the taf file logic, the properties and
HTML editing options for the current action.

The user can switch back to the normal view by selecting the Actions
tab.

Taf file Logic Properties of Current Action

HTML editing options for current option
1414

Witango Studio Window Components

1515
Word Wrap

The Word Wrap command in the View menu is available for certain
text windows.

Selecting Word Wrap enables or disables word wrap. A check mark
indicates word wrap is on.

If word wrap is disabled, a horizontal scroll bar is available to view text
outside the boundaries of the text window.

Word wrap is available in the HTML editing windows, Direct DBMS
action window, Script action window, and Mail action window, among
others.

Witango Studio Window Components
Working With
Multi-column
Lists

M
p
s

any Witango actions include multi-column lists for entering
arameters—the criteria list in the Search action, for example. This
ection describes basic techniques for working with these lists.

To select an entire row

Click the row’s Column cell.

To move a row

Select the row and drag it to the desired location.

A flashing grey line indicates where the row is inserted when the mouse
button is released.
1616

Witango Studio Window Components

1717
Drop-down Menus

Various columns have drop-down menus in each cell. Place the cursor in
the cell and click the mouse. A downward-directional arrow appears.
Click the arrow and the drop-down menu appears.

From a cell’s drop-down menu, you can select from preset values.

To resize a column

Click at the edge of the column in the list’s header, and drag.

To resize a column to fit the data in it, double-click its right edge in the
header.

To delete a row

1 Select the row to delete.

2 Do one of the following:

• From the Edit menu, choose Delete.

• Press Delete .

• On the main toolbar, click the Delete icon.

• Right-click the selected row and choose Delete from the
context-sensitive menu that appears.

A double-headed arrow appears when
you move your cursor between
columns. Drag to resize the column.

Witango Studio Window Components
Dragging Columns

When creating or modifying a Witango application file and actions, you
must specify which database columns to use in various places. To do this,
you drag the columns from the Data Sources Workspace to the
appropriate place in the file.

To see the Data Sources Workspace, click the Data Sources tab. A
workspace appears, containing information about data sources, such as
the currently defined data sources and all tables and columns. If no data
sources are set up yet, only the data source types appear.

To ... Do This ...

Select contiguous columns Click the first column you want to select and
Shift+click the last one.

Select discontiguous columns Ctrl+click each of the desired columns.

Select all columns in a table Drag the table name into the file.
The SQL Query
Window

T
S
D

he SQL Query window gives you a convenient way of performing simple
QL queries within Witango Studio, for example, to test your Direct
BMS actions or to check database values.
T
he SQL Query window displays the following components:

SQL query
text area

Area
showing
either the
results of
the SQL
query or
the log of
queries.

Displays the current
status of a SQL
query.

Execute

RollbackConnect Disconnect Commit

Click the Log tab to
see the log of
executed queries.

Displays the number of
records returned by a
query.

Max. Matches list

Data
Source
If you want to resize the
query and results areas,
place the cursor over the
area separator to display
the resizing icon.Then click

and drag it up or down to
change the sizes of each
1818

Witango Studio Window Components

1919
Setting Up a SQL Query

The components and functions of the SQL Query window are as follows:

• Data Source button allows you to specify the data source you want
to perform query operations against. When you first open the SQL
Query window, the data source is set to None.

If you change the data source assigned to the window, any existing
connection closes.

• Max. Matches displays the maximum number of records you want
the SQL query to return. You can select from 1, 10, 25, 50, or 100.
The default is 10.
For more information on
SQL COMMIT and
ROLLBACK operations,
consult your SQL
documentation.

•
 Commit and Rollback buttons allow you to perform a SQL
COMMIT or ROLLBACK operation on the assigned data source.
COMMIT causes any changes made to the data source by the query to
be saved. ROLLBACK causes any changes made by the query to be
discarded.

These buttons are disabled when you are not connected to a data
source.

• Connect and Disconnect buttons allow you to connect to or
disconnect from the current data source.

When you try to connect without first assigning a data source, the
Data Source Selection dialog box appears; you must select a data
source.

• Execute button allows you to execute the SQL query in the query
text area. If you are not connected to the data source when
Execute is selected, the connection is made automatically.

Any data returned by the SQL query appears in the Results area of
the SQL Query window. If the Results area contains data and the
current query returns no data, the Results area is cleared of any
data.

After execution, the connection to the data source remains open.

To cancel an executed query, press Esc. If results are being returned
when a cancel request is made, the Results area shows all the data
returned to that point.
• Query Text Area displays the SQL query text to be executed.

The query text area supports standard cut, copy, and paste
operations, including drag and drop. You can drag and drop tables
and columns into the SQL Query text area from the Data Sources
Workspace.

Witango Studio Window Components
You can also drag any database action (except Transaction) from an
application file to the SQL Query window to see the SQL Witango
generates for it.

If you select only part of the SQL when executing the query, only
that part is sent to query the database.

• Results tab displays in columns and rows the results of the SQL
query.

• Log tab displays the log of executed queries.
2020

Witango Studio Window Components

2121
• Status Area shows the current status of the SQL query. The status
messages appear as follows:

Dragging Actions into SQL Query Text

You can drag any database action, except a Transaction action, which
does not generate SQL, from an application file into the SQL Query
window.

When you do this, some SQL Query window attributes are set based on
the contents of the action. The following attributes are automatically set:

• Max. Matches (for a search action) is set to the action's maximum
matches value; otherwise, it is set to unlimited.

Status Description

Not connected No connection is established.

Connecting... Appears during connection to the data
source.

Connected Connection is established.

Executing... Appears during execution of query.

Rolling back changes... Appears during rollback operation.

Committing changes... Appears during commit operation.

Witango Studio Window Components
• The data source is set to the action's data source, and closes any
existing database connection (if the data source is different from the
current data source).

• The SQL text is the data source-specific SQL that Witango Server
generates when the action is executed.

Note Any meta tags from the action are placed in the text as-is. The
SQL text also does not include any text automatically added to the
action’s SQL by the server.

• The Results area is cleared of the currently displayed results.

Performing a SQL Query

To perform a SQL query

1 Choose the SQL Query command by doing one of the following:

• From the Window menu, choose SQL Query.

• Right-click the application file window or an open action
window, and choose SQL Query from the context-sensitive
menu that appears.

An empty SQL Query window appears.

2 Click Data Source.

When you first open the SQL Query window, the data source is
None.
The Data Source Selection dialog box appears:
2222

Witango Studio Window Components

2323
3 Select the data source you want to perform SQL Query window
operations against, and click OK to load the tables and columns of
that database. A Log In dialog box may appear allowing you to type
your user name and password.

1 From the Max. Matches drop-down menu, select the maximum
number of records to return from a SQL query: 1, 10, 25, 50, or
100.

2 Click Connect to connect to the current data source.

3 In the SQL Query text area, enter the SQL query text to be
executed.

4 Click the Execute icon.

If you select part of the SQL in the SQL Query text area, only that
part is executed when you click the button.

5 If you want to perform a COMMIT or ROLLBACK operation on the
assigned data source, click the corresponding Commit or Rollback
button.

The results of the SQL query, if any, appear in the Results area.

The following is an example of SQL query text and the returned
results:
Finding and
Replacing Text

I
r
s

n Witango Studio, you can perform operations to find, or to find-and-
eplace text in application files. Witango Studio can perform both normal
earches and searches using regular expressions.

Witango Studio Window Components
Performing Find Operations

For the purpose of this discussion, the term string refers to both
character strings (that is, text) and regular expressions. You specify that
the search is to treat the string in the Find field as a regular expression
by selecting the Regular expression option in the Find or Replace
dialog box.

If you want to find a certain string, you specify that string in the Find
dialog box. If you want to find a certain string and replace it with another
string, you do that in the Replace dialog box.

You can find any string that can be entered in any non-modal Witango
Studio window. This includes values in criteria lists, action parameters
you have entered—such as for the Limit to field in a Search action’s
Results window, custom SQL, If action conditions, External action
parameters, custom column definitions, and HTML. Witango Studio
cannot find a string you did not explicitly enter, for example, data source
names, user names or passwords entered by users, column names in
Select lists, and join information.

You can perform find and find-and-replace operations in open application
files, action editing windows, HTML editing windows, and projects.
Unless specified otherwise, Witango Studio begins searching at the
insertion point indicated by the cursor and continues to the end of the
search range specified in the Find in section of the dialog box.

To find or find-and-replace a string

1 Do one of the following:

• Depending on the operation you want to perform, choose
either Find or Replace from the Edit menu.

The corresponding Find or Replace dialog box appears.

2 Specify your find or replace options as follows:
2424

Witango Studio Window Components

2525
• Find. Enter the string you want to find.

• Replace with. Enter the string that you want to replace
the string in the Find field with.

• Match case. If you want to perform a case-sensitive
search, select the Match case option; otherwise, Witango
Studio searches for a match irrespective of letter case. For
example, a search for “customer” would find all instances of
“customer”, “Customer”, and “CUSTOMER”.

• Regular expression. If you want to search for the string
as a regular expression, you must select the Regular
expression option. Otherwise, a normal search is
performed.

• Find in. You specify the search range in this area of the
dialog box.

• Current window. Select this option to perform the find
or replace operation in the window active at the time you
choose the Find or Replace command. If you have a string
selected in the active window, it automatically appears in
the Find field.

• File filename. Select this option to perform the find or
replace operation in the file specified by filename. The name
of the currently active file automatically appears as filename.

• All files in project. If you have a project open, this option
is checked. Select this option to perform the find or replace
operation in all the files of the active project. If you have
another application file open at the same time, which is not
part of the project, Witango Studio excludes it from the find
or replace operation.

• Start at top. Select this option to start the find or find-
and-replace operation at the top of the search range
specified in the Find in section.

Tip To start your search at the top of your project, check All files in
project and Start at top in the Replace dialog box.

If this option is not selected, Witango Studio performs the
search starting from the current cursor position.

Note If a search range is specified and the current cursor position is
not within that range, the current cursor position is ignored and the
search starts at the top of the specified range.

Witango Studio Window Components
• Find Next. Click to start the search for the string specified
in the Find field from the specified starting position.

• Replace. Click to replace the string specified in the Find
field with the string specified in the Replace with field.
Following the replace operation, Witango Studio
automatically searches for the next instance of the find
string.

• You can undo the last replace performed by choosing
Undo from the Edit menu.

• Replace All. Click to replace automatically all instances of
the string specified in the Find field with the string specified
in the Replace with field.

The following dialog box appears, indicating the number of
replacements made:

Note You cannot undo the Replace All operation. You can, however,
choose to close a file without saving the changes to return it to its
former state.

If the search range involves several items, those items in which
replacements are made are opened so you can save or discard
the changes.

• Cancel. Click to end the find or find-and-replace operation
and to close the dialog box.

Using Regular Expressions

A regular expression is formed by one or more special characters that
represent a string of text.

Note To find a special character, precede it with a backslash, for
example, * finds the asterisk (*) character.
2626

Witango Studio Window Components

2727
To find any single character

A period (.) finds any character except a newline character.

To repeat expressions

Repeat expressions with an asterisk (*) or a plus sign (+).

A regular expression followed by an asterisk finds zero or more
occurrences of the regular expression. If there is any choice, Witango
Studio chooses the longest, left-most matching string in a line.

A regular expression followed by a plus sign finds one or more
occurrences of the one-character regular expression. If there is any
choice, Witango Studio chooses the longest left-most matching string in a
line.

To group expressions

If an expression is enclosed in parentheses, (), Witango Studio treats it as
one expression and applies an asterisk or plus sign to the whole
expression.

Expression ... Finds ...

.use fuse but not house

Expression ... Finds ...

a+b ab and aab but not a or b

a*b b, ab, and aab but not baa

.*use use, mouse, and paint the house, but
not chair

Expression ... Finds ...

(ab)*c abc, ababc, and c, but not aabbcc

(.a)+b xab, xaxab, but not b

Witango Studio Window Components
To choose any character from many

A string of characters enclosed in square brackets, [], finds any one
character in that string. If the first character in the brackets is a caret (^),
it finds any character except those in the string.

A minus sign (-) within square brackets indicates a range of consecutive
ASCII characters. For example, [0-9] is the same as [0123456789].
The minus sign loses its special meaning if it is the first character (after an
initial caret, if any) or last character in the string.

If a right square bracket is immediately after a left square bracket, it does
not terminate the string; however, it is considered to be one of the
characters to match. If any special character—such as the backslash (\),
asterisk (*), or plus sign (+)—is immediately after the left square bracket,
it does not have its special meaning and is considered to be one of the
characters to match.

To find the beginning or end of a line

• You can specify that a regular expression finds only the beginning or
end of the line.

• If a caret (^) is at the beginning of the entire regular expression, it
finds the beginning of the line.

• If a dollar sign ($) is at the end of the entire expression, it finds the
end of the line.

• If an entire expression is enclosed by a caret and dollar sign (for
example, ^the end$), it finds an entire line.

Expression ... Finds ...

[abc] a, b, or c, but not x, y, or z

[^abc] x, y, or z, but not a, b, or c

Expression ... Finds ...

[aeiou][0-9] a9 but not ae

[^bm]ate date but not bate or mate

END[.] END. but not END;

Expression... Finds...

^(the house).+ the house guest but not paint the house

.+(the house)$ paint the house but not the house guest
2828

Witango Studio Window Components

2929
To re-use a regular expression in the Replace field

Witango extends the regular expression functionality and allows you to
remember and recall a part of a regular expression. Enclose the part to
remember with parentheses. To recall it, use \n, where n is a digit that
specifies which expression in parentheses to recall. Determine n by
counting occurrences of “(” from the left. You can only use this feature
in the Replace field of the dialog box.

Tip For more information on constructing POSIX regular expressions,
ask your local UNIX guru, consult the FreeBSD regex man page, or try
doing an Internet search for the term “POSIX 1003.2“.
Keyboard
Shortcuts

T
f

he keyboard shortcuts, as they appear in Witango Studio menus, are as
ollows:

Menu Command Shortcut

File New (Witango application file)
Open
Close
Save
Convert Text Files

CTRL+N
CTRL+O
CTRL+F4
CTRL+S
CTRL+T

Edit Undo
Redo
Cut
Copy
Paste
Delete
Insert
Select All
Find
Replace
Rename
Group
Ungroup
Insert Meta Tag

CTRL+Z
CTRL+Y
CTRL+X
CTRL+C
CTRL+V
Del
Ins
CTRL+A
CTRL+F
CTRL+H
CTRL+ENTER

CTRL+G
SHIFT+CTRL+G
CTRL+M

View Workspace
Actions Bar
Attributes Bar
Toolbar
Status Bar
Cycle Workspace
Properties

CTRL+1
CTRL+2
CTRL+3
Ctrl+4
Ctrl+5
CTRL+` (single back quote)
ALT+ENTER

Witango Studio Window Components
View Menu Shortcuts

To view the Workspace, Actions bar, or Attributes bar, you can also use
the View menu commands. For example, to view the Actions bar, either
choose Actions Bar from the View menu, or press
Ctrl+2. If the bar is already displayed, choosing the command or
pressing the shortcut hides it.

The Cycle Workspace command allows you to move consecutively
from one workspace window to the next.

For example, if you are currently viewing the Project Workspace,
pressing Ctrl+` (the single back quote character located to the left of
the “1” key on most keyboards), or choosing Cycle Workspace from
the View menu, switches your display to the Data Source Workspace. If
you are viewing the Snippets Workspace, pressing CTRL+` or choosing
Cycle Workspace switches your display to the Project Workspace.

Project Workspace Shortcuts

When working in the Project, Data Sources, and Snippets Workspaces,
or in the application file window, you can expand and collapse any parent
object by one level using the left and right keyboard cursor keys. A parent
object is any object denoted in the view by the plus sign (, expandable)
and negative sign (, collapsible).

• To expand the selected parent one level, press (right cursor
key).

Attributes Results HTML
No Results HTML
Error HTML
Debug File

CTRL+R
CTRL+U
CTRL+E
CTRL+D

DataSource Reload F5

Window SQL Query CTRL+Q

Help Help Home Page F1

Menu Command Shortcut
3030

Witango Studio Window Components

3131
• To collapse the selected parent one level, press (left cursor key).

You can also use keyboard shortcut keys in an open application file
window to expand and collapse the parent object through all levels at
one time.

• To expand the selected parent, press CTRL+ .

• To collapse the selected parent, press CTRL+ .

CTRL

CTRL
Witango
Actions

W
W
l

itango Actions are icon based representations of the logic within a
itango application file. Actions exist to deal with all strands of required

ogic to build a web application. Actions can be categorised into 4
different groups:

• Business Logic

• Database Logic

• Presentation Logic

• Extenal Data Acquisition Logic.

Witango Studio Window Components
Actions dealing with Business Logic

The Business Logic Actions control how the application flow. They are
listed in the table below:

Actions dealing with Database Acquisition Logic

The Database Acquisition Actions control the interaction with available
databases including SELECT, UPDATE, INSERT and DELETE. Witango
actions also exist to allow a developer to carry out ad hoc SQL
statements or stored procedure calls with the Direct DBMS action. They
are listed in the table below:

Icon Action Function

Assign Makes specified value
assignments to a variable.

Group Groups related actions
together.

IF, ELSE IF, ELSE Executes an expression, and,
based on the result of that
expression affects the control
of flow within the file.

While Loop, For Loop Repeats a set of contained
actions: until an expression
evaluates to true of for a
specified number of loops.

Break Terminates processing within a
loop.

Branch Causes a jump to another
action or action group.

Return Ends execution of an
application file and returns the
accumulated Results HTML to
the browser.

Icon Action Function

Search Retrieves records from a
database.
3232

Witango Studio Window Components

3333
Actions dealing with Presentation Logic

The Presentation Actions control how the results appear on the end
user’s browser. They are listed in the table below:

Actions dealing with External Data Aquistion Logic

The External Data Acquisition Actions control the interaction with back
office systems, this is typically achieved with actions such as MAIL,
OBJECT, FILE and EXTERNAL. They are listed in the table below:

Insert Adds records to a database.

Update Changes records in a database.

Delete Removes records from a
database.

Direct DBMS Executes SQL statements.

Begin Transaction
End Transaction

Begins a transaction and ends a
transaction with a rollback or
commit.

Icon Action Function

Results Performs no special function of
its own, this action allows
HTML to be appended to the
Results HTML.

Presentation Allows user to reference
presentation pages.

Icon Action Function

Mail Sends out electronic mail.

File Reads, writes and deletes files
on the filesystem.

Icon Action Function

Witango Studio Window Components
Script Used to specify server side
JavaScript code to execute
such as Shellscript.

External Calls an external code module
to perform a function and
return results.

Create Object Instance Creates object instances for
COM, Java Beans, and Witango
Class File Objects.

Call Method Calls methods on the object
instances that are created.

Objects Loop Loops over collection objects

Icon Action Function
The HTML
Toolbar

W
H
l

itango Studio incorporates a HTML toolbar to assist the user in editing
TML code in the HTML Editing Window. This toolbar is by default

ocked to the workspace but can be made a floating toolbar by simply
dragging it from the workspace. For more information see Floating and
Docking Interface Components page 5.

To insert a HTML tag in the HTML Editing Window

1 Place the cursor in the location you wish the HTML to be inserted
with the HTML editing window.

2 Click on the icon for the HTML tag you wish to be inserted.

3 Where a window is created for further information, complete the
details and select ther OK button.

To wrap existing text in a HTML tag

1 Open the HTML editing windowand highlight the text you wish to
wrap in a HTML tag.

2 Click on the icon for the HTML tag you wish to be wrapped around
this text.

3 Where a window is created for further information, complete the
details and select ther OK button.
3434

Witango Studio Window Components

3535
Elements on the HTML toolbar

Icon Title Function

Page Template Adds HTML, Header title and
body tags.

Mix Frame Pops a window to allow user
to define a mixed frameset. See
Mix Frame Set page 36.

Vertical Frame Pops a window to allow user
to define a vertical frameset.
See Vertical Frame Set page 39
.

Horizontal Frame Pops a window to allow user
to define a horizontal frameset.
See Horizontal Frame Set page
38 .

Font Pops a window to allow user
to define Font Properties. See
Font Settings page 39.

Heading Pops a window to allow user
to enter heading tags. See
Heading Settings page 41.

Bold Adds bold tags.

Italic Adds italic tags.

Underline Adds underline tags.

Left Justify Adds document division tags
which align left.

Center Justify Adds document division tags
which align center.

Right Justify Adds document division tags
which align right.

Unordered List Adds unordered list tags.

Witango Studio Window Components
Mix Frame Set

If the user selects the icon for Mix Frame they are presented with a Mix
FrameSet Window. This window allows the user to set the dimensions of
each frame. When the user has set the dimensions, the OK button is
pushed, and the HTML code which appears in the HTML Editing Window
will generate a frame set of the required dimensions.

The Mix FrameSet Window is shown below.

Ordered List Adds ordered list tags.

List Item Adds list item tags.

Paragraph Adds paragraph tags.

Line Break Adds break tag.

Horizontal Rule Adds horizontal rule tag.

Email Adds email link tag.

Hyperlink Adds hyperlink tag.

Image Adds image tag.

Table Adds table tags.

Table Row Adds table row tags.

Table Data Cell Adds table data cell tags.

Icon Title Function
3636

Witango Studio Window Components

3737
The output of the above window would be:

<frameset rows="25%,75%">

 <frame src="">

 <frameset cols="25%,75%">

 <frame src="">

 <frame src="">

 </frameset>

</frameset>

Witango Studio Window Components
Horizontal Frame Set

If the user selects the icon for Horizontal Frame Set they are presented
with a Horizontal Frame Set Window. This window allows the user to
set the dimensions of each frame. When the user has set the dimensions,
the OK button is pushed, and the HTML code which appears in the
HTML Editing Window will generate a frame set of the required
dimensions.

The Horizontal Frame Set Window is shown below.

The output of the above window would be:

<frameset rows="25%,75%">

 <frame src="">

 <frame src="">

</frameset>
3838

Witango Studio Window Components

3939
Vertical Frame Set

If the user selects the icon for Vertical Frame Set they are presented with
a Vertical Frame Set Window. This window allows the user to set the
dimensions of each frame. When the user has set the dimensions, the
OK button is pushed, and the HTML code which appears in the HTML
Editing Window will generate a frame set of the required dimensions.

The Vertical Frame Set Window is shown below.

The output of the above window would be:

<frameset cols="25%,75%">

 <frame src="">

 <frame src="">

</frameset>

Font Settings

If the user selects the icon for Font Settings they are presented with a
Font Window. This window allows the user to set the font, size, color

Witango Studio Window Components
and style settings for this font tag. The text and background color
selection will pop a color palette window when selected. When the user
has set the all the required font properties, the OK button is pushed, and
the HTML font tags which appears in the HTML Editing Window will
have attributes to match the users selections.

The Font Window is shown below.
4040

Witango Studio Window Components

4141
Heading Settings

If the user selects the icon for Heading they are presented with a Heading
Window. This window allows the user to select which heading tag is
required. Once the selection is made, the OK button is pushed, and the
HTML heading tags which appears in the HTML Editing Window will
reflect the users selection.
Working With
Actions

T
S
s

he application file window shows the actions that you want Witango
erver to execute. Generally speaking, Witango Server executes actions
equentially, from top to bottom, until it encounters a control action.

Control actions make decisions and cause execution to jump to another
action or action group.

Witango Studio Window Components
The following is an example of the application file window:

An action icon in the Action column indicates the type of action. Each
action must have a name that is unique in the application file.

An action can have attributes. Action attribute icons in the Attributes
column indicate which attributes are associated with the action on that
row.

Some actions require database operations. The Object/Data Source
column indicates which data source an action is associated with.

Actions and action
groups.

Data source or
object for action.

Optional attributes
assigned to action.

Any additional
comments about
the action.

Unique action
name.
Adding an
Action

T

D

o add an action to an application file

o one of the following:

• Drag an action icon from the Actions bar into the application file
window (the cursor changes to include crosshairs and the action
icon you are adding), and drop it where you want to add the action.
4242

Witango Studio Window Components

4343
• Click an action icon, move the cursor into the application file
window (the cursor changes to crosshairs), and click where you
want to add the action.

In either method, a gray line indicates where the new action is to be
placed.

If the action has an editing window, it opens automatically.

Tip To prevent the action’s editing window from being opened
automatically, hold down the CTRL key while dragging the new action
into the document window.
Naming an
Action

E
S

ach action in an application file must have a unique name. Witango
tudio gives actions a unique name automatically.

The default name for an action is its action type. When you add an action
that already exists in the application file with its default name, Witango
appends the default name with a numeric starting at “1”; for example,
“Search1”.

Tip To make your application files more readable, you should always
replace default action names with more meaningful ones.

To rename an action in an application file

1 Select the action you want to rename.

2 Do one of the following:

• Click the name of the action.

• From the Edit menu, choose Rename.

• Right-click the selected action and choose Rename from
the context-sensitive menu that appears.

Witango Studio Window Components
3 Type the new name.

Note Action names can contain only letters, numbers, and
underscores. No spaces, punctuation, or other characters are allowed.
Adding spaces automatically adds underscores.

When you rename an action, Witango automatically updates any Branch
actions in the same application file referring to the action. If you rename
an action that is the destination for branches from other application files,
the Branch actions in other application files are not updated.

Witango does N O T automatically update action results references for
renamed actions.
Deleting an
Action

T
o delete an action from an application file

1 Select the action you want to delete.

2 Do one of the following:

• From the Edit menu, choose Delete.

• On the main toolbar, click the Delete icon.

• Press DELETE.

• Right-click and choose Delete from the context-sensitive
menu that appears.

3 When the dialog box appears, asking you to confirm the deletion,
click OK.

Tip You can bypass the confirmation dialog box by holding down the
Ctrl key when choosing Delete.
Editing an
Action

A
a
t

ll of the actions—except Return, Group, and Break actions—have
ssociated attributes and parameters. You can set these parameters in
he action’s editing window.

To edit an action in an application file

• Double-click the action icon in the application file window.

The action’s editing window opens.

If the action is associated with a data source, the Data Sources
Workspace opens, listing the tables and columns for the data source. If
Witango Studio has not loaded the data source yet, it is loaded first.
4444

Witango Studio Window Components

45
Moving an
Action

W
t
s

45
itango executes the actions in an application file sequentially, from top
o bottom; however, you can use control actions to modify this
equence.

If you want the actions to be performed in a different order, you can
rearrange them. Move them to another location in the application file by
dragging them to the position you want.

To move an action to a new location

Do one of the following:

• Select the action you want to move, and drag the action to its new
position.

• Select the action, and cut and paste it using the edit commands.

Actions are pasted after the currently selected action, or at the end
of the file if no action is selected.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

When you move an action, Branch actions referring to it continue to
branch to the action, even though its position has changed.
Copying an
Action

Y
p
h

ou may want to create an action that performs a task similar to one
erformed by an existing action in another application file. Instead of
aving to recreate the action and specify all its parameters again, Witango

Studio allows you to duplicate an action.

To copy an action in the same application file

Do one of the following:

• Select the action you want to copy, hold down the Ctrl key, and
drag the action to where you want the new action to appear.

• Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

The copied action is given a new, unique name, which you should change
to a more descriptive name.

To copy an action into another application file

Do one of the following:

Witango Studio Window Components
• Select the action you want to copy, and drag the action into another
application file.

• Select the action, and copy and paste it using the edit commands.

Edit commands are available from the Witango Studio Edit menu,
from the main toolbar, and from the context-sensitive menu.

Be careful when copying database actions. For an action to work
correctly in the new application file, the data source must be the same as
in the original one.

Alternatively, you may assign another data source to the action in the
new application file.
4646

Witango Studio Window Components

47
Context-
Sensitive
Action Menu

W
a
m

47
hen you right-click an action icon in the application file window, or
nywhere in the file window with an action selected, a context-sensitive
enu of action commands appears:

• Open opens the action editing window for the selected action.

• Cut, Copy, Paste and Delete perform the standard window
editing functions.

• Rename allows you to edit the current name of the action.
• Set Data Source allows you to set the data source for one or
more actions.

• Results HTML, No Results HTML, Error HTML, and Push are
attributes you can assign to actions which support them.

• Debug File is an attribute of the entire application file or Witango
class file.

• SQL Query opens the SQL Query window so you can perform
SQL queries from within Witango.

• Group and Ungroup allows you to group related actions and also
to ungroup them.

• Properties displays the action properties window.
Action
Properties

W
V
w

hen you select an action and choose Properties from either the
iew menu or the context-sensitive menu, the Action Properties
indow for that action appears.

Witango Studio Window Components
This window displays current information about the selected action and
the assigned data source.
U
sing this window, you can change some of the action’s properties.
Assigning
Attributes to
Actions

I
e
f

n addition to the parameters specific to each action type, which are
dited using the action’s editing window, actions can also have the
ollowing attributes:

• Results HTML applies to all actions, except control actions (other
than Branch). After the action is executed, this HTML is added to the
results returned.

• No Results HTML applies only to Search, Direct DBMS, Script,
File, and External actions. When the action does not return data, this
HTML is returned instead of the Results HTML.

• Error HTML applies to most action types except certain control
actions (including Return and Break). In the event of an error in the
action’s execution, this HTML is returned immediately.

• Push causes the Results HTML accumulated so far to be sent back
to the Web browser when the action to which it is assigned finishes
executing. Execution then continues normally.

• Debug File lets you see useful information about your application
file or Witango class file execution in your Web browser application.
This attribute applies to the entire application file, not a particular
action. For more information, see Debugging Files on page 63.

To assign Results HTML, No Results HTML, Error HTML, or Push

Do one of the following:

• Select the action in the application file window, then select an
attribute from the Attributes menu or from the Attributes bar.
4848

Witango Studio Window Components

4949
• Right-click the action in the application file window and choose the
attribute that applies to the selected action from the context-
sensitive menu that appears.

Action attribute icons appear beside the action name in the Attributes
column of the application file window..

The HTML action attributes in the Attributes
menu have a corresponding button on the
Attributes bar.

A check mark
appears beside Push
and Debug File
when they are
selected.
. Y
ou can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.

Results HTML

Many actions in an application file can have HTML associated with them.
This HTML is stored in the Results HTML attribute. If Results HTML
contains any text, the Results HTML icon appears in the attributes
column of the application file window; otherwise, it does not.

As Witango Server executes the actions in a file, the Results HTML
associated with each is accumulated. When execution of the file is
complete, the HTML is returned.

Results HTML can also contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is interpreted by the
user’s Web browser and returned as is (via the Web server), Witango
Server first substitutes meta tags with other values.
T
he <@COLUMN> meta tag causes a database value to be placed in the
HTML. There are many others, including tags for referencing form field
and search argument values, and conditional tags for displaying HTML
only if the result of a given comparison is true.

To create or edit the Results HTML for an action

1 Select the action in the application file window.

2 Do one of the following:

Witango Studio Window Components
• From the Attributes menu, choose Results HTML.
• Click the Results HTML icon on the Attributes bar.

• Right-click the action and choose Results HTML from the
context-sensitive menu that appears.

The Results HTML editing window appears:

3 Type the Results HTML into the HTML text area. The text can
include any valid HTML1 or Witango meta tags.

You can switch between the Results HTML, No Results HTML, and Error
HTML associated with an action by clicking on the tabs at the bottom of
the HTML editing window.
. Y
ou can add column values (for Search actions only) and any HTML
snippets you have defined to the Results HTML editing window from the
Snippets Workspace. As well, you can add from the list of standard
Witango snippets that allow for easy entry of many of the meta tags.

To include any of these items in your Results HTML, select the snippet
and either drag it, or copy and paste it into the desired location in your
text.

For HTML snippets that have placeholders for the current selection,
select the text and drag the snippet over the selected text. The snippet is
5050

1 Witango does not restrict its content to only HTML format. Using other
markup languages such as SGML, VRML, and XML instead of HTML is also
possible. If you use other content types, you are responsible for setting the
HTTP header appropriately.

Witango Studio Window Components

5151
wrapped around the selection. For example, “Title” becomes
“<H1>Title</H1>”.

You can also easily add many of the common Witango meta tags.

To add a meta tag

1 Click the editing area where you want to add a meta tag.

2 Do one of the following:

• From the Edit menu, choose Insert Meta Tag.

• Right-click, and choose Insert Meta Tag from the
context-sensitive menu that appears.

The Insert Meta Tag dialog box appears. For information on using
the Insert Meta Tag dialog box.

No Results HTML

You can associate No Results HTML text with Search, Direct DBMS,
Script, and External actions. If the action execution does not return any
data, this text is added to the application file’s accumulated HTML instead
of the Results HTML. This is useful when you want to display a special
message to users when their queries do not return data.

Note If both Results HTML and No Results HTML appear as
attributes, Witango accumulates one or the other, but never both.

After Witango Server processes the No Results HTML, execution of the
application file continues normally to the next action.

No Results HTML can contain any of the Witango meta tags used in
Results HTML, except for those related to displaying result data items,
such as <@ROWS>, <@COLUMN>, and <@COL>.

To create or edit the No Results HTML for an action

1 Select the appropriate action in the application file window (Search,
Direct DBMS, Script, and External actions).

2 Do one of the following:

• From the Attributes menu, select No Results HTML.

• Click the No Results HTML icon on the Attributes bar.

• Right-click the action and choose No Results HTML from
the context-sensitive menu that appears.

The No Results HTML editing window appears:

Witango Studio Window Components
3 Type the No Results HTML into the HTML text area. The text can
include any valid HTML or Witango meta tags.

Error HTML

Error HTML allows you to specify your own error messages in HTML
format, instead of having Witango Server produce them. The other
alternative is to modify the Error.htx file.

You can associate Error HTML with most actions. If an action fails for any
reason, execution ends and the Error HTML for the action is returned
immediately to the user.

Error HTML can contain all the Witango meta tags used in Results
HTML, except for those related to displaying result data items.
T
here are also special Witango meta tags for displaying error
information.

If no Error HTML has been assigned to an action and an error occurs in
that action, Witango returns a default error message using the following
HTML:

<h3>Error</h3>

An error occurred while processing your request:<p>
<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1>

<@ifequal <@ERROR PART=NUMBER2> 0>
<@else>

Secondary Error Number: <@ERROR
PART=NUMBER2>

</@ifequal><p>
<i>
<@ERROR PART=MESSAGE1>

<@ifequal @ERROR PART=MESSAGE2> "">
<@else>

@ERROR PART=MESSAGE2>

</@ifequal><p>
</i>
</@ERRORS>

To create or edit the Error HTML for an action

1 Select the action in the application file window.

2 Do one of the following:

• From the Attributes menu, select Error HTML.
5252

Witango Studio Window Components

5353
• Click the Error HTML icon on the Attributes bar.

• Right-click the action and choose Error HTML from
thecontext-sensitive menu that appears.

The Error HTML editing window appears:

3 Type the Error HTML into the HTML text area. The text can include
any valid HTML or Witango meta tags.

To specify your own custom default error message

1 Create a text file containing the desired HTML and meta tags.

2 Name the file error.htx.

3 Save or copy it to the following directory at WITANGO_PATH/
MiscFiles/.

If Witango Server finds this file, it processes and returns it instead of the
built-in default Error HTML. Error HTML assigned to an action is used if
it exists.

The name and location of this file is determined by the
defaultErrorFile configuration variable, which can be modified using
the Administration Application config.taf. The values when Witango
is first started are given above. If you modify the path or name of the
error file, place the file in the directory you specified instead.

Push

The Push attribute causes the Results HTML accumulated so far to be
sent back to the Web browser, when the action to which the Push
attribute is assigned finishes executing. Execution then continues.

Normally, Witango waits until all execution is finished before returning
the results at one time. If you want the user to see some of the results
while Witango continues with the rest of the execution, set the Push
attribute of the action.

Note Some Web browsers may not display table HTML immediately if
you use the Push attribute to return an unclosed table.

Debug File

For more information, see Debugging Files on page 63.

Witango Studio Window Components
Adding HTML
(Results Action)

T

W

he Results action adds HTML to an application file’s results.

hen you drag the Results action icon from the Actions bar into an
application file, a blank HTML editing window appears.

Results HTML can contain Witango meta tags that Witango Server
processes. While all the other text in Results HTML is returned as is to
your Web browser (via the Web server), any meta tags are first
substituted with other values by Witango Server. You can also associate
Error HTML with the Results action.
Presentation
Action

U

T

ses of the Presentation Action

he main benefit of using the Presentation action is to facilitate the
separation of the business logic from the presentation logic when you
develop your Witango application.

Business logic involves the use of Witango actions and meta tags to access
the appropriate Web pages and data sources. Presentation logic involves
the use of HTML to display the Web pages.

Because developing the business logic and the presentation logic generally
require different skill sets, setting up independent teams to work on
these two areas can improve the effectiveness and efficiency of the
project. Furthermore, changing the business logic—for example,
accessing a different data source—often does not affect the presentation
logic, or vice versa. Keeping the two areas separate simplifies the
maintenance of your project.

A Presentation action in your application file points to an HTML page. It
is the link between the business logic and the presentation logic of your
project.
Results Action
5454

Witango Studio Window Components

5555
The Document Object Model (DOM) allows you to create your own
complex data structures in XML, and return them into presentation
pages.

How the Presentation Action Works

The Presentation action allows you to include individual presentation
pages in your Witango application file. The presentation page—the file
the Presentation action points to—can contain HTML, Witango meta
tags, or any other sort of document markup. When Witango Server
executes your application file and arrives at a Presentation action, it
processes the presentation page associated with the Presentation action.

The Presentation action performs an operation similar to that of
including an HTML or other file in a Witango application file using the
<@INCLUDE> meta tag.

The file referenced by the Presentation action is part of the current
project, and can be opened and edited by double-clicking on the file icon
within the Presentation Pages folder in the Project section of the
Workspace.

You can also designate files in your project as presentation pages, and
manage files within the Presentation Pages folder.

Setting Up a Presentation Action

When you drag the Presentation action from the Actions bar into an
application file, the Presentation dialog box appears:

Do one of the following:

• In the Presentation Page field, enter the name of the presentation
page, or if you have previously specified a presentation page in the
current Project, choose a file name from the drop-down menu.

• Click Browse to navigate to the location of the presentation page.

If the file is not in your current project, you are prompted to add it to the
project, where it appears in the Presentation Pages folder and in the
Files folder of the Project tab of the Workspace.

Witango Studio Window Components
In the Path to target page on server area, select Same as source
page if the presentation page is located in the same folder as the current
application file, or select Other.

If you choose Other, you specify the path to the presentation page. This
value is a slash-separated path from the Web server document root, and
may include literal text, meta tags, or both. To insert a meta tag in this
field, right-click in the text field and choose Insert Meta Tag... from the
context-sensitive menu that appears.

For example, you could enter the following into the text field:

Witango/MyDirectory/

This example includes the specified file residing in the MyDirectory
folder within the Witango folder in the Web server document root
folder.

<@APPFILEPATH>

This example includes the specified file residing in the same folder as the
currently-executing application file.
5656

Using Witango Application Files

57
Using Witango Application Files
57
A Witango application file (or simply, application file) provides a powerful
and flexible means for you to construct dynamic applications that run on
your Web server and that interact with databases, other applications, and
users running Web browsers. They are like programs or scripts in that
they determine what operations Witango Server performs. Witango
Server provides the brains, but it does nothing without the specific
instructions you provide in the form of application files.

You add actions to an application file. When Witango Server runs the
application file, it generates the HTML that is used by the Web browser
to display the forms required to allow interaction with databases and
other applications.

You can use the Search Builder and New Record Builder to have
Witango Studio build search and insert record applications for you.

An application file is a file containing a series of Witango actions that,
when executed by Witango Server, generates HTML and controls
interaction with databases and other applications.

(You can also create Witango class files, which are reusable software
components that you can incorporate in Witango application files.
XML Format W
E

itango application files and Witango class files are stored in an
xtensible Markup Language (XML) format, which means they are

structured text based on a specific document type definition. This is a
substantial change from the binary formats of files in previous versions of
Witango. However, the file suffixes for Witango have not changed;
Witango application files have the .taf suffix.

What is XML?

XML is a text-based and widely-endorsed standard markup language,
similar to HTML, but much more flexible and robust. It is a subset of
SGML (Standard Generalized Markup Language), an ISO standard. Its goal
is to enable generic SGML (that is, structured documents) to be served,
received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.
For details about the XML
file format, see
www.w3.org/xml/.

W

•

itango XML file formats give Witango users the following advantages:

XML files are human-readable.

Using Witango Application Files
• Text-processing tools can be used on Witango application files to
perform file differences, complex searches involving regular
expressions, and so on.

• Files can be stored more efficiently in source code control systems.

• The Witango XML file format is now public and exactly specified, so
other applications can create Witango application files and Witango
class files.

SGML and XML specifications require a document type definition (DTD).
The DTD defines the structure of the various elements that make up an
XML document. It ensures that all applications that read and write the
XML document do so consistently way. In effect, it is the schema of the
document.
For more information
about document type
definitions and how to read
them, see www.oasis-
open.org/cover/
sgml-xml.html.

T
s
i

he Witango DTD for Witango application files and Witango class files is
pecified by the file Witango.dtd. This file is located in the XML folder
nside the folder where Witango is installed.
Application File
Window

I
a
f

n Witango Studio, whenever you open an application file, the Witango
pplication file window (or simply, application file window) shows you the
ollowing information:

• action icons and names, including those for builders, in the order
Witango Server executes them (unless a control action redirects the
flow of the execution)

• attributes assigned to an action, if any

• data sources for all database actions

• any associated comments.
5858

Using Witango Application Files

5959
The application file window also includes icons for attributes, objects, and
data sources. The following diagram shows a typical application file
window and its components:

Collapsible/expandable
view showing all actions
and builders in the named
application file.

Icons of the attributes
assigned to an action.

The data source or
object for the action
to be performed on.

Comments associated
with the action.

Detail column showing further details about
the action. (This can be the test used in the
IF_THEN_ELSE statement, the table which is
subject to the insert statement etc).
Unsaved
Changes
Indicator

W
h
i

henever you change a Witango application file or class file, and the file
as not been saved, an asterisk appears beside the file name. This asterisk
s called a dirty (unsaved changes) indicator..

Once you save the application file, this indicator disappears.

Dirty indicator
Creating an
Application File

T

D

o create a new application file

o one of the following:

• From the File menu, choose New, then Witango Application
File.

• Click the New Witango Application File icon on the toolbar.

New Witango
Application File

Using Witango Application Files
An untitled application file opens:
Saving an
Application File

T
o save an application file

1 From the File menu, choose Save or click the Save icon on the
toolbar.

If the application file has never been saved, the Save As dialog box
appears.

If it has been saved previously, Witango Studio saves it using the
existing name and location.

2 Navigate to the desired location for the application file.
For Witango Server to execute the application file, it must be
located in or below the Web server’s document root folder.

3 Name the Witango application file.

Witango application file names end in .taf. This is the standard
suffix used to identify files that Witango Server should execute. The
.taf extension is added if no extension is specified.

4 Click Save.

Tip To save all open Witango application and text files with their
current name and location, choose Save all from the File menu, or
click the Save All icon on the Witango Toolbar. The Save As dialog
box appears for new, unnamed files.
Save All
6060

Using Witango Application Files

61
Saving a
Witango
Application File
or Witango
Class File as Run-
Only

R
e
S

S
c
f

61
un-only Witango application files and Witango class files can be
xecuted by Witango Server, but they cannot be opened by Witango
tudio.

aving an application file or Witango class file as run-only allows you to
reate and distribute packaged Witango solutions while preventing users
rom editing the actual application file.

Run-only application files and Witango class files are executed and
referenced by Witango Server in the same way as editable files. Saving an
application file or Witango class file as run-only does not make its
execution any faster.

CautionYou cannot edit a run-only copy of an application file or
Witango class file, and there is no way to make a run-only file editable.
Make sure you keep an editable copy of any run-only file.

To make an application file or Witango class file run-only

1 With an application file open in Witango Studio, choose Save As
Run-Only from the File menu.

The Save As dialog box appears.

You are saving a copy of your Witango application file or Witango
class file as run-only. Your original application file or Witango class
file is not changed.

2 Name the run-only Witango application file or Witango class file.

Tip You may want to give the run-only versions of your files a special
name to identify their type, such as CustomersRO.taf or
CustomerRO.tcf, where “RO” represents run-only.

3 Click Save.

A run-only version of the application file or Witango class file is
saved in the location you specified.

Note If you are distributing your Witango solution, your customers
need to purchase Witango Server. Alternatively, you can license
Witango Server for distribution with your solution. Contact
sales@witango.com for more information.

Using Witango Application Files
Executing
Application
Files

A
b

pplication files are executed in the same way HTML files are viewed—
y specifying the name of the file in a URL. For example:

http://localhost/shop/additem.taf

This example executes an application file called additem.taf, located in
the root directory of your local webserver. If you are using the Witango
CGI, you may need to include the path to and name of the Witango CGI
in your URL, for example:

http://www.example.com/Witango-bin/wcgi.exe/
witango/additem.taf

You can pass parameters to the application file by using search arguments.
These are name-value pairs appearing after a question mark in the URL.
For example:

http://www.example.com/shop/additem.taf?item_num=80

In this example, the item_num search argument has a value of “80”.
T
here are other ways of passing values to Witango application files. Form
fields (post arguments) and cookies are two examples.
6262

Debugging Files

63
Debugging Files
63
Setting the debug mode in Witango Studio lets you see useful information
about your application file or Witango class file execution in your Web
browser application.
Turning Debug
On

T
o set debug mode

1 Open the application file or Witango class file you want debug
information on.

2 Do one of the following:

• From the Attributes menu, select Debug File.

A check mark beside the command indicates the debug mode is
on.

• Right-click the application file window, and select Debug
File from the context-sensitive menu that appears:

• (Witango application files only): Select the application file
icon. From theView menu, choose Properties. Then

Debugging Files
enable Debug Mode in the Application File Properties
dialog box that appears:

• Check the Debug Checkbox.

A debug icon appears beside the application file icon when Debug File is
checked.

Debug
icon
Viewing Debug W
t

hen you execute the application file, debugging information appears at
he bottom of the results returned. The debugging information shows

information such as:

• arguments passed in (search and post arguments)

• the actions executed

• values of variables

• SQL generated by database actions

• warnings (such as references to missing arguments).
T
he debug feature is extremely helpful in tracking the flow through a
.taf when the output of the file is not what the programmer is
expecting.

6464

Debugging Files

6565

3
C H A P T E R 3

Meta Tags

A Reference to Witango Server Meta Tags
Meta tags are the components of a markup language that is interpreted by
Witango Server. This language is similar in form to HTML but much more
dynamic.

Meta tags are resolved by Witango Server when your application file is
executed.

This chapter covers the following topics:

• where you can use meta tags

• basic meta tag syntax

• the ENCODING attribute

• the FORMAT attribute

• array-to text conversion attributes

• a detailed look at each meta tag.
67

Where You Can Use Meta Tags

68
Where You Can Use Meta Tags
68
Most meta tags can be used in all places in application files where text or
HTML can be inserted, including these application file locations:

• attribute HTML that is attached to an action, including:

• Results HTML

• Error HTML

• No Results HTML

• actions in an application file, including:

• parameters in Search, Update, and Delete actions

• column values in Update and Insert actions

• Maximum Matches and Start Match fields in Search and
Direct DBMS actions

• External action parameters

• File action parameters

• Assign actions (both name and value)

• If action parameters

• custom column references used in database actions

• SQL entered into the Direct DBMS action window

• files included using the <@INCLUDE> meta tag

• most attributes for other meta tags.

Where you can insert meta tags, the contextual menu (accessible from a
right mouse click on Windows or a CONTROL click on Macintosh) shows
Insert Meta Tag.

Format of Meta Tags
Format of Meta Tags
Syntax T
he basic syntax for Witango meta tags is:

<@TAG ATTRIBUTENAME="ATTRIBUTEVALUE">

• The opening “<” is a characteristic of tag languages, including HTML.
The “@” symbol distinguishes Witango meta tags.

At least one space must occur between the tag name and the first
attribute name, and between all attribute values and subsequent
attribute names. For example:

<@POSTARG NAME="Bruce" ENCODING="NONE">

and

<@POSTARG NAME="Bruce"
ENCODING="NONE">

are both valid meta tag syntax.

• Line breaks are allowed in tags anywhere a space occurs. For
example:

<@ASSIGN
NAME="varname"
SCOPE="request"
VALUE="somevalue"
>

is valid Witango meta tag syntax.

• There is no space allowed before or after the equals (=) sign. As well,
if you quote the value of an attribute, no space is allowed between
the equals (=) sign and the opening quote. For example, <@POSTARG
NAME="Bruce"> is correct syntax.

• This documentation shows meta tags in uppercase, but meta tags are
case insensitive. That is, all of the following are valid Witango meta
tag syntax:

<@CALC EXPR="3+7">
<@Calc expr="3+7">
<@calc Expr="3+7">
Naming
Attributes

W
T
f

itango uses attribute names in meta tags. All attributes have names.
he order of the attributes does not matter if the attributes are named;

or example, <@POSTARG NAME="foo" ENCODING="METAHTML">, and
<@POSTARG ENCODING="METAHTML" NAME="foo"> are equivalent.
6969

Format of Meta Tags

7070
The name for every attribute you specify must be provided, with one
exception: any attribute that is required—that is, any attribute whose
absence makes a meta tag invalid—can be specified without a name, as
long as it occurs in its predefined position (usually immediately following
the name of the meta tag).

Note The documentation in this chapter shows meta tag syntax with
the required order for positional (required) attributes.

<@POSTARG homer> is valid in Witango, because the NAME attribute is
required, and its designated position is first. If you want to specify the
encoding, you must use <@POSTARG homer ENCODING="NONE">,
because ENCODING is not a required attribute. For new users of Witango,
the best method to adopt is to enter all attribute names, for example,
<@POSTARG NAME="homer" ENCODING="NONE">.
Quoting
Attributes

A
e
s

ttribute values must sometimes be quoted to avoid ambiguity. For
xample, whenever you need to specify an attribute value that includes a
pace, you must put quotes around it. To refer to a database column

called “Zip Code”, for example, use <@COLUMN NAME="Zip Code">.
Without the quotes, Witango would incorrectly interpret Zip as the
attribute name and Code as the start of another attribute. Witango
recognizes both the double (") and single (') quote character pairs as
attribute delimiters.

Another case where quotes are necessary is when specifying an empty
value for the attribute ("" tells Witango that there is no value).

Note Quotes are not necessary when you are using only a meta tag as
the attribute value. Witango knows that meta tags begin with <@ and
end with >, so no quotes are necessary to delimit the value.

In general, quoting attribute values is recommended. It is never incorrect
to quote an attribute value.

Some additional rules to follow when quoting meta tag attributes are as
follows:

• If you have a nested tag in an attribute, use the “other” quote
character around its value. This alternating can go on indefinitely for
deeply nested tags. This allows you to distinguish between quotes
you want to specify as part of the attribute value itself, instead of as
an attribute delimiter. For example:

<@ARG NAME="<@VAR NAME='<@VAR
NAME="myArgNameVar">'>">

Format of Meta Tags
For more information, see
“<@DQ>, <@SQ>” on
page 177.

•
 If you have a literal double or single quote in a meta tag attribute
value, you must replace it with the <@SQ> or <@DQ> meta tag,
regardless of which quote character is delimiting the attribute value.
For more information, see
“<@CALC>” on page 105
and “<@IF>” on page 210.

•
 The exceptions to the last rule are the expressions specified for
<@CALC> and <@IF> meta tags, and the Advanced mode for If, Else
If, and While Loop actions. The EXPR attribute can use quotes as
part of an expression, as long as they are not the same quotes as
surround EXPR. These quotes are taken as delimiters for individual
values within the expression. The expression attribute also supports
backslash-escaping of quotes: \" and \' for literal quotes (and
require the use of \\ for \ as a result).
7171

Encoding Attribute

72
Encoding Attribute
72
Many value-returning meta tags accept an ENCODING attribute that
determines how returned values are formatted. Each of the valid format
types is described in this section.

If no encoding attribute is specified, values returned by meta tags used in
Results HTML, No Results HTML, and Error HTML undergo a process of
conversion so they appear correctly in the user’s Web browser. For
example, < is converted to <.
NONE T
he NONE value for the ENCODING attribute allows you to indicate that
the value returned by the meta tag contains HTML formatting codes that
are to be passed back to the user’s Web browser without translation.
The main use for this attribute is for displaying HTML stored in database
fields and variables.

For example:

<@COLUMN NAME="pages.theHTMLpage" ENCODING="NONE">
METAHTML T
he METAHTML attribute value of the ENCODING attribute performs the
same function as NONE but also looks for Witango meta tags in the value
and evaluates any it finds.

For example:

<@COLUMN NAME="table.template" ENCODING="METAHTML">

If the template column contains the text <@VAR NAME="foo">, the
example shown returns the current value of the variable foo.
MULTILINE T
he MULTILINE attribute value causes Witango to replace return, line
feed, and return/line feed combinations in the value with
 tags.
Normally, Web browsers ignore line breaks in HTML. Use this attribute
to force the display of returns in database values.
MULTILINEHT
ML

T
N
f

he MULTILINEHTML attribute value lets you combine the functions of
ONE and MULTILINE. This formatting attribute is particularly useful for

ormatting data entered by users who have used HTML tags for character
formatting (for example, bolding and italicization), but who have not used

 or <P> tags to properly indicate line or paragraph endings.

Encoding Attribute
URL T
r

he URL formatting attribute value tells Witango to make the value
eturned by a meta tag safe for inclusion in a URL by encoding special

characters such as spaces and slashes, according to the scheme set out in
RFC 1630. The main use for this attribute value is to construct URLs
containing database or user-entered values.

For example:

<A HREF="/customer_detail?cust_name=
<@COLUMN NAME='customer.cust_name'
ENCODING='URL'>">
More customer info

If the URL attribute were not used in this case, links to customer names
from the database that contained spaces would not work properly
because a space is invalid in a URL. By using the URL attribute value, any
spaces are converted to %20. Similarly, other special characters that have
meaning in URLs (~, #, and so on) are also converted.

The <@URLENCODE> meta tag performs the same function on any value. It
is strongly recommended that you get into the habit of encoding any
meta tags included in a URL, even if you think the value returned is not
going to require it.
JAVASCRIPT E
e

ncodes the value to make it a valid JavaScript literal. It does this by
scaping certain characters using a backslash; for example, tabs are

converted to \t. Use this type of encoding when using a meta tag in
server- or client-side JavaScript code.
SQL T
o

he SQL encoding type converts the specified value by doubling all
ccurrences of the single quote character.
W
itango Server automatically performs SQL encoding on meta tag values
substituted in Direct DBMS SQL, except when the configuration variable
noSQLEncoding is set to true. The SQL ENCODING attribute value is
generally appropriate only when noSQLEncoding is set to true, and
allows you to toggle SQL encoding on or off for particular meta tags.

For example:

<@ASSIGN NAME=mySQL VALUE="SELECT * FROM customer
WHERE cust_name=<@SQ>">

<@ASSIGN NAME=mySQL VALUE="<@ARG cust_name
ENCODING=sql><@SQ>"
7373

Encoding Attribute

74
CDATA C
74
DATA (Character Data) is a keyword used in SGML and XML to indicate
blocks of text that are not to be parsed, even if they contain markup. This
contrasts with PCDATA (Parsed Character Data).

Values encoded as CDATA may contain any valid character data; tags may
be included in the value, but they are not to be recognized by the XML or
SGML parser, and are not processed as tags normally are.

In Witango, ENCODING=CDATA is most often used in conjunction with the
DOM meta tags that parse XML (<@DOM> and <@DOMINSERT>) to ensure
correct parsing of data.

In general, encoding a value as CDATA simply results in
<!CDATA[valuegoeshere]]> being returned. If the value contains the
CDATA end sequence “]]>”, the text is broken up into CDATA/PCDATA/
CDATA for each occurrence, to ensure proper parsing. This special
processing must be done, or the CDATA end sequence in the value would
cause the CDATA block to end prematurely. For example, if you have a
variable, fred, containing <[[test]]>, the following results in a parsing
error:

<@DOMINSERT OBJECT=FOO>
<TEST><![CDATA[<@VAR fred>]]></TEST>
<@DOMINSERT>

You can parse this data properly with the CDATA encoding type:

<@DOMINSERT OBJECT=FOO>
<TEST><@VAR fred ENCODING=CDATA></TEST>
<@DOMINSERT>

Note It is because your data might contain the]]> sequence that you
should use the CDATA encoding type, rather than simply using
<![CDATA [my data]]>.

Format Attribute
Format Attribute
The FORMAT attribute is optional with many meta tags. It specifies how
the output of the tag should be formatted.

All tags with an optional FORMAT attribute accept a format string of the
form FORMAT=class:format, as detailed following.

CASE: Case Reformatting

Text can be converted as follows:

• to uppercase with case:upper (for example, HEllo -
HELLO)

• to lowercase with case:lower (for example, HEllo -
hello)

• to wordcase with case:word (for example, HEllo -
Hello).

Words are defined as a sequence of non-whitespace characters delimited
by whitespace.

NUM: Numeric Formatting

Numbers with at least one whole digit and optional fractional digits can
be reformatted.

The format is specified by a comma-delimited list of values in this order:

FORMAT=num:1,2,3,4,5,6,7,8
7575

Format Attribute

7676
The following table describes the format of the values that must go in
each position.

All eight items must be present, either with a specified value or nothing.
For example, if you do not want any formatting for fractional digits there
would be nothing between the commas, (,,).

You must address each of the eight items in the number formatting string,
even if it is just to let Witango know not to do anything with one or
more of the eight numerical formatting items in the list.

Value

1 Grouping
Defines how you want your numbers grouped, for example, in groups of three.
There are two ways to apply your grouping. They are:
A hyphen-delimited list of digits from the least-significant place
 (beginning from the right).
An asterisk (*) means repeat using the last specification; no number
 means the output remainder is untouched.
Examples:

3-*1,234,567,890,123
This example repeats a grouping of “3”.

3-1-21234567,89,0,123
This example groups six digits, beginning from the right, into three separate
groups, one of three (“3”) digits, one of one (“1”), and one of two (“2”).

2 Grouping separator
Defines the character that separates the groupings. In the previous example, it
is a comma. It may be multiple characters.

3 Fractional Digits
Defines the number of fractional digits to show:
If a number is specified, that many digits are displayed; the value is truncated or
0-padded as appropriate.
If no number is specified, then the number of fractional digits passed in is
displayed untouched.

4 Fraction Separator
Defines the fraction separator which may be multiple digits, and it is displayed
even if no fractional digits are present. This is similar to a decimal place
separator.

5 Positive Prefix
Determines the prefix used if the number is positive (for example, +).

6 Positive Suffix
Determines the suffix used if the number is positive.

7 Negative Prefix
Determines the prefix used if the number is negative (for example, -).

8 Negative Suffix
Determines the suffix used if the number is negative.

Format Attribute
Each list item may be a maximum of 15 characters long. Spaces and case
are significant.

Do not include spaces unless they are intended. Commas, single quotes,
and double quotes can be included by backslash-escaping (for example, \,
or \"), or enclosing them in single or double quotes (for example, “,” or
‘’’). Anything following a backslash is taken literally.

Here are some examples of numeric formats. -1234.56 is formatted as:

Synonyms

There are synonyms provided for commonly used format strings.

Example synonyms are listed in the table following with formatted string,
-1234567.890.

*US = United States and CA=Canada.

Format Format String Example

Swiss Monetary num:3-*,\,,2,.,SFrs.,,SFrs.,C SFrs.1,234.55C

US Accounting num:3-*,\,,2,.,$,,($,) $(1,234.56)

French language
numerals

num:3-*, ,3,\,,,,'- ', - 1 234,560

credit sheet num:,,,.,Balance: , credit,Balance:
, debit

Balance: 1234.56 debit

 Format * Equivalent Format Sample Output

num:CA-accounting
num:US-accounting

num:3-*,\,,2,.,$,,($,), ($ 1,234,567.89)

num:comma-float num:3-*,\,,,.,,,-, -1,234,567.890

num:comma-integer num:3-*,\,,0,,,,-, -1,234,567

num:simple-float num:,,,.,,,-, -1234567.890

num:simple-integer num:,,0,,,,-, -1234567
7777

Format Attribute

7878
TEL: Telephone Numbers

This formatting accepts as input text a sequence of digits, spaces, or
punctuation marks, and outputs the digits in one of the following
requested formats:

*US = United States and CA=Canada.

DATETIME

The format attribute accepts the “%-” specifiers used by the
dateFormat configuration variables, with the addition of a datetime:
prefix. For example, datetime:%Y-%m-%d would specify an ODBC-style
date (December 1st, 1998 would be formatted as “1998-12-01”).

Format* Sample Output Input Restrictions

tel:US-short
tel:CA-short

819-1173 7-11 digits required

tel:US-long
tel:CA-long

(905) 819-1173 10-11 digits required

tel:US-intl
tel:CA-intl

+1 905 819-1173 10-11 digits required

tel:US-hyphen
tel:CA-hyphen

1-905-819-1173 10-11 digits required
For more information, see
“dateFormat, timeFormat,
timestampFormat” on
page 400.

W
t
v

itango attempts to guess what the date/time entered actually is. First,
he dateFormat, timeFormat, and timestampFormat configuration
ariables are used to test the input string for a perfect match, and failing

these, the procedures as used by the <@ISDATE> family of tags are
tested. If the input cannot be determined, a warning is logged and
reformatting does not take place.

Tags that accepted a format attribute in previous versions of Witango—
<@CURRENTTIME>, <@CURRENTIMESTAMP>, and <@CURRENTDATE>—
can be used with the new FORMAT attribute or with their old formatting.

There is only one datetime-class synonym: datetime:http.

datetime:http = datetime:%A, %d-%b-%Y %H:%M:%S GMT.

Format Attribute
For more information, see
“<@TOGMT>” on
page 299.

F
d

or example, if the string 1998-09-29 12:34:56 were formatted with
atetime:http, the output format would be
“Monday, 29-Sep-1998 12:34:56 GMT”.

Note datetime:http formatting does not make any adjustments
to the time value to correct to GMT time. It simply outputs the input
timestamp in the HTTP format. To convert a local time to GMT, use
<@TOGMT>.
7979

Array-to-Text Conversion Attributes

80
Array-to-Text Conversion Attributes
80
An array returned by a meta tag is converted to text when it is being
returned to a Web browser. However, array-returning meta tags return
an array when an array is copied from one place to another; for example,
if an array-returning meta tag is used within <@ASSIGN>, no conversion
to text is performed.

Some meta tags, such as <@VAR>, also accept a TYPE=text attribute,
which forces an array to be returned as text. In that case, assigning the
value of the array to a variable assigns a text representation of the array,
with all the array, row, and column prefixes and suffixes described below.

Witango meta tags that return arrays take a series of optional attributes
that allow you to format the text representation of the array. There are
corresponding configuration variables, with the same names, whose
values are used for array formatting if these attributes are not specified.
The attributes are given in the following table:

Attribute Description

APREFIX The array prefix string. (Default value: <TABLE>)

ASUFFIX The array suffix string. (Default value: </TABLE>)

RPREFIX The row prefix string. (Default value: <TR>)

RSUFFIX The row suffix string. (Default value: </TR>)

CPREFIX The column prefix string. (Default value: <TD>)

CSUFFIX The column suffix string. (Default value: </TD>)
Far more information, see
aPrefix on page 394,
aSuffix on page 394,
cPrefix on page 397,
cSuffix on page 397, rPrefix
on page 421 and rSuffix on
page 422.

T
b
i
d

M

hese attributes are used for defining the appropriate text for display,
efore and after the specific components of the array are displayed. This
s useful for automatically displaying the contents of arrays as tables (the
efault) or ordered lists.

eta tags that return arrays are specified in this manual with
{array attributes} in the syntax specification of the meta tag. When using
meta tags that return arrays, you can specify any or all of the above
attributes, and the values of the attributes are returned with the returned
array, when the array is returned as text.

@ISTIMESTAMP
@SECSTODATE
@SECSTOTIME
@SECSTOTS
@TIMER
@TIMETOSECS

<@ABSROW>
<@ABSROW>
Description R
b

eturns the position of the current row within the total rowset matched
y a Search action’s criteria.

When used outside of the <@ROWS></@ROWS> block of a Search or
Direct DBMS action’s Results HTML, this meta tag returns zero.
Example
 <P>There are <@TOTALROWS> records matching your
criteria. Here are records <@STARTROW> through <@CALC
EXPR="<@STARTROW>+<@NUMROWS>-1">:</P>

<@ROWS>
<P>Here is matching record number <@ABSROW>:
<P>Name:
<@COLUMN NAME="contact.name" FORMAT="case:upper">
Phone: <@COLUMN
NAME="contact.phone" FORMAT="tel:CA-short">
</@ROWS>

This HTML displays the match number for each record displayed, relative
to the first matching record.
See Also <

<

@CURROW> page 151
@MAKEPATH> page 237

<@NUMROWS> page 250
<@ROWS> </@ROWS> page 272
<@STARTROW> page 292
<@TOTALROWS> page 301
8181

<@ACTIONRESULT>

82
<@ACTIONRESULT>
Syntax <

[

82
@ACTIONRESULT NAME=actionName NUM=itemNumber
ENCODING=encoding] [FORMAT=format]>
Description R
g

eturns the value of the specified item from the first row of results
enerated by an action in the current execution.

Use this meta tag inside any action to reference data from the first row of
a previously executed results generating action, such as a Search,
External, or Direct DBMS action. The NAME attribute refers to the name
of the action that generated the result during the current execution of
the application file. The NUM attribute is the number of the column to get
(for example, to get the value of the third column in the first row
returned by an action, specify NUM=3).

Note When the action result being asked for has been executed
multiple times, as can occur if the action is inside a loop, the value from
the last execution of the action is returned. When the action name
specified is ambiguous, as can occur when branching to another
application file, the <@ACTIONRESULT> tag refers to the last one
executed.

Note For FileMaker Pro data sources (Mac OS X), Insert actions
return a single item of data—the record ID of the newly created
record—that may be accessed by <@ACTIONRESULT
InsertActionName 1>.
Example
 Your new account number is:
<@ACTIONRESULT NAME="GetUniqueID" NUM="1">.

In this example, <@ACTIONRESULT> evaluates to the first item from the
first row of the result set generated by the action GetUniqueID.
See Also <

<

@COL> page 136
@COLUMN> page 138

Encoding Attribute
<@FORMAT> page 205
Format Attribute
<@PURGERESULTS> page 263
<@RESULTS> page 270

<@ADDROWS>
<@ADDROWS>
Syntax <

[

@ADDROWS ARRAY=arrayVarName VALUE=rowsToAdd
POSITION=position] [SCOPE=scope]>
Description A
A

dds the rows specified in VALUE to the array in the variable named by
RRAY. This tag does not return anything.

If the variable specified by the ARRAY attribute does not exist, it is
created.

The VALUE attribute specifies the row(s) to add. You may use the
<@VAR> tag and specify a variable containing an array, or specify any
other meta tag that returns an array. This array must have the same
number of columns as the one specified by ARRAY; otherwise, an error is
generated.

For single-column arrays, the VALUE attribute may be a text value, rather
than an array. In this case, a single row is added with the value specified.

The POSITION attribute specifies the index of the row to start adding
from; the rows are added after the specified row. To add rows to the
beginning of the array, use 0 as the value for POSITION. To add rows to
the end of the array, use -1. If POSITION is not specified, the rows are
added to the end.

The SCOPE attribute specifies the scope of the variable specified as the
value of the ARRAY attribute. If the scope is not specified, the default
scoping rules are used.

Meta tags are permitted in any of the attributes.
Examples •
 If the request variable colors contains the following array:

and the request variable colors2 contains the following array:

 orange

 amber

 burnt umber

 yellow
8383

<@ADDROWS>

8484
<@ADDROWS ARRAY="colors" SCOPE="request"
VALUE="@@request$colors2"> results in colors containing:

• If the user variable choices_list contains the following array:

and the user variable new_choices contains the following array:

<@ADDROWS ARRAY="choices_list" SCOPE="user"
VALUE="<@VAR NAME='new_choices' SCOPE='user'>"
POSITION=1> results in choices_list containing:

 orange

 amber

 burnt umber

 yellow

 News 2

 Sports 3

 Movies 4

 Stocks 1

 Weather 5

 News 2

 Stocks 1

 Weather 5

 Sports 3

 Movies 4
See Also <

<

@DELROWS> page 165
@UNION> page 306

<@APPFILE>
<@APPFILE>
Syntax <
@APPFILE [ENCODING=encoding]>
Description R
T

eturns the path to the current application file, including the file name.
his meta tag is useful for creating links that reference the current

application file. The path returned is always relative to the Web server
root directory.

Note This meta tag is often used to create URLs, for example, in the
HREF attribute of an anchor tag in HTML. To make sure that the meta
tag returns a properly encoded value, you can use one of the following:

<@APPFILE ENCODING="URL">
<@URLENCODE STR="<@APPFILE>">
Example
 <A HREF="<@CGI><@APPFILE>?conf=<@COLUMN NAME=
'conferences.conf_id'>&function=messages">
<@COLUMN NAME="conferences.conf_name"> Messages

This example specifies a link to the current application file.
See Also <

<

@APPFILEPATH> page 87
@CGI> page 119

Encoding Attribute
<@URLENCODE> page 316
8585

<@APPFILENAME>

86
<@APPFILENAME>
Syntax <
86
@APPFILENAME [ENCODING=encoding]>
Description R
f

eturns the name of the current application file. This meta tag is useful
or creating links that reference the current application file.

Compare the following two tags:

• <@APPFILE> returns the path and the name

• <@APPFILEPATH> returns the path and not the name.

Note This meta tag is often used to create URLs, for example, in the
HREF attribute of an anchor tag in HTML. To make sure that the meta
tag returns a properly encoded value, you can use one of the following:

<@APPFILE ENCODING="URL">
<@URLENCODE STR="<@APPFILE>">
Example T
o

he following example processes different HTML depending on the name
f the current application file. You may find this useful in files that are

referenced with <@INCLUDE> that are used by several application files
but that you would like to behave differently in different application files.

<@IFEQUAL <@APPFILENAME> customers.taf>
 [...HTML to execute...]
<@ELSEIFEQUAL <@APPFILENAME> administrator.taf>
 [...HTML to execute...]
<@ELSE>
 [...default HTML to execute...]
<@/IF>
See Also <

<

@APPFILE> page 85
@APPFILEPATH> page 87
<@INCLUDE> page 217
<@URLENCODE> page 316

<@APPFILEPATH>
<@APPFILEPATH>
Syntax <
@APPFILEPATH [ENCODING=encoding]>
Description R
f

eturns the path to the current application file, excluding the application
ile name, but including the trailing slash.

This meta tag is useful for creating links that reference an application file,
<@INCLUDE> file, or image file in the same directory as the currently
executing application file.

The path returned is always relative to the Web server root directory.
Examples
 <A
HREF="<@CGI><@APPFILEPATH>homer.taf?function=form">

This example calls the homer.taf file, located in the same directory as
the currently executing application file.

<@INCLUDE FILE="<@APPFILEPATH>header.html">

This example includes the header.html file, located in the same
directory as the currently executing application file.

<IMG SRC="<@APPFILEPATH>logo.gif">

This example references the logo.gif file, located in the same directory
as the currently executing application file.
See Also <

<

@APPFILE> page 85
@CGI> page 119

Encoding Attribute page 72
<@INCLUDE> page 217
<@URLENCODE> page 316
8787

<@APPKEY>

88
<@APPKEY>
Syntax <
88
@APPKEY [ENCODING=encoding]>
Description T
t

his meta tag returns the key value of the current application scope. The
ag returns nothing if the currently-executing Witango application file is

not part of an application. Managing an application is done through the
Administration Application config.taf or by editing the
applications.ini file.
Example T
k

he default value of the userKey configuration variable, which sets the
ey value for user scope, is:

<@APPKEY><@USERREFERENCE><@CGIPARAM CLIENT_IP>

The presence of <@APPKEY> in the key means that the same variable
name can be used in different applications without conflicting.
See Also <

<

@APPNAME> page 89
@APPPATH> page 90
applicationSwitch page 394
appConfigFile page 393
Encoding Attribute
userKey, altuserKey page 428
<@MAKEPATH> page 237

<@APPNAME>
<@APPNAME>
Syntax <
@APPNAME [ENCODING=encoding]>
Description T
r

his meta tag returns the name of the current application. This tag
eturns nothing if the currently-executing Witango application file is not

part of an application. Managing an application, including setting its name,
is done through the Administration Application config.taf.
Example F
or example:

My Project
See Also <

<

@APPKEY> page 88
@APPPATH> page 90

applicationSwitch page 394
appConfigFile page 393
Encoding Attribute
<@MAKEPATH> page 237
8989

<@APPPATH>

90
<@APPPATH>
Syntax <
90
@APPPATH [ENCODING=encoding]>
Description T
t

his meta tag returns the path to the current application, or nothing if
he currently-executing application file is not part of an application.

Managing an application, including setting its path, is done through the
Administration Application config.taf .
Example F
or example:

\Witango\my_project
See Also <

<

@APPKEY> page 88
@APPNAME> page 89
applicationSwitch page 394
appConfigFile page 393
Encoding Attribute
<@MAKEPATH> page 237

<@ARG>
<@ARG>
Syntax <

[

@ARG NAME=name [TYPE=type] [FORMAT=format]
ENCODING=encoding]>
Description R
r

eturns the value(s) of the named search or post argument in the HTTP
equest that calls the application file. References to arguments not

present in the request evaluate to empty.

Use this meta tag (rather than <@SEARCHARG> or <@POSTARG>) when
you want the flexibility of passing a value to an application file via either a
search or post argument.

The NAME attribute may be specified as a literal value, value-returning
meta tag, or a combination of both. The TYPE attribute accepts one of
two possible values: TEXT or ARRAY. ARRAY causes the tag to return a
single-column, multi-row array of values, one for each value received for
the named argument. An HTML <SELECT> form field with the MULTIPLE
attribute, for example, sends multiple instances of the form field, one for
each value selected by the user. Using the ARRAY type lets you access all
those values.

TEXT, which is the default type if the TYPE attribute is not specified,
causes the tag to return a single value. If you specify this type when
multiple values were received for the argument, the value returned is the
first one received by Witango.

The optional FORMAT attribute determines how the value is formatted by
Witango; it is ignored if TYPE=ARRAY is specified.
Examples
 <@ARG NAME="foo">

These return the value of the “foo” argument. Even if more than one
value was specified for foo, only one is returned.

<@ARG NAME="foo" TYPE="ARRAY">

Returns an array containing all values for the “foo” argument.
See Also E
F

ncoding Attribute
ormat Attribute
<@POSTARG> page 257
<@SEARCHARG> page 278
9191

<@ARGNAMES>

92
<@ARGNAMES>
Syntax <
92
@ARGNAMES [{array attributes}]>
Description R
a

eturns an array with two columns specifying all search and post
rguments passed into the current application file. The first column

contains the name of the argument, and the second column contains
either POST or SEARCH, depending upon how the argument was sent to
the server.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, when used in at text
context, the returned array is formatted as an HTML table.
Example
 View the arguments <@ARGNAMES>.

This would return something like:

Fred POST

access POST

username SEARCH
See Also <

<

@POSTARGNAMES> page 258
@SEARCHARGNAMES> page 279

<@ARRAY>
<@ARRAY>
Syntax <
@ARRAY [ROWS=rows] [COLS=cols] [VALUE=textValue]
[CDELIM=columnDelimString] [RDELIM=rowDelimString]>
Description R
eturns an array with a specified number of rows and columns.

This meta tag is usually used in conjunction with <@ASSIGN>. See the
examples in this section.

The attributes ROWS and COLS optionally specify the number of rows and
columns in the array, respectively. The optional attribute VALUE specifies
a string used for initializing the array, formatted as array elements
separated by CDELIM and RDELIM text.

ROWS and COLS must be specified if VALUE is not specified. VALUE must
be specified if ROWS and COLS are not specified.

If all three of these attributes are specified, they must be in accord, or an
error is generated. The following example would generate an error
because the VALUE specifies three columns and two rows, which
contradicts the ROWS and COLS attributes.

<@ARRAY ROWS=10 COLS=2 VALUE="a,b,c;d,e,f">

It is also invalid to specify a VALUE attribute with different numbers of
columns in each row. The number of columns in each row must be the
same, and must match the COLS value, if specified.

If the CDELIM and RDELIM attributes were specified as"," and ";",
respectively, and the value string were specified as
VALUE="1,2,3;4,5,6;7,8,9;a,b,c;" an array with the following
structure would be created:

1 2 3
4 5 6
7 8 9
a b c
For more information, see
“cDelim” on page 396 and
rDelim on page 420.

I
v

f no values for the column or row delimiters are specified, then the
alues specified by the configuration variables cDelim and rDelim are

used as defaults.
W
orking with Arrays

There are several meta tags available to manipulate arrays. One group of
meta tags works on a single array. The <@DISTINCT> meta tag searches
an array and displays only the unique or distinct rows. The <@FILTER>
9393

<@ARRAY>

9494
meta tag allows you to create a new array from an existing array based
on certain criteria. The <@SORT> meta tag allows you to sort an array.

Another group of meta tags work on rows in more than one array. The
<@INTERSECT> meta tag compares the rows in two arrays, then displays
only the rows that appear in both arrays. The <@UNION> meta tag
compares two arrays, then displays all of the rows in both array,
excepting duplicate rows.
Examples C
reating an array and assigning it to a variable:

<@ASSIGN NAME="array1" VALUE="<@ARRAY ROWS='6'
COLS='3'>">

Creating and initializing an array, assigning it to a variable, and printing it:

<@ASSIGN NAME="initValue"
VALUE="1,2,3;4,5,6;7,8,9;a,b,c;d,e,f;g,h,i">

<@ASSIGN NAME="array2" VALUE="<@ARRAY ROWS='6'
COLS='3' VALUE=@@initValue CDELIM=',' RDELIM=';'>">

<@VAR NAME="array2">
See Also <

<

@ASSIGN> page 96
@DISTINCT> page 167
<@FILTER> page 201
<@INTERSECT> page 218
<@SORT> page 288
<@UNION> page 306
<@VAR> page 320

<@ASCII>
<@ASCII>
Syntax <
@ASCII CHAR=char>
Description R
C

eturns the ASCII value of the first character of the string specified in the
HAR attribute.

Note Characters with ASCII codes above 127 return different values
depending on the character encoding standard used by the operating
system on the computer where Witango Server is running.

The attribute may be a literal value or a meta tag that returns a string.
Examples
 <@ASCII CHAR="T"> or <@ASCII “T”>

This example returns “84”.

<@ASCII CHAR="<@POSTARG NAME=FirstName>">

This example returns the ASCII value of the first character of the
FirstName field of the HTML form.
See Also <
@CHAR> page 123
9595

<@ASSIGN>

96
<@ASSIGN>
Syntax <
96
@ASSIGN NAME=name VALUE=value [SCOPE=myscope]
[EXPIRES=timestamp] [PATH=path] [DOMAIN=domain]
[SECURE=true|false]>
Description A
i

ssigns a value to a variable. If the specified variable does not yet exist, it
s created.
For more information on
variables see Working
With Variables.

T

a

he NAME attribute specifies the name of the variable to assign the value
to. The following restrictions apply to the value specified in the NAME
ttribute:

• must start with a letter

• may contain numbers, letters, the underscore character “_”, and, the
fullstop character “.”.

• may be no longer than 31 characters.

Variable names are case insensitive; for example, myVar is the same
variable as MYVAR and MyVaR.

The value may be text, an array, email or DOM.

If the variable being assigned to exists and contains an array, this tag also
lets you set the values of individual elements in that array. <@ASSIGN>
can assign an array (or array section) to a variable, or to another array
(or array section). Array assignments require that the source and target
arrays (or array sections) have the same dimensions.

If you are assigning to an array variable element or section, the name
includes the element or section specification specified within square
brackets as [rownumber,colnumber], with an asterisk indicating all
rows or all columns; for example, NAME=myArray[1,2] or
NAME=myArray[*,3].

The VALUE attribute specifies the value to assign to the variable. If you
are assigning to an array section, the value specified here must match the
dimensions of the array variable specification in NAME.

Note You can add rows to an array, but not columns. For more
information, see <@ADDROWS> on page 83. Resizing an array
variable is not supported, but you may assign a new array (of any
dimension) to an existing variable. Assigning subset shapes is not
possible where such shapes cannot be described with the wildcard
syntax “*”.

<@ASSIGN>
Scope Attributes

Scoping is the method by which variables can be organized and disposed
of in an orderly and convenient fashion. There are various levels of
scoping, each of which has an appropriate purpose:
For more information, see
“Configuration Variables”
on page 387.

•
 System Scope contains any variables that are general to all users.
This scope contains only Witango Server configuration variables. To
use this scope, specify SCOPE=system or SCOPE=sys.
For more information, see
“domainScopeKey” on
page 406 .

•
 Domain Scope contains variables that users can share if they are
accessing a particular Witango application file from a specified
Witango domain. Witango domains are specified in a domain
configuration file, or default to the domain name (base URL or IP
address) of the path to the Witango application file. This scope is
defined by setting the system configuration variable
domainScopeKey appropriately; that is, setting it to a value that can
differentiate such users. By default, this is <@DOMAIN>, which returns
the value of the current Witango domain.To use this scope, specify
SCOPE=domain.
•
 Application Scope contains variables that are shared across
Witango applications. Witango applications are defined by Witango
users in an application configuration file. To use this scope, specify
SCOPE=application or SCOPE=app.
•
 User Scope contains variables that a user defines and expects to be
able to access from many application files or invocations of single
application files. To use this scope, specify SCOPE=user or
SCOPE=usr.

• Request Scope contains variables that should be unique to every
invocation of any application file. For example, this scope could be
used for temporary variables that reformat output from a search
action. All variables of this scope are removed when the application
file concludes execution. To use this scope, specify SCOPE=request,
or SCOPE=doc.

• Instance Scope contains variables that are valid in an instance of a
Witango class file. These variables can be shared across methods
called on a Witango class file, if the methods are called on the same
instance. To use this scope, specify SCOPE=instance.

• Method Scope contains variables that should be unique to a
method of a Witango class file. To use this scope, specify
SCOPE=method.

• Cookie Scope contains variables that are sent to the user’s Web
browser as cookies (that is, a small text file kept by the Web
browser for a specified amount of time). To use this scope specify
SCOPE=cookie.
9797

<@ASSIGN>

9898
• Custom Scope is user-specified. It is outside of the scope search
hierarchy.
For more information on
“Scoping” see
Understanding Scope.

I
s

f this attribute is omitted, the following steps are taken to determine the
cope in which the assignment takes place:

Witango searches for the variable in request, user, domain and system
scope, in that order. As soon as the variable by the NAME specified is
found, the search stops, and the VALUE is assigned to that variable.

A new variable is created in the default scope if the variable is not found.
The default scope is normally REQUEST, but can be changed by setting
the defaultScope configuration variable in the witango.ini file.

Cookie Attributes

T
he EXPIRES, PATH, DOMAIN, and SECURE attributes are only valid when
SCOPE=COOKIE.
For more information on
Cookie Scope, seeFor
more information, see
“Cookie Scope” on
page 347

I
q
i
s

f the EXPIRES attribute is omitted, the cookie expires when the user
uits their Web browser. This is the default cookie behavior as described
n the cookie specifications. Otherwise, a GMT timestamp must be
pecified in the following format:

Wdy, DD-Mon-YY HH:MM:SS GMT

The following EXPIRES attribute is a combination of meta tags that
specifies a GMT date in the correct format based on the current
timestamp plus one week (604,800 seconds):
For more information, see
“<@CURRENTTIME-
STAMP>” on page 150,
“<@TSTOSECS>” on page
304, and <@TOGMT> on
page 299.
EXPIRES=<@TOGMT TS=<@SECSTOTS SECS='<@CALC
EXPR="<@TSTOSECS
TS=<@CURRENTTIMESTAMP>>+604800">'>
FORMAT="datetime:http">

If the DOMAIN attribute is omitted, the Domain value is omitted from the
Set-Cookie line, causing the cookie to be valid for the current server.
Otherwise you can specify any domain string up to 63 characters.
.example.com, for example, would cause the cookie to be sent back to
www.example.com, demo.example.com, sales.example.com, and
so on.

In the PATH attribute, server root (/) specifies that the cookie be sent for
all paths within the specified domain. You can specify a path string up to
63 characters. For example, /Witango/ would cause the cookie to be
sent back only for URLs below the Witango folder. If no PATH is
specified, the default is server root.

The SECURE attribute specifies whether a secure connection is required
for client send. Possible values are TRUE (enabled) or FALSE (disabled).
This option sets the Secure value of the Set-Cookie line. If the value is set

<@ASSIGN>
to TRUE, then the cookie is sent back by the Web browser only if a
secure connection is being made. The default is FALSE, which is used if
no secure attribute is found.
Examples
 <@ASSIGN NAME="foo" VALUE="123456" SCOPE="user">

This example assigns the value “123456” to the variable foo in user
scope.

<@ASSIGN NAME="foo2" VALUE="abcdef">

This example either assigns the value “123456” to the variable foo2 in
request, user, application, domain or system scope, depending on the first
instance of foo2 that Witango Server encounters; or, if it does not exist,
it creates a new variable called foo2 in default scope and assigns the
value “123456” to it.

<@ASSIGN NAME=fred SCOPE=cookie VALUE="You were here."
EXPIRES="<@TOGMT TS=<@SECSTOTS SECS='<@CALC
EXPR="<@TSTOSECS
TS=<@CURRENTTIMESTAMP>>+604800">'>
FORMAT="datetime:http">">

This example sends a cookie named fred that is valid for the current
server and path, has the value “You were here.” and expires in one week.

<@ASSIGN NAME="foo3" SCOPE="user" VALUE="<@ARRAY
ROWS=5 COLS=3>">

This example assigns an array of five rows and three columns to the user
variable foo3.

<@ASSIGN NAME="foo4" SCOPE="user"
VALUE="<@POSTARGNAMES>">

This example assigns the evaluated value of the meta tag
<@POSTARGNAMES> (an array) to the user variable foo4.

<@ASSIGN NAME="initValue"
VALUE="1,2,3;4,5,6;7,8,9;a,b,c;d,e,f;g,h,i">
<@ASSIGN NAME="array2" VALUE="<@ARRAY ROWS='5'
COLS='3' VALUE=@@initValue CDELIM=','
RDELIM=';'>">
<@ASSIGN NAME="foo5" SCOPE="user"
VALUE="@@array2[*,2]">

This example creates an array variable called array2, initializes it, and
then creates a new one-column array variable (foo5), containing all the
values in column 2 of array2.

<@ASSIGN NAME="orders[1,*]" VALUE="@@myOrder"
SCOPE="user">
9999

<@ASSIGN>

100100
This example puts the single-row array stored in the myOrder variable
into the first row of the orders user variable, replacing the existing
values. This assignment generates an error if myOrder is not an array,
contains more than one row, or does not contain the same number of
columns as the orders array.

<@ASSIGN NAME="zips" VALUE="@@orders[*,4]"
SCOPE="request">

Assigns to the request variable zips a one-column array of all the values
from column 4 of the orders array.

<@ASSIGN NAME="curr_cust" VALUE="@@orders[1,1]">

Assigns the value from the first cell in the first row of the orders array
to the curr_cust variable, using default scoping rules.

<@ASSIGN NAME="race_results[*,3]" VALUE="<@VAR
NAME='new_results[*,1]'>">

Copies the values from column 1 of the new_results array to the third
column of the race_results array. Both arrays must contain the same
number of rows, or an error occurs.
See Also <

<

@ARRAY> page 93
@PURGE> page 260
<@VAR> page 320
<@DEFINE> page 162
variableTimeout page 430
Working With Variablespage 343

<@BIND>
<@BIND>
Syntax <

[

@BIND NAME=varname [DATATYPE=datatype] [SCOPE=scope]
BINDTYPE=bindtype] [PRECISION=number] [SCALE=number]

[BINDNAME=bindname]>
Description T
u

he <@BIND> meta tag is used to pass a value in the Direct DBMS action
sing the parameter binding capabilities of ODBC or OCI. This meta tag

instructs Witango Server to generate the appropriate binding calls based
on the assigned data source type. Binding is useful for passing values to,
and retrieving values from, stored procedures.

The NAME attribute is the name of a Witango variable to be used for
parameter binding. The SCOPE attribute is an optional attribute defining
the scope of the variable named in the NAME attribute.

The BINDTYPE attribute can have one of the following values:

• IN. Input parameter only. The execution of the SQL never
affects the contents of the Witango variable. This is the default
value for the BINDTYPE attribute.

• IN/OUT. The parameter is used by the SQL (normally, a stored
procedure call) for both input and output.

• OUT. Output parameter only. Output parameters are set by the
stored procedure being called. The value before execution of
the <@BIND> tag is irrelevant to the execution.

The DATATYPE attribute defines how the contents of the Witango
variable will be interpreted when actual DBMS binding is performed. Valid
datatypes are INTEGER, VARCHAR, CHAR, DATE, TIME, TIMESTAMP, REAL,
FLOAT, NUMERIC, and DECIMAL.

If the DATATYPE is set to TIMESTAMP, the timestamp text for ODBC
data sources should be in the following form:

YYYY-MM-DD HH:MI:SS[.FFFFFF].

For OCI data sources, the default format is the one for the current
session; for example, DD-MONTH-YY.

The PRECISION attribute is the size of the bound parameter in bytes.
The default value for this attribute is that of the corresponding datatype,
that is, 255 for VARCHAR and CHAR, 10 for INTEGER, and so on, and
needs to be changed only if the corresponding bound DBMS parameter
has the precision less than the default value.
101101

<@BIND>

102102
The SCALE attribute is the number of the decimal digits after the floating
point for numeric data types. The value of the SCALE attribute is ignored
for textual parameters.

The following table gives the default values for PRECISION and SCALE
for various values of DATATYPE:

In case of an input-only (IN) parameter, PRECISION has no effect and is
overridden by the actual parameter length. For IN/OUT text parameters,
the PRECISION attribute defines the maximum length of the text
returned by the DBMS.

The BINDNAME attribute is an optional name used as a bound parameter
placeholder when the SQL statement is processed. This attribute is used
only if the underlying DBMS driver supports this functionality. Currently,
only OCI supports named parameters.

Since both OCI and ODBC provide implicit type castings, handling
integer, float and varchar columns allow you to bind virtually any data
necessary, with the exception of VARBIN columns, because the length is
currently limited to 32767.

The use of <@BIND> with TYPE=IN is valuable in that the contents of the
bound parameter can contain characters such as quotes, commas, and
control characters that do not affect the execution of the stored
procedure: there is no need to quote a bound parameter.

Caution If an error occurs that prevents the successful completion of
an action using bound output variables, the values in those variables are
undetermined and no assurance is given that they have or have not
been modified. Furthermore, a Transaction Rollback or Commit action
issued to the data source does not affect the values in variables
previously bound within a Direct DBMS action involved in the
transaction.

DATATYPE Default PRECISION Default SCALE

INTEGER 10 0

FLOAT, REAL,
NUMERIC,
DECIMAL

15 2

VARCHAR,
CHAR

255 -

DATE, TIME,
TIMESTAMP

- -

<@BIND>
Limitations S
a

ince Witango Server does not parse the SQL inside a Direct DBMS
ction other than to perform the above substitutions, the OUT

parameters of one stored procedure call cannot be used as input to
another stored procedure call within the same action.

For example, if the same Direct DBMS action specified above also called
another function:

CALL UpdatePersonalExpenses(<@VAR premium>);

The value for premium that was calculated by the
CalculateMortgagePremium() function would not be available for
this stored procedure.

Caution Only ODBC v2.0 or above drivers support IN/OUT
parameters through the SQLBindParameter() call.If
BINDTYPE=IN/OUT is specified for the TIMESTAMP datatype, the
Oracle ODBC driver returns an error message. The bind type IN
works correctly.
Example C
reate a SQL Server stored procedure sp_testproc:

create procedure sp_testproc
@param1 varchar(64) output,
@param2 integer output,
@param3 float output,
@param4 numeric(10,2) output,
@param5 datetime output
as
select @param1 = @param1 + ': param1'
select @param2 = @param2 + 2
select @param3 = @param3 + 3.3
select @param4 = @param4 + 4.4
select @param5 = CONVERT(datetime, getdate())

The preceding stored procedure can be called using this syntax:

{CALL sp_testproc(
<@BIND NAME=Param1 BINDTYPE=IN/OUT
BINDNAME=StringParam PRECISION=32>,
<@BIND NAME=Param2 BINDTYPE=IN/OUT
DATATYPE=INTEGER>,
<@BIND NAME=Param3 BINDTYPE=IN/OUT DATATYPE=FLOAT
SCALE=3>,
<@BIND NAME=Param4 BINDTYPE=IN/OUT DATATYPE=DECIMAL
PRECISION=6 SCALE=2>,
<@BIND NAME=Param5 BINDTYPE=IN/OUT
DATATYPE=TIMESTAMP>
)}
103103

<@BREAK>

10
<@BREAK>
Description T
b

1044
erminates execution of a <@COLS>, <@ROWS>, <@FOR>, or <@OBJECTS>
lock. <@BREAK> causes execution to continue to the HTML following

the current loop’s close tag; outside of a loop, it does nothing. This tag
has no attributes. This tag does not affect loops initiated with For Loop
or While Loop actions.

This tag is generally used with an <@IF> tag to terminate a loop when
some condition is met. Be careful to handle nested loops properly: only
the innermost loop’s processing is affected by the break.
Example T
t

he following example returns records until the accumulated total of all
he company.balance columns reaches or exceeds 1000:

<@ASSIGN NAME="running_total" VALUE="0">
<@ROWS>
Here are the values from record <@CURROW> of the
results:<P>
Company Name: <@COLUMN
NAME="company.name">

Balance $<@COLUMN
NAME="company.balance">

Running total: $<@NEXTVAL NAME="running_total"
STEP='<@COLUMN NAME="company.balance">'>
<@IF EXPR="@@running_total>=1000" TRUE="<@BREAK>">
</@ROWS>
Running total of balance has reached $1000. End of
records.
See Also <

<

@COLS> </@COLS> page 137
@CONTINUE> page 144
<@EXIT> page 200
<@FOR> </@FOR> page 204
<@OBJECTS></@OBJECTS> page 252
<@ROWS> </@ROWS> page 272

<@CALC>
<@CALC>
Syntax <

[

@CALC EXPR=expr [PRECISION=precision] [FORMAT=format]
ENCODING=encoding]>
Description R
eturns the result of the calculation specified in EXPR.
Basic
Functionality

T
n
m

he expression may contain numbers (including numbers in scientific
otation); any of six arithmetic operations—multiplication (*), division (/),
odulo (%), power (^), addition (+), and subtraction (-); parentheses for

controlling the order of operations; mathematical functions; string
functions; logical operations; comparison operations; calculation variables
(A–Z); and sub-expressions.

Note Do not confuse calculation variables with configuration variables
or other Witango variables. They are only applicable to <@CALC> and
do not work with <@ASSIGN> or <@VAR>.

If the expression contains any spaces—except for spaces within
embedded meta tags—it must be quoted.

The optional PRECISION attribute is an integer that controls the number
of decimal places displayed in the result. The default precision is the
maximum required for accuracy of the result.

If an error is encountered while the expression is parsed or computed,
the computation is halted and the tag is substituted with relevant error
information.
Examples
 <@CALC EXPR="3+7">

This tag returns “10”.

<@CALC EXPR="<@POSTARG NAME='calculateThis'>"
PRECISION="4">

This evaluates the contents of the form field specified—
calculateThis—to four decimal places of precision. If the field
contained “8*9+8/2”, for example, the tag would evaluate to “76.0000”.
105105

<@CALC>

10
Advanced
Functionality
and Calculation
Variables
Reference

N

A
c
c

o
v

1066
umbers

 valid number is a sequence of digits, optionally preceded or trailed by a
urrency sign (default “$”, otherwise set by the configuration variable
urrencyChar), with any number of thousand separator characters, an
ptional decimal point, and an exponentiation part. As well, an empty
ariable or empty string evaluates to zero.

Numbers can be used with any operators and functions, even with the
string specific function len, which returns the length of the number
converted to a string.

When a number is used in logical expression, any non-zero number is
considered true, and zero is considered false.

Logical expressions themselves return “1” if they are true or “0” if they
are false.

Two symbolic constants, true and false, which evaluate to “1” and “0”,
respectively, are provided for convenience.

An empty string evaluates to zero for the purposes of calculation. That is,
if the variable foo is empty, the following operations are valid:

<@CALC '@@foo + 1'> OK, returns 1
<@CALC '"" + 1'> OK, returns 1
<@CALC 'mean(@@foo 1)'> OK, returns 0.5

The thousand separator set to space

A special case occurs when the thousand separator is set to a space. A
number containing a space can be processed if it is a result of a tag
evaluation; however, a number literal must be quoted if it includes spaces.

For example:

<@ASSIGN NAME=fred VALUE="1 000 000">

<@CALC "@@fred / 100"> Ok, returns 10000.0
<@CALC "@@fred > '1 000'"> Ok, returns 1.0
<@CALC "@@fred > 1 000"> Error
For more information, see
“currencyChar” on
page 398, decimalChar on
page 403, DBDecimalChar
on page 402, and
thousandsChar on
page 424.

T
s

A

<

he thousands separator, currency sign, and other numerical formats are
et by Witango configuration variables. They can be set in various scopes.

rray evaluation

@CALC> treats array references using non-array-specific operators and
functions as a numerical value returning the number of rows in the array.

This provides an easy way to verify whether an array is empty or contains
a certain value. For example, you can test for the existence of an array

<@CALC>
variable with <@CALC EXPR="@@array_variable > 0"
TRUE="Yes!" FALSE="No such variable.">.

For example:

The variable fred contains the following array:

The variable barney contains the following array:

<@CALC @@fred> returns 2.

<@CALC @@barney> returns 3.

<@IF EXPR="@@fred > @@barney" TRUE="true!"
FALSE="alas"> returns “alas”.

Hexadecimal, Octal and Binary Numbers

The calculator can accept hexadecimal, octal, and binary numbers. The
num function converts strings representing hexadecimal, octal and binary
numbers to decimal numbers, and the result of the conversion can be
used anywhere where a number is used. The following table specifies the
conversion rules.

Note If a decimal number is passed to this function, it either yields an
error or an incorrect result.

For example, all the following expressions generate errors:

1 2

3 4

1 2

5 6

7 8

Prefix Valid Symbols Converted As Examples

0x 0123456789abcdef Hexadecimal num (0xff)
num (0x0123f3a4)

0 01234567 Octal num (0123456)
num (0120235)

None 01 Binary num (1011110010100)
num (111)
107107

<@CALC>

108108
num(0x123fga) ERROR: letter g is invalid
num(012380) ERROR: digit 8 is invalid
num(123) ERROR: digits 2 and 3 are invalid

Strings

Any Witango meta tag that does not evaluate to a valid number or array
reference is considered a string. No additional quoting is required. There
is a single exception to this rule, further explained in Meta Tag Evaluation
on page 114.

Strings can be used only in comparison operations, contains clauses or as
arguments to the len function. A string literal—that is, a string, directly
included in the expression—must be enclosed in single quotes if it
contains spaces, special characters or starts with a digit.
For more information, see
“Calculation Variables” on
page 109.
Note Single letters must always be enclosed in quotes in string
operations so that they are treated as letters, and not as calculation
variables.

The following examples show string comparisons. If a string literal
contains a single quote or a backslash, it must be escaped with a
backslash.

<@ASSIGN NAME=name VALUE="John Lennon">
<@CALC EXPR="@@name=John"> false
<@CALC EXPR="@@name=John Lennon"> ERROR
<@CALC EXPR="@@name='John Lennon'"> true
<@CALC EXPR="@@name='John*'"> true

<@ASSIGN NAME=name VALUE="John's trousers">
<@CALC EXPR="@@name=John*" true
<@CALC EXPR="@@name='John\'s trousers'"> true
<@CALC EXPR="@@name='John's'"> ERROR

<@ASSIGN NAME=dir VALUE="C:\test">
<@CALC EXPR="@@dir='C:\test'"> false
<@CALC EXPR="@@dir='C:\\test'"> true

When a string is encountered on one side of the comparison operation,
the other operand is forced to a string, too. For example:

2.15 <='abba'
'123.456.78.12'=@@ip_address

Function len returns the length of the string, so the result of this
operation can be used anywhere a number can be used. Strings can not
be assigned to calculation variables.

For example, these are valid expressions:

<@CALC>
ABBA='BLACK SABBATH' false
len(JOHN LENNON) + len(FREDDY MERCURY) - 5 > 0 true

but these are not:

a :=ABBA ERROR: cannot assign string
FREDDY < 0 ERROR: cannot compare string and number

and this tag returns true although you may expect it to return false:

<@CALC EXPR="a=b">

Note A single letter on both sides of the comparison operator
evaluates to a calculation variable, meaning a number comparison is
performed.

String comparisons using <@CALC> are case insensitive.

Calculation Variables

A calculation variable is a single case-insensitive letter (A–Z) that can be
assigned a numeric value and used in subsequent operations. You can
write small programs inside the tag with calculation variables and
statement separators, or put a program in a separate file and use
<@INCLUDE> to calculate the result.

Single letters must always be enclosed in quotes in string operations so
that they are treated as letters, and not as calculation variables. For
example:
For more information, see
“beginswith” on page 111.
<@CALC EXPR="Henry beginswith 'H'"> evaluates the string
“Henry” to see if it begins with the string “H” (case-insensitive).

<@CALC EXPR="1234 beginswith H"> evaluates “1234” to see if
it begins with the value specified in the calculation variable H
(number-to-string conversions are performed).

The following table shows predefined calculation variables. You may use
these values in your programs, or have any of these calculation variables
reassigned with any other value.

Variable Meaning Value

G (3 - sqrt(5))/2, the golden ratio. 0.381966011250105

E e, the base of natural logarithms. 2.718281828459045

L log10(e), the ratio between natural and
decimal logarithms.

0.434294481903252
109109

<@CALC>

110110
Operators

The following table shows the operators listed in order of increasing
precedence. Operators having the same precedence, for example, plus
and minus, are not separated by a rule.

Note The beginswith operator should be used instead of a
trailing asterisk as a wildcard in comparisons.The use of asterisks
as wildcards is deprecated and will be removed in a future release.

P pi, the circumference to diameter ratio of a
circle.

3.141592653589793

Q sqrt(2), the square root of 2. 1.414213562373095

I Has a meaning only inside foreach
expression.

Current row index

J Has a meaning only inside foreach
expression.

Current column index

X Has a meaning only inside foreach
expression.

Current array element
index

Operator Meaning and Return Value Usage

; Sub-statement separator, returns the value of the
last statement.

statement ;
statement

:= Assignment operator, assigns the value of the
expression to the calculation variable, and returns
that value.

variable :=
expression

||
OR

Logical OR, returns 1 if any of the expressions is
evaluated to a non-zero value, or 0 otherwise.

expr || expr
expr OR expr

&&
AND

Logical AND, returns 1 if both of the expressions
are evaluated to non-zero values, or 0 otherwise.

expr && expr
expr AND expr

< Numeric or string LESS. Returns 1 if left operand is
greater than right one, or 0 otherwise.

expr < expr
string < string

> Numeric or string GREATER. Returns 1 if left
operand is greater than right one, or 0 otherwise.

expr > expr
string > string

<= Numeric or string LESS OR EQUAL. Returns 1 if left
operand is less than or equal to right one, or 0
otherwise.

expr <= expr
string <= string

Variable Meaning Value

<@CALC>
>= Numeric or string GREATER OR EQUAL. Returns 1
if left operand is greater than or equal to right one,
or 0 otherwise.

expr >= expr
string >= string

= numeric or string EQUAL. Returns 1 if left operand
is equal to right one, or 0 otherwise.

expr = expr
string = string

!= Numeric or string NOT EQUAL. Returns 1 if left
operand is not equal to right one, or 0 otherwise.

expr != expr
string != string

? : Ternary comparison. Evaluates to expr1 if condition
is true, or to expr2 otherwise.

(cond) ? expr1:
expr2

contains Containment. Returns true if specified string or
number is contained in the array.

array contains
string
array contains
number

contains Occurrence. Returns true if specified string or
number is a substring of the source string.

source_string
contains string
source_string
contains number

beginswith Occurrence. Returns true if specified string or
number begins the source string. (Case-insensitive.)

source_string
beginswith string
source_string
beginswith
number

endswith Occurrence. Returns true if specified string or
number ends the source string. (Case-insensitive.)

source_string
endswith string
source_string
endswith
number

+ Addition. Returns the sum of the expressions. expr + expr

– Subtraction. Returns the difference of the
expressions.

expr – expr

* Multiplication. Returns the product of the
expressions.

expr * expr

/ Division. Returns the quotient of the expr1 divided
by the expr2.

expr1 / expr2

% Modulo. Returns the remainder of expr1 divided by
expr2.

expr1 % expr2

^ Power. Returns expr1 raised to expr2 power. expr1 ^ expr2

– Unary minus. Returns the negation of the
expression.

– expr

+ Unary plus. Returns the expression itself. + expr

!
NOT

Logical NOT. Returns 0 if the value of the
expression is not 0, or 1 otherwise.

! expr
NOT expr

Operator Meaning and Return Value Usage
111111

<@CALC>

112112
Built-in Functions

Each built-in function expects either a single numeric argument, or a
space-separated list of mixed numeric and array arguments, or a string. It
is an error to specify an argument of the wrong type to a function. If an
array, specified as an argument to a function, contains non-numeric
elements, these elements are ignored without any error diagnostics.

The following tables list all built-in functions.

TABLE 1. Numeric functions of the form func(expr)

Function Meaning and Return Value Arguments and
Usage

abs |x|, the absolute value of the expression abs(expr)

acos cos-1(x), the arccosine of the expression,
returned in radians

acos(expr)

asin sin-1(x), the arcsine of the expression, returned
in radians

asin(expr)

atan tan-1(x), the arctangent of the expression,
returned in radians

atan(expr)

ceil expression rounded to the closest integer
greater than or equal to the expression

ceil(expr)

cos cos(x), the cosine of the expression, specified
in radians

cos(expr)

exp ex, the exponentiation of the expression exp(expr)

fac x! (or 1*2*3*...*x) factorial of the expression fac(expr)

floor expression rounded to the closest integer less
than the expression

floor(expr)

log In(x) (or loge(x)), the natural logarithm of the
expression

log(expr)

log10 log10(x), the decimal logarithm of the
expression

log10(expr)

sin sin(x), the sine of the expression, specified in
radians

sin(expr)

sqrt sqrt(x) (or x1/2), the square root of the
expression

sqrt(expr)

tan tan(x), the tangent of the expression, specified
in radians

tan(expr)

<@CALC>
TABLE 2. String functions of the form func(string)

TABLE 3. Array functions of the form func(expr|array
expr|array)

Function Meaning and Return Value
Arguments
and Usage

len returns the length of the string enclosed in
parentheses

len(text)

num converts a string, representing a hexadecimal,
octal, or binary number into a number

num(text)

Function Meaning and Return Value Arguments and
Usage

max max(A1, A2,...An). returns the largest element max(expr expr ...)

min min(A1, A2,...An). returns the smallest element min(expr expr ...)

sum A1+A2+...+An. returns the sum of the elements sum(expr expr...)

prod A1*A2*...*An. returns the product of the
elements

prod(expr expr...)

mean Amean=(A1+A2+...+An) /n. returns the mean of
the elements

mean(expr expr...)

var Avar=((A1-Amean)2+((A2-Amean)2+...+((An-

Amean)2)/(n-1) returns the (squared) variance
of the elements

var(expr expr...)
Array
Operators

C

T

ontains Operator

he contains operator has the following syntax:

<@VAR NAME="array"> contains number or string

This operator checks if the specified number or string is contained in the
array. The string should be enclosed in quotes, if it contains any non-
alphanumeric characters. The operator returns “1” if the element is
found, or “0” otherwise.

For example, the following expression, which uses the <@IF> meta tag,
returns “Cool” if “Queen” is found in the CDs array, and “Too Bad” if it
is not.

<@IF EXPR="<@VAR NAME=CDs> contains Queen" TRUE=Cool
FALSE="Too bad">
113113

<@CALC>

114114
Foreach Operator

The foreach operator has the following syntax:

<@VAR array> foreach {statement; ...}
For more information, see
“<@ARRAY>” on page 93.

For more information, see
“<@ASSIGN>” on
page 96.

T

•

his operator steps through the elements of an array and it assigns

the value of the elements to the variable “X”

• the current row number to the variable “I”

• and the current column number to the variable “J”

and it executes the statements inside the braces “{ }”for each element.
All non-numeric elements are interpreted as zeroes.

The operator returns the last calculated value of the expression.

The values of “X, I, J” are restored upon the exit from the foreach
operator. For example, if array CDs is initialized as follows:

<@ASSIGN NAME="CDinitValue" VALUE="AC/
DC,Scorpions,Deep Purple,Black
Sabbath,Queen;19.50,22.50,22.50,17.90,29.00">
<@ASSIGN NAME="CDs" VALUE="<@ARRAY ROWS='2'
COLS='5' VALUE=@@CDinitValue CDELIM=','
RDELIM=';'>">

then the following program prints the name of the most expensive CD:

<@VAR NAME=CDs[1,<@CALC "t :=1; p :=0.0;

<@VAR NAME=CDs> foreach
{ t :=(p < x)? j: t; p :=(p < x)? x: p; }; t">]>

Meta Tag Evaluation

There are two special cases when a meta tag is not treated as a string.
Consider the following two examples:

<@CALC EXPR="<@POSTARG NAME=prog>">
<@CALC EXPR="<@INCLUDE FILE=myprog>">

If the post argument prog contains an expression submitted by a user, or
the file myprog contains an expression to be calculated, one would expect
<@CALC> to produce the result of the calculation. The rule is, if the
expression contains a single meta tag, such an expression is fully
evaluated by the calculator, rather than treated as a string.

<@CALC>
Ordering of Operation Evaluation With Parentheses

Parentheses can be used to order the evaluation of expressions that
otherwise are evaluated in the order specified in the Operators table
(page 110). For example:

<@CALC EXPR= "7*3+2">

This example evaluates to “23”.

<@CALC EXPR= "7*(3+2)">

This example evaluates to “35”.

A more complex example can be constructed using different operators
and nested parentheses:

<@CALC EXPR="(<@ARG _function> = 'detail') and
((len(<@ARG id>) != 0 and <@ARG mode>='abs')
or (<@ARG mode>='next' or <@ARG mode>='prev'">))>

This tag evaluates to “1” (true) if the _function argument is equal to
“detail” and any one of the following conditions are met:

• id arg is not empty and the mode arg is “abs”

• mode argument is “next”

• mode argument is “prev”.
See Also <

<

@ARRAY> page 93
@ELSEIF> page 210

<@ELSEIFEMPTY> page 210
<@ELSEIFEQUAL> page 210
Encoding Attribute
<@FORMAT> page 205
Format Attribute
<@IF>, <@ELSE> page 210
<@VAR> page 320
115115

<@CALLMETHOD>

11
<@CALLMETHOD>
Syntax <

[

1166
@CALLMETHOD OBJECT=variable METHOD=method¶meters
SCOPE=scope] [METHODTYPE=get|set|invoke]
[PARAMTYPES=paramtypes]>
Description T
his meta tag calls a specified method of an object.

The OBJECT attribute defines the name of a variable containing an object
instance. The optional SCOPE attribute defines the scope of the variable.

The METHOD attribute defines the name of the method to call and the
parameters. The METHOD attribute is of the following form:

methodname(param1, param2, ...)

For COM and JavaBean methods, the method name is case-sensitive.

A parameter must be quoted (single or double quotes) if it contains a
comma or has significant spaces at the beginning or end, but otherwise
quoting is unnecessary. Literal quotes in parameter values must be
specified using the <@SQ> and <@DQ> meta tags. Initial and trailing spaces
outside of quotes are ignored.

Overloaded Methods and PARAMTYPES

An overloaded method occurs when an object has more than one
method with the same name. These methods have different parameter
lists.

The PARAMTYPES attribute must be specified for overloaded methods.
This attribute is specified as a comma-delimited list of data types which
have a one-to-one correspondence with the parameters specified in the
METHOD attribute. If the attribute is not specified for overloaded
methods, the method call may fail because Witango Server does not
know which method of the object to call (it chooses the first one).

Type Conversion

At execution time, if the PARAMTYPES attribute is not specified, Witango
Server introspects the named method to determine the data types of its
parameters and does the necessary conversion.

<@CALLMETHOD>
Passing Parameters “By Reference”

For more information, see
“<@VARPARAM>” on
page 328.

V
p
O

alues from an out or in/out parameter are obtainable by binding the
arameter to a Witango variable using the <@VARPARAM> meta tag.
bject variables and arrays may be passed with <@VARPARAM> as well.

This is equivalent to using the Variable option in the Format column of
the Call Method action parameter.

Note The <@VARPARAM> meta tag must be used with parameters of
type Variant (COM-only).

The METHODTYPE attribute specifies one of GET, SET, or (the default)
INVOKE. The METHODTYPE attribute must be specified for getter and
setter methods in order to prevent ambiguity of method names (a
standard method called GetProperty would, at least with COM, conflict
with the getter for the property property).

Meta tags are allowed in all attribute values. The return value of the tag is
the return value of the method call.
Example
 <@CALLMETHOD OBJECT=myObject
METHOD='foo(1,"test")'>

Calls the method foo with the specified parameters on the myObject
object instance variable.

<@CALLMETHOD OBJECT=myCOMObject
METHOD="ContentID()" METHODTYPE=GET>

This example gets the value of the ContentID attribute of the
myComObject instance. The GET is omitted from the name which
appears in Witango Editor’s Attributes folder for that object.

Examples of METHOD specifications using <@VARPARAM>:

<@CALLMETHOD OBJECT=myVar METHOD=foo(<@VARPARAM
NAME=myFirstParam SCOPE=request>, secondparam)>

The value for the first parameter comes directly from the
myFirstParam request variable. After execution, the variable contains
the output for that parameter.

<@CALLMETHOD OBJECT=myVar METHOD=foo(<@VARPARAM
NAME=user$myVar DATATYPE=LONG>)

If the first parameter of foo expects a Variant, this METHOD specification
causes the data in myVar to be passed as a long.
117117

<@CALLMETHOD>

11
See Also <

<

1188
@CREATEOBJECT> page 145
@GETPARAM> page 206
<@NUMOBJECTS> page 249
<@OBJECTAT> page 251
<@OBJECTS></@OBJECTS> page 252
<@SETPARAM> page 286
<@VARPARAM> page 328

<@CGI>
<@CGI>
Syntax <
@CGI [ENCODING=encoding]
Description R
eturns the full path and name of the Witango CGI.

With server plug-in/extension versions of Witango, this meta tag returns
nothing.

Use this meta tag when creating embedded links to other Witango
application files. Doing so ensures that the links work regardless of the
Web server setup, or on which platform you are running Witango
Server.

Note This meta tag is often used to create URLs, for example, in the
HREF attribute of an anchor tag in HTML. To make sure that the meta
tag returns a properly encoded value, you can use one of the following:

<@CGI ENCODING="URL">
<@URLENCODE STR="<@CGI>">
Examples
 <A HREF="<@CGI>/custlist.taf">List Customers

This provides a link to an application file named custlist.taf.

With the CGI in the cgi-bin directory, the example returns /cgi-
bin/wcgi.exe/custlist.taf. If you are running Witango with one of
the server plug-ins, it returns /custlist.taf.

<A HREF="<@CGI>/more/cust_add.taf">Add Customer

This links to the cust_add.taf application file located in a directory
named more in the root directory of the Web server.
See Also <

<

@APPFILE> page 85
@APPFILEPATH> page 87

Encoding Attribute
<@MAKEPATH> page 237
119119

<@CGIPARAM>

12
<@CGIPARAM>
Syntax <
1200
@CGIPARAM NAME=name [ENCODING=encoding]>
Description E
v

valuates to the value of the specified CGI attribute. CGI attributes are
alues passed to Witango Server by your Web server. CGI attributes are

passed whether you are using the CGI or the plug-in version of Witango
Server.

The following table shows valid values for the NAME attribute and
descriptions of the value returned by each.

Attribute Name Description

 CLIENT_ADDRESS The fully-qualified domain name of the user who called
the application file, if your Web server is set to do DNS
lookups; otherwise, this attribute contains the user’s IP
address. For example, “fred.xyz.com”.

CLIENT_IP The IP address of the user who called the application file.
For example, “205.189.228.30”.

CONTENT_TYPE The MIME type of the HTTP request contents.

FROM_USER Rarely returns anything; with some older Web browser
applications, the user’s e-mail address.

HTTP_COOKIE Returns the value of the HTTP cookie specified in the
COOKIE attribute. For example, <@CGIPARAM
NAME="HTTP_COOKIE" COOKIE="SICode"> returns
the value of the SICode cookie. (This attribute is retained
for backwards compatibility with Witango 2.3. It is
recommended that you use <@VAR> with
SCOPE="COOKIE" to return the values of cookies in
Witango. See <@VAR> on page 320.)

HTTP_SEARCH_ARGS Text after question mark (?) in the URL.

METHOD The HTTP request method used for the current request.
If a normal URL call, or form submitted with the GET
method, “GET”; if a form submitted with the POST
method, “POST”.

<@CGIPARAM>
PATH_ARGS Text after the base URL (which includes the Witango
CGI name, if present), and before any search arguments
in the URL. <@APPFILE> returns the same value if
there is no argument after the application file name and
before any search arguments.

For example, in the following two cases:
(CGI) http://www.example.com/
Witango-bin/wcgi/fred
search.taf?function=_form

(plug-in) http://www.example.com/
fred/search.taf?function=_form

<@CGIPARAM NAME="PATH_ARGS"> returns:

 fred/search.taf

POST_ARGS The raw POST (form submission) argument contents,
containing the names and values of all form fields.

REFERER The URL of the Web page from which the current
request was initiated. Not provided by all Web browsers.
(The misspelling of this attribute is for consistency with
the CGI specification.)

SCRIPT_NAME Returns the CGI portion of the URL.

SERVER_NAME Fully-qualified domain name of the Web server, if your
Web server is set to do DNS lookups; otherwise, this
attribute contains the server’s IP address. For example,
“www.example.com”.

SERVER_PORT The TCP/IP port on which the Web server is running. A
typical Web server runs on port 80.

USERNAME The user name, obtained with HTTP authentication, of
the user who requested the URL. This attribute is
available only if the URL used to call the current
application file required authentication by the Web
server software.

PASSWORD The password, obtained with HTTP authentication, of the
user who requested the URL. This attribute is available
only if the URL used to call the current application file
required authentication by the Web server software.

USER_AGENT The internal name of the Web browser application being
used to request the URL. This often contains information
about the platform (Mac OS X, Windows, etc.) on which
the Web browser is running, and the application’s
version.

Attribute Name Description
121121

<@CGIPARAM>

12
Example
1222
<P>Hi there, <TT><@CGIPARAM NAME=CLIENT_ADDRESS>
</TT>. You are connected to <TT><@CGIPARAM
NAME=SERVER_NAME></TT>, port <@CGIPARAM
NAME=SERVER_PORT>.

This returns a personalized greeting to the client, for example:

Hi there, whitman.leavesofgrass.com. You are connected to
baudelaire.flowersofevil.com, port 80.
See Also E
ncoding Attribute

<@CHAR>
<@CHAR>
Syntax <
@CHAR CODE=number [ENCODING=encoding]>
Description R
eturns the character that has the ASCII value number.

This meta tag is especially useful for specifying non-printing characters,
such as linefeeds (<@CHAR CODE=10>), carriage returns (<@CHAR
CODE=13>), and tabs (<@CHAR CODE=9>). Valid values for the number
attribute are 1 through 254.

Note Numbers above 127 return different characters depending on
the character encoding standard used by the operating system on the
computer where Witango Server is running.

The number attribute may be a literal value or a meta tag that returns a
number.
Examples
 <@CHAR CODE=84> or <@CHAR “84”>

This example returns “T”.

<@CHAR CODE=<@POSTARG NAME=charCode>>

This example returns the character that corresponds to the value of the
contents of the charCode form field entered by the user.

<@OMIT STR=<@POSTARG NAME=comments> CHARS="<@CHAR
CODE=10><@CHAR CODE=9>">

This example returns the comments form field value stripped of any
linefeed and tab characters.
See Also <

<

@ASCII> page 95
@CRLF> page 147

<@DQ>, <@SQ> page 177
Encoding Attribute
123123

<@CHOICELIST>

12
<@CHOICELIST>
Syntax <

O

1244
@CHOICELIST NAME=inputname TYPE=select|radio
PTIONS=optionsarray [SIZE=size] [MULTIPLE=yes|no]
[CLASS=classname] [STYLE=stylename] [onBlur=script]
[onClick=script] [onFocus=script] [VALUES=valuesarray]
[SELECTED=selectedarray] [SELECTEXTRAS=selectattributes]
[OPTIONEXTRAS=optionattributes] [TABLEEXTRAS=tableattributes]
[TREXTRAS=trattributes] [TDEXTRAS=tdattributes]
[LABELPREFIX=prefix] [LABELSUFFIX=suffix] [COLUMNS=number]
[ROWS=number] [ORDER=columns|rows] [ENCODING=encoding]>
Description <
@CHOICELIST> allows you to easily create HTML selection list boxes,
pop-up menus/drop-down lists, and radio button clusters using data from
variables, database values, and so on.

This meta tag accepts all the attributes of the standard HTML <SELECT>
tag and of the <INPUT TYPE=radio> tags. It also accepts additional
attributes for specifying the values in the list and the selected item(s).
Radio button groups are always formatted as a table, and an additional
series of attributes defines how the radio button group table is to be
formatted.

The TYPE attribute defines the type of choice list to create. This is one of
SELECT or RADIO (which can be abbreviated as S and R). SELECT is the
default if nothing is specified.

The following attributes of the <@CHOICELIST> tag function in the same
way as the attributes of the HTML <SELECT> tag or <INPUT
TYPE=radio> tag:

Attribute Definition

NAME The name of the <SELECT> tag or <INPUT TYPE=radio> tags, used
for referencing in a <FORM> (control name).

CLASS This attribute assigns a class name or set of class names. Any number
of elements may be assigned the same class name or names. Multiple
class names must be separated by white space characters.

onBlur The onBlur event occurs when an element loses focus either by the
pointing device or by tabbing navigation.

onChange The onChange event occurs when a control loses the input focus and
its value has been modified since gaining focus.

<@CHOICELIST>
The OPTIONS attribute specifies an array of option names to appear in
the selection list or radio button group. The array may have either a
single column (one option name in each row) or a single row (one option
name in each column).

The VALUES attribute defines an optional array of option values. If
specified, the size of the array must match the one specified in the
OPTIONS attribute. Each array element becomes the value for its
corresponding element in the OPTIONS array. If this attribute is not
specified, the value for each option is the same as its name.

The SELECTED attribute defines a single value or an array of values to be
selected in the list. The value(s) must match items appearing in the
VALUES attribute, if specified, or the OPTIONS attribute if VALUES is not
specified. Items in this array are selected in the displayed selection list or
radio button group.

The OPTIONEXTRAS attribute can be used to set additional <OPTION>
tag attributes or <INPUT TYPE=radio> tag attributes. The value of this
attribute is placed without parsing in the HTML <OPTION> tag or
<INPUT TYPE=radio> tag. For example,
OPTIONEXTRAS='CLASS="fred"' adds the CLASS="fred" attribute
to each <OPTION> tag or <INPUT TYPE=radio> tag.

The following attributes apply only to lists:

• The SIZE attribute specifies the number of rows in the list that
should be visible at the same time.

• The MULTIPLE attribute allows multiple selections.

• The SELECTEXTRAS attribute can be used to set additional
<SELECT> tag attributes. The value of this attribute is placed without
parsing in the HTML <SELECT> tag. For example,
EXTRAS='ID="alpha"' adds the ID="alpha" attribute to the
<SELECT> tag.

The following attributes apply only to radio button groups:

• The TABLEEXTRAS attribute sets a value that is added to the TABLE
tag for the radio cluster.

onFocus The onFocus event occurs when an element receives focus either by
the pointing device or by tabbing navigation.

onClick The onClick event occurs when the pointing device button is clicked
over an element.

STYLE This attribute specifies style information for the current element.

Attribute Definition
125125

<@CHOICELIST>

126126
• The TREXTRAS attribute sets a value that is added to each TR tag for
the radio cluster.

• The TDEXTRAS attribute sets a value that is added to each TD tag for
the radio cluster.

• The LABELPREFIX attribute sets a value that is prefixed to each
radio button label.

• The LABELSUFFIX attribute sets a value that is appended to each
radio button label.

• The COLUMNS attribute sets the number of columns of radio buttons
in a radio cluster. If COLUMNS is specified, ROWS is ignored. If neither
ROWS nor COLUMNS is specified, then a single-column cluster is
created.

• The ROWS attribute sets the number of rows of radio buttons in a
radio cluster. If COLUMNS is specified, this attribute is ignored.

• The ORDER attribute sets the direction in which the options are
displayed. This attribute has two possible values: COLUMNS means
each column (left to right) is filled first; ROWS means each row (top to
bottom) is filled first. COLUMNS is the default value of this attribute.
This attribute is used only if more than one column or row is
generated.

The ENCODING attribute works slightly differently for the
<@CHOICELIST> meta tag: the default encoding for this meta tag is NONE;
that is, no escaping of special characters is done for the result of the meta
tag; however, this tag does do encoding (always) as part of its normal
operation; that is, any special characters within the arrays that define the
options list are escaped for HTML. For example, if you specified a list of
operators in the options list (= [equals];< [less than];> [greater than]), the
characters that have special meaning within HTML (the less-than and
greater-than characters) would be encoded as < and >, which are
special HTML escape sequences. This appears correctly in a Web
browser; that is, as “<” and “>”.
Examples T
he following Witango meta tags appear in an application file:

<@ASSIGN NAME=colors VALUE=<@ARRAY
VALUE="red;green;blue;yellow;black;white;">
SCOPE=request>

<@ASSIGN NAME=selectedColor VALUE="red"
SCOPE=request>

<@CHOICELIST NAME=colors SIZE=1 OPTIONS=@@colors
SELECTED=@@selectedColor>

<@CHOICELIST>
On execution of the Witango application file, the <@CHOICELIST> meta
tag evaluates to the following:

<SELECT NAME=colors SIZE=1>
<OPTION SELECTED>red
<OPTION>green
<OPTION>blue
<OPTION>yellow
<OPTION>black
<OPTION>white
</SELECT>

You can create a drop-down list from an existing array; for example, the
resultSet of a Witango action:

<@CHOICELIST NAME=myDropDown SIZE=1
OPTIONS=@@resultSet[*,1]>

The following is a radio button example using the same variable arrays:

<@CHOICELIST NAME=colorChoice TYPE="RADIO"
VALUES=@@colors SELECTED=@@selectedColor>

On execution of the Witango application file, the <@CHOICELIST> meta
tag evaluates to the following:

<TABLE><TR>
<TD><INPUT type="RADIO" name=colorChoice value="red"
CHECKED>red </TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="green">green </TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="blue">blue</TD> </TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="yellow">yellow</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="black">black</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="white">white</TD></TR></TABLE>

The following example shows the use of table-formatting attributes and
label attributes for the radio button group.

<@CHOICELIST NAME=colorChoice TYPE="RADIO"
VALUES=@@colors SELECTED=@@selectedColor
TABLEEXTRAS="CELLPADDING=2" labelprefix="<FONT
FACE=arial SIZE=1>" labelsuffix="">

<TABLE CELLPADDING=2>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="red" CHECKED>red</
FONT></TD> </TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
127127

<@CHOICELIST>

128128
value="green">green
</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="blue">blue
</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="yellow">yellow</
FONT></TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="black">black
</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="white">white
</TD></TR>
</TABLE>

The following example shows the use of the COLUMNS attribute for
formatting the returned radio button table, returning a two-column table:

<@CHOICELIST NAME=colorChoice TYPE="RADIO"
VALUES=@@colors SELECTED=@@selectedColor COLUMNS=2>

<TABLE><TR><TD><INPUT type="RADIO" name=colorChoice
value="red" CHECKED>red</TD>
<TD><INPUT type="RADIO" name=colorChoice
value="yellow">yellow</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="green">green</TD>
<TD><INPUT type="RADIO" name=colorChoice
value="black">black</TD></TR>
<TR><TD><INPUT type="RADIO" name=colorChoice
value="blue">blue</TD>
<TD><INPUT type="RADIO" name=colorChoice
value="white">white</TD></TR>
</TABLE>
See Also E
ncoding Attribute

<@CIPHER>
<@CIPHER>
Syntax <

[

@CIPHER ACTION=action TYPE=type STR=string
KEY=key][KEYTYPE]

[ENCODING=encoding]>
Description P
a

erforms encryption, decryption, and hashes on strings using various
lgorithms and keys.

<@CIPHER> provides the Witango user with access to various encryption
algorithms. The user may specify different keys, if required.

Three attributes are required: ACTION, TYPE, and STR.

• ACTION is the action you want to perform, for example, encrypt or
decrypt.

• TYPE is the type of action you want to perform, for example,
BitRoll.

Note There is a special case in which TYPE is not required. This
occurs when the ACTION is Hash, and this is because Witango
supports only one type of Hash.

• STR is the string upon which you want to execute the action, for
example, a social security number. A zero length STR is processed by
the underlying cipher routines.

KEY and KEYTYPE may be required or prohibited depending on the TYPE
of cipher requested. Keys for some ciphers are case sensitive.

Warning messages are logged if attributes needed are missing:

[Warning] CIPHER: no action specified

[Warning] CIPHER: type not specified or unknown

[Warning] CIPHER: specified key not valid for this
cipher

The ACTION has two directions, forward and reverse. This means that
you can take a string and encrypt, encode, encipher or hash it in the
forward direction, and, for the reverse direction, you can decrypt,
decode or decipher.

Hash is a one-way cipher: it works only in the forward position. An
example use for this would be a passwords for a UNIX system. One-way
hash functions are handled as encipher operations with no corresponding
129129

<@CIPHER>

130130
decipher operation. The keyword HASH is accepted as an ACTION for
this purpose.

Certain synonyms for the ciphering operations are supported:

 plaintext -> ciphertext ciphertext -> plaintext

 encrypt decrypt

 encipher decipher

 encode decode
Ciphers
Supported

E
a
a

ach type of cipher has at least one operation permitted. Each may accept
 key, may provide a default one if none is given, or may reject any key
nd use a predetermined value, or none, as appropriate.

Cipher names are case insensitive. The following tables lists a short
description of each cipher.

Type Short Description

 BitRoll swaps position of first 3 and last 5 bits in a byte

Caesar rotate chars by value positions mod 26

OneTimePad rotate characters by x positions, x being successive case-
insensitive characters of key,
a=1, b=2, ...

 Rot13 rotate characters by 13 positions

[MD5] MD5 one way hash. Produces a 32 character string.
©RSA Data Security Inc. MD5 Message-Digest Algorithm.

SHA
SHA256
SHA384
SHA512

Secure Hash Algorithm approved by the US Federation
Information Processing Stanards (FIPS) see http://csrc.nist.gov/
cryptoToolKit.

MD5MAC
HMAC_SHA

Symmetric Key algorthithms used to create a Message
Authentication Code when used with a specified hash
algorithm.

TripleDES multiple of 8 bytes if encryption, text string if decryption.
See http://csrs.nist.gov/CryptoToolKit

Rijndael multiple of 16 bytes if encryption, text string if decryption.
Also known as AES.
See http://csrs.nist.gov/CryptoToolKit

<@CIPHER>
Blowfish multiple of 8 bytes if encryption, text string if decryption.
See http://canterpane.com/blowfish.html

MARS multiple of 16 bytes if encryption, text string if decryption.
©IBM Corporation 1994, 2003
See http://research.ibm.com/security/mars.html

Hex 2 times of plain text lenghth if encoding, text string if decoding.
Hexadecimal Encoding Data.

Base64 variable lenghth if encoding text string if decoding.
Base 64 Encoding of Data.

Type Short Description
Cipher Types T
he following tables lists types of ciphers, their actions and their key
restrictions.

Type Action Key Restrictions Key Type

 BitRoll encrypt/
decrypt

 prohibited n/a

Caesar encrypt/
decrypt

optional, integer
(positive and negative)
values only, use “3” as
default

n/a

OneTimePad encrypt/
decrypt

required, all alphabetic
(no spaces or
punctuation)

n/a

 Rot13 encrypt/
decrypt

 prohibited n/a

[MD5] hash ignored n/a

SHA hash ignored n/a

SHA256 hash ignored n/a

SHA384 hash ignored n/a

SHA512 hash ignored n/a

MD5MAC hash required
ie:
KEY=00112233445566
778899aabbccddeeff"
KEYTYPE="HEX"

KEY=0123456789abcd
ef" KEYTYPE="TEXT”

Text/Hex
Default:Text
131131

<@CIPHER>

132132
HMAC_SHA hash requred - variable
length

Text/Hex
default is Text

TripleDES encrypt/
decrypt

required
16 byte if KeyType is
Text
32 byte if KeyType is
Hex

Text/Hex
default is Text

Rijndael encrypt/
decrypt

required
16 byte if KeyType is
Text
32 byte if KeyType is
Hex

Cipher with
variable block
and key
length.
Text/Hex
default is Text

Blowfish encrypt/
decrypt

required
16 byte if KeyType is
Text
32 byte if KeyType is
Hex

Symmetric
Block cipher.
Text/Hex
default is Text

MARS encrypt/
decrypt

required
16 byte if KeyType is
Text
32 byte if KeyType is
Hex

Text/Hex
default is Text

Hex encode/
decode

n/a n/a

Base64 encode/
decode

n/a n/a

Type Action Key Restrictions Key Type
Security Issues I
B

t is up to the user to guarantee the security of their information.
itRoll, Caesar, and Rot13 are not secure at all, and OneTimePad is

only as secure as the keys are managed and generated.

Submitting a key through a form may be insecure, especially because the
HTTP request could be viewed in transit. The key and algorithm—and
anything else as part of the request—can be viewed in transit. Secure
channels must be used to hide text in-transit, and very strong ciphers
must be used to guarantee security.
See Also E
ncoding Attribute

<@CLASSFILE>
<@CLASSFILE>
Syntax <
@CLASSFILE [ENCODING=encoding]>
Description R
T

eturns the path to the current Witango class file, including the file name.
his meta tag is useful for debugging. The path returned is relative to the

Web server root directory.

Outside of a method call, this meta tag returns nothing.
See Also E
<

ncoding Attribute
@APPFILEPATH> page 87

<@CLASSFILEPATH> page 134
TCFSearchPath page 424
133133

<@CLASSFILEPATH>

13
<@CLASSFILEPATH>
Syntax <
1344
@CLASSFILEPATH [ENCODING=encoding]>
Description R
c

eturns the path to the current Witango class file, excluding the Witango
lass file name, but including the trailing slash.

This meta tag is useful for creating links that reference an application file,
<@INCLUDE> file, or image file in the same directory as the currently
executing Witango class file.

The path returned is relative to the Web server root directory.

Outside of a method call, this meta tag returns nothing.
Examples
 <A
HREF="<@CGI><@CLASSFILEPATH>homer.taf?function=form
">

This example calls the homer.taf file, located in the same directory as
the currently executing Witango class file.

<@INCLUDE FILE="<@CLASSFILEPATH>header.html">

This example includes the header.html file, located in the same
directory as the currently-executing Witango class file.

<IMG SRC="<@CLASSFILEPATH>logo.gif">

This example references the logo.gif file, located in the same directory
as the currently executing Witango class file.
See Also E
<

ncoding Attribute
@APPFILE> page 85
<@CGI> page 119
<@CLASSFILE> page 133
<@INCLUDE> page 217
TCFSearchPath page 424
<@URLENCODE> page 316

<@CLEARERRORS>
<@CLEARERRORS>
Description T
his meta tag may be used in an action's Error HTML or the error.htx
file. It removes all accumulated errors and allows Witango Server to
resume processing, starting with the next action. When called from
anywhere but Error HTML or the error.htx file, this meta tag is
ignored.

This meta tag has no attributes and returns no value.
Example
<
@CLEARERRORS> clears the automatically-generated Witango error and
allows you to continue processing.

As well, you could insert your own error text to be returned to the user.
See Also <

<

@EMAIL> page 190
@ERRORS> </@ERRORS> page 198

<@THROWERROR> page 294
135135

<@COL>

13
<@COL>
Syntax <
1366
@COL [NUM=number] [ENCODING=encoding] [FORMAT=format]>
Description R
eturns the value of the column NUM in the current record of a result
rowset or array. This tag may be used in any Results HTML. <@COL
NUM=1> refers to the first column in the current row, <@COL NUM=2>
the second, and so on.

This tag is generally used in a <@ROWS> block. Outside of a <@ROWS>
block, this tag behaves like <@COLUMN> that is, it returns the value of the
column NUM for the first row of the current result rowset or array. This
meta tag can be used with no attributes inside a <@COLS> block. In this
case, it returns the value of the current column.

Note Insert actions using FileMaker Pro data sources (Mac OS X)
allow the use of <@COL 1> in the Results HTML. The meta tag
evaluates to the record ID of the inserted record in this case.
Example
 <@ROWS>
Column 1:<@COL NUM=1>

Column 2:<@COL NUM=2>

Column 3:<@COL NUM=3>

</@ROWS>

This prints the values from columns one, two and three for each row in
the current rowset.
See Also <

<

@COLS> </@COLS> page 137
@COLUMN> page 138

Encoding Attribute
<@FORMAT> page 205
Format Attribute
<@ROWS> </@ROWS> page 272

<@COLS> </@COLS>
<@COLS> </@COLS>
Syntax <
@COLS></@COLS>
Description P
rocesses the enclosed HTML once for each column in the current row.

Text appearing between <@COLS></@COLS> is processed once for each
column in the current row of a <@ROWS> block. If a <@ROWS> block
appears between these tags, <@ROWS> is ignored.

This tag block is very useful for looping through an unknown number of
columns, such as might be generated by a Direct DBMS action with
variable SQL.
Example
 <@ROWS>
 <@COLS>
 <@COL>
 </@COLS>

</@ROWS>

This example would return every column in every row returned by the
Search action that it is attached to.
See Also <

<

@CURCOL> page 148
@NUMCOLS> page 248
137137

<@COLUMN>

13
<@COLUMN>
Syntax <
1388
@COLUMN NAME=name [ENCODING=encoding] [FORMAT=format]>
Description R
eturns the value of the named column in the current row of a <@ROWS>
block. The name can be in column, table.column or
owner.table.column format, as long as it is not ambiguous. This meta
tag is only valid for Search and Direct DBMS actions.

Outside of a <@ROWS> block, this meta tag returns the value of the named
column for the first row of the current result set.

Note For FileMaker Pro data sources (Mac OS X), the name may be in
field or layout.field format.

If the tag cannot be evaluated due to insufficient information (ambiguity)
or a mismatch for all the columns, a blank is returned.

This tag is supported for Direct DBMS actions only when ODBC data
sources are used.
Example
 <@ROWS>
<@COLUMN NAME=TEST.TEST_TABLE_A.KEY_FIELD>,
<@COLUMN NAME=TEST.TEST_TABLE_A.CHAR_FIELD>,
<@COLUMN NAME=INT_FIELD>

</@ROWS>

This example goes through every row in the results set and returns the
values of the named columns in each row.
See Also <

<

@COL> page 136
@COLS> </@COLS> page 137
<@CURCOL> page 148
Encoding Attribute
Format Attribute

<@COMMENT> </@COMMENT>
<@COMMENT> </@COMMENT>
Syntax <
@COMMENT>comment</@COMMENT>
Description T
f

his tag pair gives you the ability to comment on Witango application
iles.

It is intended as a means of notation for multiple programmers who may
access the same application files, or as a notation for a single user
managing large application files and projects. It is valid in Results, No
Results, and Error HTML, and in Direct DBMS, SQL and Script action
scripts.

The material inside these tags is stripped out and never appears in HTML
sent to the user’s Web browser.

Note These tags are required to appear in pairs, and unpaired
appearances are treated as unrecognized tags and left untouched.
Examples
 <@COMMENT> This function does this </@COMMENT>

The tag and the HTML contained inside are removed before the rest of
the HTML is returned to the user.

<@COMMENT> do this: <@ASSIGN NAME=myVar
VALUE="asdfasd"> </@COMMENT>

The tag and the HTML contained inside are removed before the HTML is
returned, and <@ASSIGN> is not an executed part of the application file.
139139

<@CONFIGPATH>

14
<@CONFIGPATH>
Description T
W

1400
his meta tag returns the full path to the configuration directory in use by
itango Server. This directory is by default where the Witango Server

configuration files are located, such as witango.ini,clients.ini,
handlers.ini etc.

The configuration directory varies according to the platform. For more
information, see A Note on Default Locations on page 388.

The path returned includes the trailing directory separator.

Security Feature

If a user scope configPasswd variable with the same value as the
system configPasswd does not exist, an error is generated.
Example I
W

f <@CONFIGPATH> is used in an application file on a machine where

itango Server is installed into the default directory, it returns:

On Windows:

C:\Program Files\Witango\Server\Configuration

On Linux:

usr/local/witango/configuration

On OS X:

/Applications/Witango/Server/configuration

<@CONNECTIONS>
<@CONNECTIONS>
Syntax <

[

@CONNECTIONS [DSN=datasourcename]
TYPE=ODBC|DAM|FileMaker|Oracle|DLL|CommandLine|Java|

AppleEvent|Mail] [ENCODING=encoding] [{array attributes}]>
Description T
s

he <@CONNECTIONS> meta tag provides information about each data
ource object currently in use by Witango Server. Witango Server

considers External action connections and Mail action connections to be
data sources, so information on these actions is also returned.

<@CONNECTIONS> returns a two-dimensional array with one row for
each data source object (the optional attributes may be used to restrict
the data source, External action, or Mail action information returned by
the meta tag). Usually, data source objects represent connections.
However, in some situations, Witango Server shares a single database
connection between multiple data source objects. In this case, the
returned NumConnections value displays the total number of shared
connections.

The optional DSN attribute is used to restrict the information returned to
that from data sources, External actions, or Mail actions with the
specified name. If omitted, information for all data sources, External
actions, or Mail actions is returned. If an invalid name is specified, an
error is returned.

The optional TYPE attribute is used to restrict the information returned
to data sources with the specified type, External actions of the specified
type, or Mail actions. The type must be one of the listed values. If
omitted, information for all data source types, External actions, and Mail
actions is returned. If an invalid type is specified, an error is returned.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.
Mail and External actions are treated as data sources by Witango Server.
Specifying DLL (DLL-type External action), CommandLine (command-line
External action), Java (Java External action), or Mail (Mail action) in the
TYPE attribute returns information on these actions.
141141

<@CONNECTIONS>

142142
<@CONNECTIONS> returns a two-dimensional array, containing the
following columns:

Note Row 0 of the array returned by <@CONNECTIONS> contains
the column titles listed in the Category column of the above table. You
can return the category names by using the following meta tags:
<@ASSIGN request$tempArray value=<@CONNECTIONS>>

<@VAR request$tempArray[0,*]>

<@VAR request$tempArray>

Category Description

Version Version of <@CONNECTIONS> information. Will
return “1” for the initial version of this meta tag.

Name Data source: returns the name of the data source.
Mail actions: returns the host/port of the mail server.
Command line: returns the name of the last command to
be executed.
DLL: returns the name of the DLL.

Type Data source, External action, or Mail action type (ODBC |
JDBC | FileMaker | Oracle | DLL | CommandLine | Java |
Mail).

Info Additional information about the connection (for example,
ODBC driver name and version). The information
returned depends on the data source driver. Empty for
External and Mail actions.

UserName User name (after tag substitution) used to connect to the
data source. Blank if no user name was specified.

NumConnections Number of physical connections to this data source. Not
used for External and Mail actions.

MinutesOpened Number of minutes the connection to the data source has
been opened.

MinutesIdle Number of minutes since a query was last executed by the
connection.

LastUsedBy The user reference of the last user whose query was
processed by this connection.

ErrorsGenerated Number of errors generated during execution.
Example
 <@CONNECTIONS>

<@CONNECTIONS>
Returns a two-dimensional array listing all open connections for all data
sources.

<@CONNECTIONS TYPE=ODBC>

Returns a two-column array listing all open ODBC data sources.
See Also A
E

rray-to-Text Conversion Attributespage 80
ncoding Attribute page 72
<@CUSTOMTAGS> page 152
143143

<@CONTINUE>

14
<@CONTINUE>
Description T
<

1444
erminates execution of the current iteration of a <@COLS>, <@ROWS>,
@FOR>, or <@OBJECTS> block. Execution of the loop continues from

the beginning of the block. Outside of a <@COLS>, <@ROWS>, or <@FOR>
block, this tag does nothing. <@CONTINUE> has no attributes.

This tag is generally used with an <@IF> tag to terminate the current
iteration of a loop when some condition is met. Be careful to handle
nested loops properly: only the innermost loop’s processing is affected by
the continue command.
Example T
t

he following example suppresses the printing of the records where the
ype column has the value “internal”. If the type column has the value

“internal”, the loop processing goes directly to the
</@ROWS> tag (and then to the beginning of the loop if there are more
records).

Only public records will be shown.
<@ROWS>
<HR>
Here are the values from record <@CURROW> of the
results:<P>
<@IF EXPR="<@COL TYPE>='internal'"
TRUE="<@CONTINUE>">
Name: <@COLUMN
NAME="contact.name">

Phone: <@COLUMN
NAME="contact.phone">

</@ROWS>
End of records.
See Also <

<

@BREAK> page 104
@COLS> </@COLS> page 137
<@EXIT> page 200
<@FOR> </@FOR> page 204
<@OBJECTS></@OBJECTS> page 252
<@ROWS> </@ROWS> page 272

<@CREATEOBJECT>
<@CREATEOBJECT>
Syntax <
@CREATEOBJECT TYPE=type OBJECTID=objectID [EXPIRYURL=url]
[INITSTRING=string] [SYSTEMOBJECT=true|false]>
Description T
u

his meta tag creates a new instance of a particular object. It must be
sed in conjunction with the <@ASSIGN> meta tag or the Assign action.

The TYPE attribute defines the name of any valid Witango object handler:
COM, JavaBean, or TCF (Witango class file).

The OBJECTID attribute defines the object: for COM, the ProgID or
ClassID; for Witango class files, the file name; for JavaBeans, the name of
the JavaBean.

Note The object you specify in the OBJECTID attribute must be able
to be located by Witango Server; that is, for Witango class files, the
TCFSearchPath configuration variable must specify the path to the
named Witango class file; for a JavaBean, the CLASSPATH environment
variable must contain the path to the JavaBean. For COM objects, the
object must be registered on the machine where Witango Server is
running.

The object must also not be disallowed from running in the object
configuration file.

The EXPIRYURL attribute defines a URL to call when the variable
expires.

Meta tags are allowed in all attributes. This tag does not return anything.

COM-specific Attributes

The INITSTRING attribute is used for COM only, and defines the object-
specific string to use for initialization. The SYSTEMOBJECT attribute is
used for COM only, and can have the value TRUE or (the default) FALSE.
If true, Witango gets an existing instance from the system rather than
creating a new one.
145145

<@CREATEOBJECT>

14
Example T
m

1466
he following meta tags create an object instance variable called
yObject in request scope and creates an object instance of the COM

object WitangoOM.clsWitangoOM:

<@ASSIGN NAME=myObject SCOPE=request
VALUE=<@CREATEOBJECT TYPE=COM
OBJECTID=WitangoOM.clsWitangoOM>>
See Also <

<

@CALLMETHOD> page 116
@GETPARAM> page 206
<@NUMOBJECTS> page 249
<@OBJECTAT> page 251
<@OBJECTS></@OBJECTS> page 252

<@CRLF>
<@CRLF>
Description E
H

valuates to a carriage return/linefeed combination as required by the
TTP RFC (RFC-2626).
T
his tag is used in the HTTP header specified by the headerFile
configuration variable to generate the line terminators required for the
HTTP header.

The external HTTP header file (by default header.htx) should use
<@CRLF> and should NOT contain any OS line breaks.
Example H
h

TTP/1.1 301 Moved Permanently<@CRLF>content-type: text/
tml<@CRLF><@CRLF>
See Also h

<

eaderFile page 411
@LITERAL> page 232
147147

<@CURCOL>

14
<@CURCOL>
Description R
p

1488
eturns the index (1, 2, 3, ...) of the column currently being processed if
laced inside a <@COLS></@COLS> block.
Example
 <@ROWS>
 <@COLS>
 <@CURCOL>
 </@COLS>

</ROWS>

If this example looped through two three-column rows, it would return:

1 2 3
1 2 3
See Also <

<

@COLS> </@COLS> page 137
@NUMCOLS> page 248

<@CURRENTACTION>
<@CURRENTACTION>
Syntax <
@CURRENTACTION [ENCODING=encoding]>
Description R
u

eturns the name of the currently executing action. This meta tag can be
seful for debugging application files.
Example
 <@ASSIGN NAME=<@CURRENTACTION>_RowCount
VALUE=<@NUMROWS>>

This text could be saved in a text file and included with <@INCLUDE> to
assign the number of rows returned by the action to a variable whose
name includes the action name.
See Also E
ncoding Attribute
149149

<@CURRENTDATE>, <@CURRENTTIME>, <@CURRENTTIMESTAMP>

15
<@CURRENTDATE>, <@CURRENTTIME>,
<@CURRENTTIMESTAMP>
Syntax <
1500
@CURRENTDATE [ENCODING=encoding] [FORMAT=format]>

<@CURRENTTIME [ENCODING=encoding] [FORMAT=format]>

<@CURRENTTIMESTAMP [ENCODING=encoding] [FORMAT=format]>
Description R
c

eturns the current date, time, or timestamp (date and time
oncatenated). If FORMAT is specified, it is used to format the value;

otherwise, the default date and time formats specified by the date and
time configuration variables are used.
For more information, see
“Date and Time Formatting
Codes” on page 401.

C
odes for the elements of FORMAT are shown in the description of the
date and time formatting configuration variables. Date and time values
returned by these meta tags reflect the setting of the clock on the
computer where Witango Server is installed.
Examples
 Today is <@CURRENTDATE>

This prints a message that includes the current date in the format
specified by the default date format.

It is now <@CURRENTTIME FORMAT="datetime:%H:%M:%S">

This prints a message that includes the current time in 24-hour format.

It is day <@CURRENTDATE FORMAT="%j"> of <@CURRENTDATE
FORMAT="%Y">

This prints a message that includes the current day and year.
See Also d

E

ateFormat page 400
ncoding Attribute
<@FORMAT> page 205
Format Attribute
timeFormat page 400
timestampFormat page 400

<@CURROW>
<@CURROW>
Description R
<

eturns the number of the current row being processed in a <@ROWS> or
@FOR> block. It evaluates to “0” before or after a <@ROWS> block.
Example
 <@ROWS>
<HR>
Here are the values from record <@CURROW> of the
results:<P>
Name: <@COLUMN
NAME="contact.name">

Phone: <@COLUMN
NAME="contact.phone">

</@ROWS>

Prior to displaying each contact’s name and phone number, the number
of the record in the current rowset is displayed.
See Also <

<

@ABSROW> page 81
@NUMROWS> page 250

<@ROWS> </@ROWS> page 272
151151

<@CUSTOMTAGS>

15
<@CUSTOMTAGS>
Syntax <
1522
@CUSTOMTAGS [SCOPE=system|application] [{array attributes}]>
Description T
s

his meta tag returns a three-column array of all custom meta tags in the
cope specified. For more information on custom meta tags, see Custom

Meta Tags on page 329.

If no scope is specified, all custom meta tags are returned. The columns
of the array are Tag Name, Package Name, and Scope. These names are
put in row 0 of the array. No password is required to use this tag.
Example I
c

f a custom tag package called Small Demo App is installed, creating a
ustom meta tag <@COMTESTOBJECT>, available in system scope,
<@CUSTOMTAGS> returns:

COMTESTOBJECT Small Demo App System
See Also A
<

rray-to-Text Conversion Attributespage 80
@RELOADCUSTOMTAGS> page 268
Custom Meta Tags page 329

<@DATASOURCESTATUS>
<@DATASOURCESTATUS>
Syntax <

[

@DATASOURCESTATUS [DSN=datasourcename]
TYPE=ODBC|DAM|FileMaker|Oracle|DLL|CommandLine|Java|

AppleEvent|Mail] [ENCODING=encoding] [{array attributes}]>
Description T
he <@DATASOURCESTATUS> meta tag returns a two-dimensional array
containing summary information about data sources used by Witango
Server. The meta tag returns one row for each data source currently in
use and for data sources used previously but whose connections have
expired or have been closed. Witango Server considers External action
connections and Mail action connections to be data sources, so
information on these actions is also returned.

The optional DSN attribute is used to restrict the information returned to
that from data sources, External actions, or Mail actions with the
specified name. If omitted, information for all data sources, External
actions, or Mail actions is returned. If an invalid name is specified, an
error is returned.

The optional TYPE attribute is used to restrict the information returned
to data sources, External actions, or Mail actions of the specified type.
The type must be one of the listed values (ODBC, JDBC, FileMaker, or
Oracle, if data sources; DLL, CommandLine, Java, or Mail, if referring
to actions). If omitted, information for all data source types, External
action types, and Mail actions is returned. If an invalid type is specified, an
error is returned.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.
Mail and External actions are treated as data sources by Witango Server.
Specifying DLL (DLL-type External action), CommandLine (command-line
External action), Java (Java External action), or Mail (Mail action) in the
TYPE attribute returns information on these actions.

(The <@CONNECTIONS> meta tag differs from the
<@DATASOURCESTATUS> meta tag in that it returns one row containing
153153

<@DATASOURCESTATUS>

154154
information about each data source connection currently in use by
Witango Server.)

Note This tag is limited to returning information about the data source
types listed above. Information about other data sources used by
Witango Server (such as those accessed through external actions) are
not returned by this meta tag.

The <@DATASOURCESTATUS> meta tag returns a two-dimensional array
containing the following columns:

Category Description

Version Version of <@DATASOURCESTATUS> information.
Returns “1” for the initial version of this meta tag.

Name For database data sources, the name of the data
source; for others, the name of the resource
connecting to (for example, Mail server or External
action.

Type Data source type (ODBC | FileMaker | Oracle | JDBC
| CommandLine | Java | Mail).

Info Additional information about the connection (for
example, ODBC driver name and version). The
information returned depends on the data source
driver. Empty for External and Mail actions.

ThreadSafe Returns “1” if driver is single-threaded (as specified
using the dsconfig configuration variable) or “0”
if driver is thread safe.

UserName User name (after tag substitution) used to connect to
the data source. Blank if no user name was specified.

MaxConnections Maximum number of connections allowed for this
data source, as specified using the dsconfig
configuration variable. If dsconfig is not being
used to limit this data source, then “0” (unlimited) is
returned.

NumConnections Number of connections currently open to this data
source - this will always be one as only once active
ODBC connection is allowed per datasource.

NumExpiredConnections Number of connections previously opened to this
data source, but closed or expired.

MinutesIdle Number of minutes since a query was last executed
by the connection.

NumQryExecuted Number of queries executed by the data source.

<@DATASOURCESTATUS>
Note Row 0 of the array returned by <@DATASOURCESTATUS>
contains the column titles listed in the Category column of the above
table. You can return the category names by using the following meta
tags:
<@ASSIGN request$tempArray
value=<@DATASOURCESTATUS>>

<@VAR request$tempArray[0,*]>

<@VAR request$tempArray>

MaxQryProcessTime Maximum time (in milliseconds, accurate to 1/60th of
a second) required to process a query. Does not
include time to fetch or process results.

AvgQryProcessTime Average time (in milliseconds, accurate to 1/60th of a
second) required to process a query. Does not
include time to fetch or process results.

MaxRowSetSize Maximum number of rows returned by a single query
processed by the connection.

AvgRowSetSize Average number of rows returned by a single query
processed by the connection.

ErrorsGenerated Number of errors generated during execution.

Category Description
Example
 <@DATASOURCESTATUS>

Returns a two-dimensional array listing all data source categories for all
data sources.

<@DATASOURCESTATUS TYPE=ODBC>

Returns a two-column array listing information for only ODBC data
sources.
See Also A
<

rray-to-Text Conversion Attributespage 80
@CONNECTIONS> page 141

Encoding Attribute page 72
155155

<@DATEDIFF>

15
<@DATEDIFF>
Syntax <
1566
@DATEDIFF DATE1=firstdate DATE2=seconddate [FORMAT=format]>
Description R
eturns the number of days between the two dates specified.
For more information, see
“<@ISDATE>,
<@ISTIME>,
<@ISTIMESTAMP>” on
page 222.

<

f

I
y

@DATEDIFF> handles ODBC, ISO, some numeric formats, and textual
ormats.

f the date is entered incorrectly—wrong separators or wrong values for
ear, month or day—the tag returns “Invalid date!”.

The date attributes are mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

All formats assume the Gregorian calendar. All years must be greater
than zero.

Note When a two-digit year is given, the following centuries are
assumed:

For example, a two-digit year of 99 is evaluated as 1999, and a two-digit
year of 00 is evaluated as 2000.

Value Century

00-36 2000s

37-99 1900s
Example T
he date returned is calculated as DATE1 minus DATE2.

<@DATEDIFF DATE1=1998-02-20 DATE2=1998-02-27>

This tag returns “-7”, the number of days between the two dates.
See Also <

<

@DAYS> page 159
@FORMAT> page 205

Format Attribute
<@ISDATE> page 222
<@ISTIME> page 222
<@ISTIMESTAMP> page 222

<@DATETOSECS>, <@SECSTODATE>
<@DATETOSECS>, <@SECSTODATE>
Syntax <
@DATETOSECS DATE=date [FORMAT=format]>

<@SECSTODATE SECS=seconds [ENCODING=encoding]
[FORMAT=format]>
Description <
s

@DATETOSECS> checks the entered date and, if valid, converts it into
econds using as a reference—midnight (00:00:00) January 1, 1970 (1970-

01-01).

Conversely, <@SECSTODATE> checks the entered seconds and converts
them to a date.

These tags support dates in the range 1970–2037.

Both tags handle ODBC, ISO, and some numeric formats.

If the date is entered incorrectly—wrong separators or wrong values for
year, month, or day—the tag returns “Invalid date!”.

The date attribute is mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

Note When a two-digit year is given, the following centuries are
assumed:

For example, a two-digit year of 99 is evaluated as 1999, and a two-digit
year of 00 is evaluated as 2000.

Value Century

00-36 2000s

37-99 1900s
Examples
 <@DATETOSECS DATE=1970-01-01>

This tag returns “0”, the number of seconds since January 1, 1970.

<@DATETOSECS DATE=2000-01-01>

This tag returns “946684800”, the number of seconds since January 1,
1970.

<@SECSTODATE SECS=946684800>
157157

<@DATETOSECS>, <@SECSTODATE>

158158
This tag returns “2000-01-01”, the date derived from the number of
seconds. The example assumes a dateFormat of “%Y-%m-%d”.
See Also d

E

ateFormat page 400
ncoding Attribute
<@FORMAT> page 205
Format Attribute
<@ISDATE> page 222
<@ISTIME> page 222
<@ISTIMESTAMP> page 222
<@SECSTOTIME> page 297
<@SECSTOTS> page 304
timeFormat page 400
timestampFormat page 400
<@TIMETOSECS> page 297
<@TSTOSECS> page 304

<@DAYS>
<@DAYS>
Syntax <

[

@DAYS DATE=date DAYS=days [ENCODING=encoding]
FORMAT=format]>
Description A
U

dds the days in the DAYS attribute to the date in the DATE attribute.
se a negative DAYS value to subtract days.

All formats assume the Gregorian calendar. All years must be greater
than zero.

<@DAYS> handles ODBC, ISO, and some numeric formats.

If the date is entered incorrectly—wrong separators or wrong values for
year, month, or day—the tag returns “Invalid date!”.

The attributes, DATE and DAY are mandatory. If no attribute is found for
ether the tag returns “No attribute!”.

Note When a two-digit year is given, the following centuries are
assumed:

For example, a two-digit year of 99 is evaluated as 1999, and a two-digit
year of 00 is evaluated as 2000.

Value Century

00-36 2000s

37-99 1900s
Example
 <@DAYS DATE=1998-02-20 DAYS=7>

This tag returns “1998-02-27”, the new date, assuming the dateFormat
is “%Y-%m-%d”.
See Also d

<

ateFormat page 400
@DATEDIFF> page 156

Encoding Attribute
<@FORMAT> page 205
Format Attribute
159159

<@DBMS>

16
<@DBMS>
Syntax <
1600
@DBMS [ENCODING=encoding]>
Description R
c

eturns the concatenated name and version of the database used by the
urrent action’s data source.

If the current action has no data source, the meta tag returns the
information for the most recent data source used during the current
execution of the application file. If used prior to the execution of a
database-related action, this tag returns an empty string.

This tag is useful in Direct DBMS actions where you may want to execute
different SQL depending on which DBMS is in use.

The exact values returned by this meta tag depend on values returned by
the current database driver and/or server software.
Example
 <@IFEQUAL VALUE1="<@DBMS> VALUE2="ORACLE*:>
SQL to execute only if we are connected to an Oracle
data source.
</@IF>

This example from a Direct DMBS action is used to specify the SQL to
execute when an Oracle data source is assigned to the action.
See Also <

E

@DSTYPE> page 181
ncoding Attribute

<@DEBUG> </@DEBUG>
<@DEBUG> </@DEBUG>
Syntax <
@DEBUG></@DEBUG>
Description T
a

hese paired tags provide the Witango user more power to debug
pplication files. If debugging is on, Witango processes the text inside the
<@DEBUG></@DEBUG> pair; otherwise, these tags and the content inside
are stripped out of the application file before being sent to the server.

This tag is valid in Results, No Results, and Error HTML only.
Examples
 <@DEBUG> <@COLUMN NAME="contacts.lastname">
</@DEBUG>

This example includes the value of the lastname column of the contacts
table in the HTML only if in debug mode.

<@DEBUG> <@ASSIGN NAME="gname"
VALUE="<@COLUMN NAME='contacts.lastname'>">
</@DEBUG>

This example executes the variable assignment only if in debug mode.
161161

<@DEFINE>

16
<@DEFINE>
Syntax

Description

<
T
[

T
s

1622
@DEFINE [NAME=]VarName [SCOPE=]scope
YPE={TEXT|OBJECT|DOM|ARRAY} [ROWS=number]
COLS=number]>

his tag creates an empty variable of the specified type in the specified
cope.

Type Attribute

The available variable types are listed below:

Text

Which is used to define a text string.

To define a text variable called FirstName in user scope:

<@DEFINE NAME="FirstName" SCOPE=”user” TYPE=”text”>

Arrays

Which is used to define an array. There are array-returning
attributes that can be used to specify prefixes and suffixes for the
returned array, rows within the array, and columns within the rows. They
are described in the section Array-to-Text Conversion Attributes on
page 80. Two optional attributes, ROWS and COLS, are available to
create an array of a required size. They are ignored for all types except
ARRAY.

To define an array of 1 row and five columns called FirstNameArray in user
scope:

<@DEFINE NAME="FirstNameArray" SCOPE=”user”
TYPE=”array” ROWS=”1” COLS=”5”>

Note here, that if you tried to assign FirstName (from the example in the
section above) to FirstNameArray you would be presented with an error
message stating that the types of variables used in the assignment do not
match.

DOM (XML document instance)

Which is used to define a document instance (XML) variable.

OBJECT

Which is used to define a variable of an object instance.

<@DEFINE>
The type of variables created with the <@DEFINE> tag cannot be
changed without purging a variable first. That is, an existing TEXT
variable cannot be used in <@ASSIGN> on the left hand side if the right
hand side variable is not TEXT.
For more information on
“Working with Variables
see Working With
Variables on page 343.

O
@

bjects created with <@DEFINE> are NULL objects (ie,
ISNULLOBJECT would return 1) until they are assigned a valid object.

Scope Attribute

Scoping is the method by which variables can be organized and disposed
of in an orderly and convenient fashion. There are various levels of
scoping, each of which has an appropriate purpose:
For more information, see
“Configuration Variables”
on page 387.

•
 System Scope contains any variables that are general to all users.
This scope contains only Witango Server configuration variables. To
use this scope, specify SCOPE=system or SCOPE=sys.
For more information, see
“domainScopeKey” on
page 406 .

•
 Domain Scope contains variables that users can share if they are
accessing a particular Witango application file from a specified
Witango domain. Witango domains are specified in a domain
configuration file, or default to the domain name (base URL or IP
address) of the path to the Witango application file. This scope is
defined by setting the system configuration variable
domainScopeKey appropriately; that is, setting it to a value that can
differentiate such users. By default, this is <@DOMAIN>, which returns
the value of the current Witango domain.To use this scope, specify
SCOPE=domain.
•
 Application Scope contains variables that are shared across
Witango applications. Witango applications are defined by Witango
users in an application configuration file. To use this scope, specify
SCOPE=application or SCOPE=app.
•
 User Scope contains variables that a user defines and expects to be
able to access from many application files or invocations of single
application files. To use this scope, specify SCOPE=user or
SCOPE=usr.

• Request Scope contains variables that should be unique to every
invocation of any application file. For example, this scope could be
used for temporary variables that reformat output from a search
action. All variables of this scope are removed when the application
file concludes execution. To use this scope, specify SCOPE=request,
or SCOPE=doc.

• Instance Scope contains variables that are valid in an instance of a
Witango class file. These variables can be shared across methods
called on a Witango class file, if the methods are called on the same
instance. To use this scope, specify SCOPE=instance.
163163

<@DEFINE>

164164
• Method Scope contains variables that should be unique to a
method of a Witango class file. To use this scope, specify
SCOPE=method.

• Cookie Scope contains variables that are sent to the user’s Web
browser as cookies (that is, a small text file kept by the Web
browser for a specified amount of time). To use this scope specify
SCOPE=cookie.

• Custom Scope is user-specified. It is outside of the scope search
hierarchy.
For more information on
“Scoping” see
Understanding Scope.

I
s
s

f this attribute is omitted, the new variable is created in the default
cope. The default scope is normally REQUEST, but can be changed by
etting the defaultScope configuration variable in the witango.ini file.
See Also <

<

@ASSIGN> page 96
@VAR> page 320
Working With Variablespage 343
variableTimeout page 430

<@DELROWS>
<@DELROWS>
Syntax <

[

@DELROWS ARRAY=arrayVarName [POSITION=startWhere]
NUM=numToDelete] [SCOPE=scope]>
Description D
d

eletes rows from the array in the variable named by ARRAY. This tag
oes not return anything. With no additional attributes specified, this tag

deletes one row from the end of the array.

The POSITION attribute specifies the index of the row to start deleting
from. If the value specified in POSITION is 0 or greater than the number
or rows in the array, no rows are deleted. If POSITION is -1 (the default),
the last row in the array is deleted.

The NUM attribute specifies the number of rows to delete. The default is
1. If this attribute specifies a range that, in combination with POSITION,
exceeds the bounds of the array, only those rows that do exist in the
range are deleted, and no error is returned.

The SCOPE attribute specifies the scope of the variable specified as the
value of the ARRAY attribute. If the scope is not specified, the default
scoping rules are used.

Meta tags are permitted in any of the attributes.
Examples •
 The request variable colors contains the following array:

<@DELROWS ARRAY="colors" POSITION=2 NUM=2
SCOPE="request">

The request variable colors now contains the following array:

• The user variable choices_list contains the following array:

 orange

 amber

 red

 burnt umber

orange

burnt umber

 News 2

 Sports 3
165165

<@DELROWS>

166166
<@DELROWS ARRAY="choices_list" SCOPE="user">

The user variable choices_list now contains:

 Movies 4

 Stocks 1

News 2

Sports 3

Movies 4
See Also <
@ADDROWS> page 83

<@DISTINCT>
<@DISTINCT>
Syntax <
@DISTINCT ARRAY=arrayVarName
[COLS=compCol [compType] [, ...]] [SCOPE=scope]
[{array attributes}]>
Description R
a

eturns an array containing the distinct, or unique, rows in the input
rray.

The ARRAY attribute specifies the name of a variable containing an array.
The COLS attribute specifies the column(s) to consider when checking for
duplicate rows. Columns can be specified using either column numbers
or names, with an optional comparison type specifier (compType).

Valid comparison types are SMART (the default), DICT, ALPHA, and NUM.
DICT compares values alphabetically without considering case. ALPHA is a
case-sensitive comparison. NUM compares values numerically. SMART
checks whether values are numeric or alphabetic and performs a NUM or
DICT comparison.

If the COLS attribute is omitted, all columns are considered using the
SMART comparison type when eliminating duplicates.

Multiple columns may be specified, separated by commas. Each column
specification may include a comparison type specifier. If the comparison
type specification is used, it must follow the name or number of the
column to be sorted, separated by a space. For example, COLS="1 NUM,
2 DICT" specifies that the first column’s values are compared
numerically, and the second column’s values are compared alphabetically,
not case-sensitive.

The SCOPE attribute specifies the scope of the variable specified as the
value of the ARRAY attribute. If the scope is not specified, the default
scoping rules are used.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

Meta tags are permitted in any of the attributes.
167167

<@DISTINCT>

16
Examples I
1688
f the request variable test contains the following array:

<@DISTINCT ARRAY="test" SCOPE="request"> returns:

<@DISTINCT ARRAY="test" COLS="1 NUM" SCOPE="request">
returns:

<@DISTINCT ARRAY="test" COLS="2" SCOPE="request">
returns:

1 a

1 a

2 a

3 b

3 b

4 c

4 c

6 d

7 e

7.0 f

1 a

2 a

3 b

4 c

6 d

7 e

7.0 f

1 a

2 a

3 b

4 c

6 d

7 e

1 a

3 b

4 c

6 d

7 e

7.0 f

<@DISTINCT>
See Also <

<

@FILTER> page 201
@INTERSECT> page 218

<@SORT> page 288
<@UNION> page 306
169169

<@DOCS>

17
<@DOCS>
Syntax <
1700
@DOCS [FILE=appfile] [ENCODING=encoding]>
Description D
isplays the content of an application file or class file in HTML.

Evaluates to an action list for the named application file. Each action entry
in the list is a link to a detailed description of that action. The path to the
named application file must be relative to the Web server document
root.

If no FILE attribute is provided, <@DOCS> evaluates to the running
application file.
For more information,
seedocsSwitch on
page 405.

T
here is a special configuration variable—docsSwitch—that can be set
to on or off. It must be set to “on” for this tag to work.
This meta tag returns an empty value if the FILE attribute specifies an
application file saved as run-only.

When used in Results HTML, the ENCODING=NONE attribute must be
used in order for it to be displayed properly in the Web browser.
Examples
 <@DOCS ENCODING=NONE>

<@DOCS FILE="/Oracle/Car_demo/car_search.taf"
ENCODING=NONE>
See Also E
ncoding Attribute

<@DOM>
<@DOM>
Syntax <
@DOM VALUE=value>
Description T
his tag is used to parse XML into a document instance.

This meta tag is usually used in conjunction with <@ASSIGN> or the
Assign action to create a document instance variable.

The VALUE attribute specifies the XML that is to be parsed into a
document instance.
Example T
i

he following assigns the XML specified by <@DOM> to a document
nstance variable in application scope called myDom:

<@ASSIGN NAME="myDom" SCOPE="application"
VALUE=<@DOM VALUE="<XML><DIV><P>Paragraph 1
</P><P>Paragraph 2</P></DIV></XML>">>
See Also <

<

@DOMDELETE> page 173
@DOMINSERT> page 174

<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTNAME> page 186
<@ELEMENTVALUE> page 188
171171

<@DOMAIN>

17
<@DOMAIN>
Description T
1722
his tag returns the current domain.

Witango domains are configured with the domain configuration file,
which can be edited through the Administration Application config.taf
or by editing the domain.ini file directly.
See Also d

d

omainConfigFile page 405
omainScopeKey page 406

<@DOMDELETE>
<@DOMDELETE>
Syntax <
@DOMDELETE OBJECT=variable [SCOPE=scope]
[ELEMENT=Xpointer]>
Description T
a

his tag is used to delete XML from a document instance. The OBJECT
ttribute (and optional SCOPE attribute) defines the variable which

contains the document instance. The ELEMENT attribute points to the
element in the document instance to be deleted.
Example S
tarting with the following document instance in a variable called myDom:

<XML>
<DIV>
<P>Paragraph 1</P>
<P>Paragraph 2</P>
</DIV>
</XML>

<@DOMDELETE OBJECT="myDom" ELEMENT="child(1).child(2)">
deletes part of the XML and results in the following structure in the
variable myDom:

<XML>
<DIV>
<P>Paragraph 1</P>
</DIV>
</XML>
See Also <

<

@DOM> page 171
@DOMINSERT> page 174

<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTNAME> page 186
<@ELEMENTVALUE> page 188
173173

<@DOMINSERT>

17
<@DOMINSERT>
Syntax <
1744
@DOMINSERT OBJECT=variable [SCOPE=scope] [ELEMENT=Xpointer]
[POSITION=append|before|after]>
...XML goes here...</@DOMINSERT>
Description T
his tag is used to insert XML into a document instance. The OBJECT
attribute (and optional SCOPE attribute) defines the variable which
contains the document instance. The ELEMENT attribute points to an
XML element in the document instance. If the ELEMENT attribute is
omitted, the root element of the document is used.

Depending on the value of the POSITION attribute, the XML between
the start and end tags of <@DOMINSERT> is either appended to, put
before (that is, a preceding sister), or put after (a following sister) the
element specified in ELEMENT. The default is append.

If the specified variable does not exist, a new variable is created.
Example S
tarting with the following document instance in a variable called myDom:

<XML><DIV>
<P>Paragraph 1</P>
<P>Paragraph 2</P>
</DIV>
</XML>

<@DOMINSERT OBJECT="myDom" ELEMENT="child(1)"
POSITION=append><P>Paragraph 3</P></@DOMINSERT>

The preceding tag appends the XML between the DOMINSERT tags
(<P>Paragraph 3</P>) to the child(1) element (that is, <DIV>). The
POSITION attribute is optional in this case, because the default action is
to append the XML to the specified element. This results in the following
structure:

<XML><DIV>
<P>Paragraph 1</P>
<P>Paragraph 2</P>
<P>Paragraph 3</P>
</DIV></XML>

The following inserts the specified XML as a preceding sister of the first
paragraph:

<@DOMINSERT>
<@DOMINSERT OBJECT="myDom"
ELEMENT="child(1).child(1)"
POSITION=before><P>Paragraph 3</P></@DOMINSERT>

This results in the following structure:

<XML><DIV>
<P>Paragraph 3</P>
<P>Paragraph 1</P>
<P>Paragraph 2</P>
</DIV></XML>
See Also <

<

@DOM> page 171
@DOMDELETE> page 173

<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTNAME> page 186
<@ELEMENTVALUE> page 188
175175

<@DOMREPLACE>

17
<@DOMREPLACE>
Syntax <
1766
@DOMREPLACE OBJECT=variable [SCOPE=scope]
[ELEMENT=Xpointer]> ...XML goes here...</@DOMREPLACE>
Description T
his tag is used to replace XML in a document instance. The OBJECT
attribute (and optional SCOPE attribute) defines the variable which
contains the document instance. The ELEMENT attribute points to the
element in the document instance to be replaced.
Example S
tarting with the following document instance in a variable called myDom:

<XML>
<DIV>
<P>Paragraph 1</P>
<P>Paragraph 2</P>
</DIV>
</XML>

<@DOMREPLACE OBJECT="myDom"
ELEMENT="child(1).child(2)"><P>A different para.</P>
</@DOMREPLACE> replaces the XML and results in the following
structure:

<XML>
<DIV>
<P>Paragraph 1</P>
<P>A different para.</P>
</DIV>
</XML>
See Also <

<

@DOM> page 171
@DOMDELETE> page 173
<@DOMINSERT> page 174
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTNAME> page 186
<@ELEMENTVALUE> page 188

<@DQ>, <@SQ>
<@DQ>, <@SQ>
Description T
<

o use single and double quotes inside a meta tag attribute value, use
@SQ> for a single quote “'” and <@DQ> for a double quote “"”.
Example
 <@ASSIGN NAME="Important_Quote" VALUE="Yoda said,
<@DQ>Do, or do not; there is no
<@SQ>try<@SQ>.<@DQ>">

<@VAR NAME="Important_Quote">

This example returns the following:

Yoda said, "Do, or do not; there is no 'try'."
177177

<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>

17
<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
Syntax <
1788
@DSDATE DATE=date [INFORMAT=informat] [ENCODING=encoding]>

<@DSTIME TIME=time [INFORMAT=informat] [ENCODING=encoding]>

<@DSTIMESTAMP TS=ts [INFORMAT=informat] [ENCODING=encoding]>
Description T
r

hese meta tags convert a date, time, or timestamp value to the format
equired by the current action’s data source.

The main use for these tags is in Direct DBMS actions. In the other types
of database actions (Search, Update, Insert, and Delete), Witango
performs the required conversion automatically.

The DATE, TIME, and TS attributes are strings in the formats specified by
the INFORMAT attribute. This attribute uses the same formatting codes
as the date and time formatting configuration variables. If INFORMAT is
omitted, the date, time, or timestamp value is assumed to be in the
default format, specified by the dateFormat, timeFormat, and
timestampFormat configuration variables with system scope, or the
current user format, if assigned, using dateFormat, timeFormat, or
timestampFormat (user scope).

Note When a two-digit year is given, the following centuries are
assumed:

For example, a two-digit year of 99 is evaluated as 1999, and a two-digit
year of 00 is evaluated as 2000.

These meta tags are valid only in actions associated with a data source.

Note These meta tags are not applicable to FileMaker Pro data
sources (Mac O XS) as the date and time string formats required for
FileMaker Pro are determined by layout and system settings that may be
unavailable to Witango.

Value Century

00-36 2000s

37-99 1900s

<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
Example
 UPDATE myTable SET theDateColumn=<@DSDATE
DATE=<@POSTARG NAME=theDate>>

This SQL example from a Direct DBMS action assumes that the date
entered by the user into the date form field is in the format specified by
dateFormat.
See Also d

E

ateFormat page 400
ncoding Attribute

Format Attribute
timeFormat page 400
timestampFormat page 400
179179

<@DSNUM>

18
<@DSNUM>
Syntax <
1800
@DSNUM NUM=num [ENCODING=encoding]>
Description C
s

onverts a number to the format required by the current action’s data
ource. The main use for this tag is in Direct DBMS actions. In the other

types of database actions (Search, Update, Insert, and Delete), Witango
performs the required conversion automatically.

This meta tag is valid only in actions associated with a data source.

Note Conversion of a number involves removal of thousand separator
and currency characters, trimming of spaces from the beginning and
end, and substitution of decimal characters with the character required
by the DBMS.

This meta tag is not applicable to FileMaker Pro data sources (Mac OS X)
as the number formats required for FileMaker Pro are determined by
layout and system settings that may be unavailable to Witango.
Example
 UPDATE myTable SET theNumericColumn=<@DSNUM
NUM=<@POSTARG NAME=num>>

This example assumes the user has entered “$2000.00” into the number
form field, and that the system configuration variable currencyChar is
set to “$”, thousandsChar is set to “.” and that decimalChar and
DBDecimalChar are both set to “.”; <@DSNUM> tag returns “2000.00”.
See Also c

D

urrencyChar page 398
BDecimalChar page 402
decimalChar page 403
<@DSDATE> page 178
<@DSTIME> page 178
<@DSTIMESTAMP> page 178
Encoding Attribute
thousandsChar page 424

<@DSTYPE>
<@DSTYPE>
Syntax <
@DSTYPE [ENCODING=encoding]>
Description R
c

eturns the type of data source associated with the current action. If the
urrent action has no data source associated with it, this tag returns the

information for the most recent data source used during the current
execution of the application file. If used prior to the execution of a
database related action, this tag returns an empty string.

Descriptions of values returned by this meta tag are shown in the
following table.

Value Returned Platform(s) Indicates

FileMaker Mac OS X FileMaker Pro

ODBC All ODBC

Oracle All Native Oracle

JDBC All JDBC
Example
 <@IFEQUAL VALUE1="<@DSTYPE>" VALUE2="ODBC">
display data from an ODBC data source
<@ELSE>
display data from a different data source type
</@IF>

This example customizes the HTML returned depending on the data
source type.
See Also <

E

@DBMS> page 160
ncoding Attribute
181181

<@ELEMENTATTRIBUTE>

18
<@ELEMENTATTRIBUTE>
Syntax <
1822
@ELEMENTATTRIBUTE OBJECT=variable ATTRIBUTE=attributename
[SCOPE=scope] [ELEMENT=Xpointer] [TYPE=text|array]
[{array attributes}]>
Description T
d

his tag is used to return the value of one or more attributes from a
ocument instance.

The OBJECT attribute defines the document instance variable. The SCOPE
attribute defines the scope of that document instance variable.

The ELEMENT attribute contains a pointer to an element or elements
within the document instance.

The value returned is the value of the attribute defined by NAME. If more
than one element is pointed to, and those elements have the attribute
defined in ATTRIBUTE, several values may be returned as an array.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

If the TYPE attribute is set to TEXT, a returned array is not passed as an
array reference when assigning to another variable, but as a text
representation of the array, which is returned by default with the array-
formatting attributes.
Example S
tarting with the following document instance in a variable called myDom:

<XML>
<DIV>
<P ID=a111 CLASS=normal>Paragraph 1</P>
<P ID=b222 CLASS=different>Paragraph 2</P>
</DIV>
</XML>

<@ELEMENTATTRIBUTE OBJECT="myDom" ATTRIBUTE="ID"
ELEMENT="root().child(1).child(all)"> returns an array
consisting of the two ID values:

a111

b222

<@ELEMENTATTRIBUTE>
<@ELEMENTATTRIBUTE OBJECT="myDom" ATTRIBUTE="CLASS"
ELEMENT="root().child(1).child(2)"> returns a single value:

different
See Also <

<

@DOM> page 171
@DOMDELETE> page 173

<@DOMINSERT> page 174
<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTNAME> page 186
<@ELEMENTVALUE> page 188
183183

<@ELEMENTATTRIBUTES>

18
<@ELEMENTATTRIBUTES>
Syntax <
1844
@ELEMENTATTRIBUTES OBJECT=variable [SCOPE=scope]
[ELEMENT=Xpointer] [TYPE=text|array] [{array attributes}]>
Description T
e

his tag is used to return the value of all attributes of one or more
lements from a document instance. The OBJECT attribute defines the

document instance variable. The SCOPE attribute defines the scope of
that document instance variable.

The ELEMENT attribute contains a pointer to an element or elements
within the document instance. All attributes of the element or elements
pointed to by ELEMENT are returned.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

If the TYPE attribute is set to TEXT, a returned array is not passed as an
array reference when assigning to another variable, but as a text
representation of the array, which is returned by default with the array-
formatting attributes.
Example S
tarting with the following document instance in a variable called myDom:

<XML><DIV>
<P ID=a111 CLASS=normal>Paragraph 1</P>
<P ID=b222 CLASS=different>Paragraph 2</P>
</DIV></XML>

<@ELEMENTATTRIBUTES OBJECT="myDom"
ELEMENT="root().child(1).child(all)"> returns an array
consisting of both attribute values:

Row 0 (zero) of the array contains the attribute name for each column.

a111 normal

b222 different
See Also A
<

rray-to-Text Conversion Attributespage 80
@DOM> page 171

<@ELEMENTATTRIBUTES>
<@DOMDELETE> page 173
<@DOMINSERT> page 174
<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTNAME> page 186
<@ELEMENTVALUE> page 188
185185

<@ELEMENTNAME>

18
<@ELEMENTNAME>
Syntax <
1866
@ELEMENTNAME OBJECT=variable [SCOPE=scope]
[ELEMENT=Xpointer] [TYPE=text|array] [{array attributes}]>
Description T
i

his tag is used to return an element name or names from a document
nstance. The OBJECT attribute defines the document instance variable.
The SCOPE attribute defines the scope of that document instance
variable.

The ELEMENT attribute contains a pointer to an element or elements
within the document instance.

The value returned is the name of the element or elements pointed to. If
more than one element is pointed to, several values may be returned as
an array.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

If the TYPE attribute is set to TEXT, a returned array is not passed as an
array reference when assigning to another variable, but as a text
representation of the array, which is returned by default with the array-
formatting attributes.
Example S
tarting with the following document instance in a variable called myDom:

<XML><DIV>
<P ID=a111 CLASS=normal>Paragraph 1</P>
<P ID=b222 CLASS=different>Paragraph 2</P>
</DIV></XML>

<@ELEMENTNAME OBJECT="myDom"
ELEMENT="root().child(1).child(all)"> returns a one-
dimensional array consisting of both element names:

<@ELEMENTNAME OBJECT="myDom"
ELEMENT="root().child(1).child(2)"> returns the element
name:

P

P

<@ELEMENTNAME>
P

See Also A
<

rray-to-Text Conversion Attributespage 80
@DOM> page 171

<@DOMDELETE> page 173
<@DOMINSERT> page 174
<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTVALUE> page 188
187187

<@ELEMENTVALUE>

18
<@ELEMENTVALUE>
Syntax <
1888
@ELEMENTVALUE OBJECT=variable [SCOPE=scope]
[ELEMENT=Xpointer] [TYPE=text|array] [{array attributes}]>
Description T
i

his tag is used to return an element value or values from a document
nstance. The OBJECT attribute defines the document instance variable.
The SCOPE attribute defines the scope of that document instance
variable.

The ELEMENT attribute contains a pointer to an element or elements
within the document instance.

The value returned is the value of the element or elements pointed to.
Other elements that are children of the element are not considered to
be content, and are not returned. If more than one element is pointed to,
several values may be returned as an array.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

If the TYPE attribute is set to TEXT, a returned array is not passed as an
array reference when assigning to another variable, but as a text
representation of the array, which is returned by default with the array-
formatting attributes.

If the specified element has no text content (that is, it is empty, or it
contains other elements) then this tag returns an empty string.
Example S
tarting with the following document instance in a variable called myDom:

<XML><DIV>
<P ID=a111 CLASS=normal>Paragraph 1</P>
<P ID=b222 CLASS=different>Paragraph 2</P>
</DIV></XML>

<@ELEMENTVALUE OBJECT="myDom"
ELEMENT="root().child(1).child(all)"> returns a one-
dimensional array consisting of both element values:

Paragraph 1

Paragraph 2

<@ELEMENTVALUE>
<@ELEMENTNAME OBJECT="myDom"
ELEMENT="root().child(1).child(2)"> returns the single element
value:

Paragraph 2
See Also A
<

rray-to-Text Conversion Attributespage 80
@DOM> page 171

<@DOMDELETE> page 173
<@DOMINSERT> page 174
<@DOMREPLACE> page 176
<@ELEMENTATTRIBUTE> page 182
<@ELEMENTATTRIBUTES> page 184
<@ELEMENTNAME> page 186
189189

<@EMAIL>

19
<@EMAIL>
Syntax <
1900
@EMAIL [COMMAND=]{
STRUCTURE |
GETENTITYBODY |
GETFIELD |
ADDFIELD |
APPENDFIELD |
REPLACEFIELD |
REMOVEFIELD |
IMPORT |
EXPORT }

NAME = emailname
SCOPE = scope
[PARTID = partid]
[FIELDNAME = fieldname]
[FIELDVALUE = fieldvalue]
[TYPE = { XML | ARRAY* }]
[DECODEDATA = { TRUE | FALSE* }]
[MESSAGE = messagesource]

 >
Description T
I

his tag enables the composition and manipulation of an email message.
t is one of the three new tags (<@EMAIL>, <@EMAILSESSION> and
<@MIMEBOUNDARY>) which have been added to allow the user to
send and receive email messages using the email protocols SMTP, POP3
and IMAP4.

Three attributes are required:

• COMMAND which specifies the function to be executed;

• NAME which specifies the mail to be used; and

• SCOPE which specifies the scope of the email.

The PARTID attribute is the ID for the PART of the email being
referenced.

FIELDNAME and FIELDVALUE are used in conjunction with the
COMMAND ‘getfield’.

TYPE has a value of XML or ARRAY which specifies the structure the
message will be stored in. If this attribute is not specified, the default
value will be ARRAY.

<@EMAIL>
DECODEDATA is an optional attribute which is set to true or false. If
it is set to true the data being returned will be decoded. If this attribute is
not specified, the default value will be false.

The COMMAND attribute can have any of the values specified in the
table below:Example

Command Command Function

ADDFIELD Adds a field to an email (used in
conjunction with the STRUCTURE
command).

APPENDFIELD Append a value to a field (used in
conjunction with the STRUCTURE
command).

EXPORT Exports an email variable into a text file
structured as an email.

GETENTITYBODY Gets the body of a specified entity

GETFIELD Gets the field in the email to be
returned.

IMPORT Imports a text file structured as an
email into an email variable.

REMOVEFIELD Removes a field from an email (used in
conjunction with the STRUCTURE
command).

REPLACEFIELD Replaces a value of a field (used in
conjunction with the STRUCTURE
command).

STRUCTURE Gets the structure of the email.
Example
 <@EMAIL STRUCTURE NAME=resquest$loopmailvar
SESSIONID=’POP3 Sesion:<@USERREFERENCE>’
TYPE=ARRAY>

<@EMAIL GETENTITYBODY
PARTID=@@request$EMPartID[<@CURROW>,1]
NAME=request$loopemailvar>

< @EMAIL GETFIELD NAME=request$loopmailvcar
FIELDNAME=”subject”>
191191

<@EMAIL>

19
See Also <

<

1922
@EMAILSESSION> page 193
@MIMEBOUNDARY> page 244

<@EMAILSESSION>
<@EMAILSESSION>
Syntax <
@EMAILSESSION [COMMAND=]{
OPEN |
CLOSE |
LIST |
RETRIEVE |
SEND |
DELETE }

[SESSIONID = sessionid]
PROTOCOL = { SMTP | POP3 | IMAP4}
SERVER = server-address
[PORT = server-port]
[USERNAME = username]
[PASSWORD = password]
[MAILBOX = mailbox]
[MODE = { COMMIT | ROLLBACK* }]
[FIELDS = field-list]
[MESSAGEID = messageid]
[NAME = emailname]
[SCOPE = emailscope]>
Description T
e

his tag enables the user to send and receive email messages using the
mail protocols SMTP, POP3 and IMAP4. It is one of the three new tags

(<@EMAIL>, <@EMAILSESSION> and <@MIMEBOUNDARY>).

Three attributes are required:

• COMMAND which specifies the function to be executed;

• PROTOCOL which specifies the protocol being used to make the
connection to the mailserver;

• SERVER which specifies the mail server being accessed. This will be
either the hostname or the IP address of the machine.

The SESSIONID is an optional attribute. It is defined when the OPEN
command is used and is thereafter used by the other commands to
identify the open session.

The PORT attribute is used with the OPEN command. Where not
specified it has a default value of 110.

The USERNAME attribute is optional. If no username is specified the
connection is made anonymously.
193193

<@EMAILSESSION>

194194
The PASSWORD attribute is optional. The password will correspond
to the username.

The MAILBOX attribute is optional. It is used to specify the mail box
on the server which should be used.

The MODE attribute is only relevant when using the CLOSE command.
It is used to either COMMIT or ROLLBACK the changes that have been
made to the mail account since the session was opened. If the value is not
specified then the default setting will be ROLLBACK which means that
the read message will NOT be deleted.

The FIELDS attribute is optional. It is used to specify the fields to be
used in the chosen command.

The MESSAGEID field is only required with the DELETE and RETRIEVE
commands. It is used to identify the desire message.

The NAME attribute specifies the email name.

The SCOPE attribute specifies the email scope.

The COMMAND attribute can have any of the values specified in the
table below:

Command Command Function

CLOSE Closes the email session. This
command requires both the SESSIONID
and the MODE attributes.

DELETE Deletes mail from the mailserver. This
command requires both the SESSIONID
and the MESSAGEID attributes.

LIST Returns the list of messages currently in
the mail account.

OPEN Opens the email session. To perform
an interaction with the mail server this
command must be used first. This
command requires vlaues for
SESSIONID, PROTOCOL and SERVER
attributes.

RETRIEVE Retrieves a specific mail message from
the server. This command requires the
MESSAGEID attribute.

SEND Sends a mail that has been contstructed.

<@EMAILSESSION>
Examples
 <@EMAILSESSION
OPEN
PROTOCOL=”POP3”
SESSIONID=”POP3 Session:<@USERREFERENCE>”
SERVER=”10.1.2.0” USERNAME=”username”
PASSWORD=”password”
>

<@EMAILSESSION
LIST
SESSIONID=”POP3 Session:<@USERREFERENCE>”
>

< @EMAILSESSION
RETRIEVE
NAME=”request$loopmailvar”
MESSAGEID=”<@VAR
request$messagelist[@@request$loopcnt, 1]>”
SESSIONID=”POP3 Session:<@USERREFERENCE>
>

See Also <

<

@EMAIL> page 190
@MIMEBOUNDARY> page 244
195195

<@ERROR>

19
<@ERROR>
Syntax <
1966
@ERROR PART=part [ENCODING=encoding]>
Description R
eturns the value of the named error component specified in the PART
attribute of the current error. This meta tag is valid only in an action’s
Error HTML or in an error.htx file and is generally used within an
<@ERRORS></@ERRORS> block.
For more information, see
“defaultErrorFile” on
page 404.

T
he error.htx file contains the default HTML to be returned when no
Error HTML has been specified for an action or when the error occurs
before action execution. Its location is specified by the
defaultErrorFile configuration variable.

Witango may return more than one error at a time, so this meta tag
should be used inside an <@ERRORS></@ERRORS> block to ensure that
the information for all errors generated is shown.

Note In the absence of an <@ERRORS></@ERRORS> block,
<@ERROR> returns the first error. However, if an <@ERRORS>
</@ERRORS> block is found, <@ERROR> tags outside of the block
return nothing.

Error Part Description

CLASS “Internal” (Witango error), “DBMS” (database server error), or
“External”, (external action error).

APPFILENAME The file name of the application file that generated the error.

APPFILEPATH The relative path of the application file that generated the error.

HELPMESSAGE Allows for the retrieval of a free style optional string describing
possible ways to resolve the error.

POSITION The name of the action that generated the error, if applicable.

NUMBER1 The main error number.

NUMBER2 The secondary error number.

MESSAGE Allows for the retrieval of a formatted error message.

MESSAGE1 The main error message.

MESSAGE2 The secondary error message.

<@ERROR>
Example
 <H3>Error</H3>
An error occurred while processing your request:

<@ERRORS>
APPFILE Path:<@ERROR PART="APPFILEPATH">

APPFILE Name:<@ERROR PART="APPFILENAME">

Position:<@ERROR PART="POSITION">

Class:<@ERROR PART="CLASS">

Main Error Number: <@ERROR PART="NUMBER1">

</@ERRORS>

This example returns all of the error information for each error
encountered during the current action execution.
See Also d
efaultErrorFile page 404
Encoding Attribute page 72
<@ERRORS> </@ERRORS> page 198
197197

<@ERRORS> </@ERRORS>

19
<@ERRORS> </@ERRORS>
Description I
S

1988
f more than one error occurs during application file execution, Witango
erver queues up the errors. <@ERRORS>, in conjunction with
<@ERROR>, allows you to iterate over the list of errors. If the
<@ERRORS></@ERRORS> block is not used, information about the first
error encountered is returned by <@ERROR>.

Text between these tags is processed for each error generated by the
associated action. The tags are valid only in an action’s Error HTML or in
an error.htx file.

The error.htx file contains the default HTML to be returned when
no Error HTML has been specified for an action or when the error
occurs before action execution. Its location is specified by the
defaultErrorFile configuration variable.
Example
 <H3>Error</H3>
An error occurred while processing your request:

<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1>

Secondary Error Number: <@ERROR PART=NUMBER2>

Main Error Message: <@ERROR PART=MESSAGE1>

Secondary Error Message: <@ERROR PART=MESSAGE2>

</@ERRORS>

This example returns all of the error information for each error
encountered during the current action execution.
See Also d

<

efaultErrorFile page 404
@EMAIL> page 190

<@EXCLUDE> </@EXCLUDE>
<@EXCLUDE> </@EXCLUDE>
Syntax <
@EXCLUDE>text</@EXCLUDE>
Description P
p

rocesses string for meta tags, without adding the results of that
rocessing to the Results HTML.

Like the <@COMMENT></@COMMENT> tag, any text inside the start and end
tags is stripped out and does not appears in the HTML sent on to the
Web server. Unlike that tag pair, any meta tags encountered are
executed as part of the application file, not ignored as they are within a
comment.

This tag is useful if you want to do processing in Results HTML without
adding empty lines to the HTML returned.

Note You must use both a start tag and an end tag when using
<@EXCLUDE>. Unpaired appearances are treated as unrecognized tags
and left untouched.
Example
 <@EXCLUDE>Do this: <@ASSIGN NAME=myVar
VALUE="asdfasd"></@EXCLUDE>

The tag pair and the HTML contained inside it are removed before the
HTML is returned, and <@ASSIGN> is executed as part of the application
file.
See Also <
@COMMENT> </@COMMENT> page 139
199199

<@EXIT>

20
<@EXIT>
Description C
E

2000
auses processing of the current Results HTML, No Results HTML, or
rror HTML to end. Processing of the application file continues with the

next action. This tag has no attributes.

This tag is generally used with an <@IF> tag to terminate processing of
the current HTML when some condition is met.
Example T
u

he following example processes the block of Results HTML only if the
ser has privileges on the system, that is, if the user’s access level is

greater than “5”.

[...standard results are found here...]
<@IF EXPR="@@user$accesslevel>5" FALSE=<@EXIT>>
Here are some additional details on the records that
were returned:
<@ROWS>
Name: <@COLUMN
NAME="user.name">

Password: <@COLUMN
NAME="user.password">

</@ROWS>
See Also <

<

@BREAK> page 104
@CONTINUE> page 144

<@FILTER>
<@FILTER>
Syntax <
@FILTER ARRAY=arrayVarName EXPR=filterExpr [SCOPE=scope]
[{array attributes}]>
Description G
s

iven an array, this meta tag returns an array containing rows matching a
pecified expression. The ARRAY attribute specifies the name of a variable

containing an array. The EXPR attribute specifies the expression to use
when evaluating each row to determine whether it will be in the array
returned. In this expression, the values from the current row are
specified with a number sign (#), followed by the column name or
number. (See the examples following.) This expression may use any
operators and functions supported by the <@CALC> tag. If the expression
evaluates to 1 (true) for a particular row, that row appears in the output
array.

The SCOPE attribute specifies the scope of the variable specified in the
value of the ARRAY attribute. If SCOPE is not specified, the default scoping
rules are used.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

Meta tags are permitted in any of the attributes, but see the following
note. Meta tags specified in EXPR are evaluated for each row in ARRAY.

Note References to columns inside the EXPR attribute cannot be
specified by meta tags.
Examples •
 Assume the request variable resultSet contains the following
array:

3243 Acme Insurance ACTIVE

2344 Fairview Electronics INACTIVE

2435 Vanguard Computing INACTIVE

1234 Cinetopia ACTIVE

5421 Trailblazer Industries ACTIVE
201201

<@FILTER>

202202
<@FILTER ARRAY="resultSet" SCOPE="request"
EXPR="#3=ACTIVE"> returns:

• Assume the user variable orders contains the following array and
that column two is named amount and column three is named
state:

<@FILTER ARRAY="orders" SCOPE="user" EXPR="(#amount
> 500) and (#state = NY)"> returns:

• Assume the user variable accounts contains the following array and
that column two is named credit and column three is named
debit:

Also assume the value -100 is stored in the variable od_limit.

<@FILTER ARRAY="accounts" SCOPE="user"
EXPR="(#credit - #debit) < @@od_limit"> returns:

3243 Acme Insurance ACTIVE

1234 Cinetopia ACTIVE

5421 Trailblazer Industries ACTIVE

 1000 324.78 NY

 1001 849.25 MA

 1002 1245.97 CT

 1003 400.45 CA

 1004 598.10 NY

 1005 53.89 ME

 1006 1800.76 NY

 1004 598.10 NY

 1006 1800.76 NY

987235-2347 3257.65 2049.12

 324234-9848 5234.37 6097.90

 234349-2823 0.00 56.33

 630780-8491 657.78 347.20

 324969-1983 234561.27 229679.18

 196573-8436 326.62 192.20

 537030-4739 9482.40 10274.23

 324234-9848 5234.37 6097.90

 537030-4739 9482.40 10274.23

<@FILTER>
See Also A
<

rray-to-Text Conversion Attributespage 80
@ADDROWS> page 83

<@DELROWS> page 165
<@DISTINCT> page 167
<@INTERSECT> page 218
<@SORT> page 288
<@UNION> page 306
203203

<@FOR> </@FOR>

20
<@FOR> </@FOR>
Syntax <
<

2044
@FOR [START=start] [STOP=stop] [STEP=step] [PUSH=push]>
/@FOR>
Description T
f

he purpose of the <@FOR></@FOR> pair is to provide simple for loop
unctionality.

<@FOR> executes the HTML and meta tags between the opening and
closing tags for each iteration of the loop. This means that all the HTML
between the tags is sent to the Web server as many times as the <@FOR>
loop specifies. The start and stop values can be specified, as can the step
used to get from one to the other.

Inside a for loop, <@CURROW> can be used to get the value of the index.

START defines the starting value for the index, for which the default value
is “1”.

STOP defines the stopping value for the index. The loop terminates when
this value is exceeded, not when it is reached. The default value is “0”.

STEP defines the increment added to the index after each iteration. The
default value is “1”.

PUSH allows the sending of data to the client after the specified number
of iterations have taken place.

This tag must appear in pairs and cannot span multiple actions. If the
specified step cannot take the index from start to stop, no iterations are
made. If the start equals the stop, one iteration is made, regardless of the
step size.
Example
 <@FOR STOP="5">
This function does this

</@FOR>

This example outputs the following:

This function does this
This function does this
This function does this
This function does this
This function does this

<@FORMAT>
<@FORMAT>
Syntax <

[

@FORMAT STR=string [FORMAT=format] [INFORMAT=informat]
ENCODING=encoding]>
Description A
T

llows access to the reformatting routines independent of the other tags.
he tag takes a STR attribute for the text to reformat and an optional

FORMAT attribute indicating the desired output format. An optional
INFORMAT attribute is provided for datetime-class formatting to accept
non-standard datetime values.
Examples T
t

o output the current date in ODBC/ISO style, purposely using a
imestamp.

<@FORMAT STR="<@CURRENTTIMESTAMP>"
FORMAT="datetime:%Y-%m-%d" INFORMAT="datetime:<@VAR
NAME='timestampFormat'>">

To output a thousands-grouped integer value.

If a kilobyte is 1024 (2^10 bytes), then a megabyte
should be <@FORMAT STR=<@CALC EXPR="1024 * 1024">
FORMAT="num:comma-integer"> bytes.
See Also E
F

ncoding Attribute
ormat Attribute
205205

<@GETPARAM>

20
<@GETPARAM>
Syntax <
[

2066
@GETPARAM NAME=name [TYPE=text] [ENCODING=encoding]
FORMAT=format] [{array attributes}]>
Description <

W

@GETPARAM> retrieves the contents of a parameter variable within a
itango class file. This tag is similar to <@VAR>, but performs error

checking to ensure that only parameters of a Witango class file (which
must be in method scope) can be retrieved.

This meta tag is specifically used for retrieving the value of a parameter in
a Witango class file. If the variable specified by the NAME attribute is not a
Witango class file parameter, this tag returns an error.

Note Because the parameter variables specified by <@GETPARAM>
are only valid in method scope, scope cannot be specified in the NAME
attribute, unlike the <@VAR> meta tag (for example,
NAME=request$foo generates incorrect results).

This tag is only valid within a Witango class file method.

Text

When retrieving the contents of a text variable (standard variable), the
result of <@GETPARAM> is always a text string.

Arrays

<@GETPARAM> may also be used to retrieve an array. However,
<@GETPARAM> does different things to arrays based on context:
<@GETPARAM> converts the array to text whenever the result of the tag
is returned in Results HTML, or when TYPE=text is specified;
<@GETPARAM> returns an internal reference to the array when it is used
to copy an array from one place to another. So, if <@GETPARAM> is used
within <@ASSIGN>, then no conversion to text is performed (unless the
TYPE="text" attribute is specified).

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

<@GETPARAM>
Example W
t

ithin the return HTML of a Witango class file method, you could use
he following series of meta tags to get the value of an In parameter (in

this case, the radius of a sphere), perform calculations on it (calculating
the surface area of a sphere), and set the value of a returned (Out)
parameter accurate to two decimal places:

<@SETPARAM NAME=OutSurface VALUE=<@CALC
EXPR="4*P*(<@GETPARAM NAME=Radius>^2)"
PRECISION=2>>
See Also A
E

rray-to-Text Conversion Attributes
ncoding Attribute

Format Attribute
<@SETPARAM> page 286
207207

<@HTTPREASONPHRASE>

20
<@HTTPREASONPHRASE>
Syntax <
2088
@HTTPREASONPHRASE>
Description T
r

he primary use of this tag is in the default header
eturned by the Witango application server. This tag
indicates the status of the web page being generated.
It is used in conjunction with <@HTTPSTATUSCODE> to
form a proper HTTP Response header.

@HTTPREASONSEPHRASE reports the matching status reason phrase:
OK or Application Server Error.

When a custom HTTP header is returned, it can be formed using
@HTTPSTATUSCODE and @HTTPRESPONSEPHRASE:

Example

HTTP/1.1 <@HTTPSTATUSCODE>
<@HTTPREASONPHRASE><CRLF>... the rest of the custom header ...
See Also <
@HTTPSTATUSCODE> page 209

<@SETCOOKIES> page 285

<@HTTPSTATUSCODE>
<@HTTPSTATUSCODE>
Syntax <
@HTTPSTATUSCODE>
Description T
r

he primary use of this tag is in the default header
eturned by the Witango application server. This tag

indicates the status of the web page being generated.
It is used in conjunction with <@HTTPREASONPHRASE> to
form a proper HTTP Response header.

<@HTTPSTATUSCODE> evaluates to either 200 which indicates that the
page is without error, or, 500 which indicates that the page does have
problems
See Also <
@HTTPREASONPHRASE> page 208

<@SETCOOKIES> page 285
209209

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>

21
<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>,
<@ELSEIFEQUAL>, </@IF>
Syntax T
2100
he <@IF> meta tag takes one of two forms:

Form One

<@IF EXPR=expr [TRUE=true] [FALSE=false]>

Form Two

<@IF EXPR=expr>
ifText

[<@ELSEIF EXPR=expr>
elseIfText]

[<@ELESIFEMPTY VALUE=value>
elseIfEmptyText]

[<@ELSEIFEQUAL VALUE1=value1 VALUE2=value2>
elseIfEqualText]

[<@ELSE>
elseText]

</@IF>
Description B
s

oth forms of the <@IF> meta tag take EXPR attributes. The expression
pecified is evaluated just like the EXPR attribute of the <@CALC> meta

tag, and all of the operations permitted in it are permitted here.

The EXPR attribute value must be quoted. The expression is evaluated as
false if it returns “false” or “0” (zero); otherwise, the expression is
considered to be true.
For more information, see
“<@CALC>” on page 105.

E
a

xpressions can be of any degree of complexity and they are processed
ccording to <@CALC> grammar; that is, you can use parentheses to

order expressions, logical functions such as AND and OR, and string or
numeric functions such as len(), sin(), or max().

For example, the following complex expression is valid as the value of the
EXPR attribute:

<@IF EXPR="(len(@@password) > 6) OR (len(@@password)
< 3)" TRUE="Passwords must have between 3 and 6
characters. Try again." FALSE="That’s a valid
password.">

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
This example checks the length of the password variable to see if it is
between three and six characters and returns different text if the
expression evaluates to true or false.

Form One

This form of the <@IF> meta tag returns one of two values based on the
evaluation of EXPR. If the expression is true, the value specified in the
TRUE attribute is returned. If the expression is false, the value specified in
the FALSE attribute is returned.

This form of the <@IF> meta tag may be used anywhere that a value-
returning meta tag is permitted.

Form Two

This form of the <@IF> meta tag processes blocks (of text, HTML, SQL)
depending on the evaluation of the EXPR attribute. If the expression is
true, the text after the tag—up until an ending
</@IF>— is processed.

The <@ELSE> meta tag and its variations (<@ELSEIF>,
<@ELSEIFEMPTY>, and <@ELSEIFEQUAL>) can be used inside of an
<@IF></@IF> block to provide alternate expressions and corresponding
text blocks to be processed if the <@IF> tag’s expression is false.

The <@ELSE> meta tag takes no attributes. The text block associated
with it is processed and then processing of the enclosing IF block ends.

The other ELSE tags are conditional. Their text blocks are processed
only if the condition specified is met.
For more information, see
“<@IFEMPTY> <@ELSE>
</@IF>” on page 214 and
<@IFEQUAL> <@ELSE>
</@IF> on page 215 for
descriptions of how the
<@ELSEIFEQUAL> and
<@ELSEIFEMPTY>
conditions are evaluated.

T
e
w
a

A

he <@ELSEIF> tag’s expression is evaluated just like the <@IF> tag’s
xpression. Once an ELSE condition is met, the text block associated
ith it is processed and then processing of the enclosing if block ends. If

n ELSE condition is not met, processing continues with the next ELSE
tag in the IF block.

ny number of <@ELSEIF> tags may be used inside an <@IF>
</@IF> block.

<@IF>, <@IFEMPTY>, and <@IFEQUAL> meta tag blocks may be nested;
that is, the text block associated with an IF or ELSE block may itself
contain an if block. There is no limit to the nested if levels on UNIX or
Windows platforms; however, on Macintosh, the nested if limit is 12
levels.
211211

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>

212212
This second form of the <@IF> meta tag may be used only in HTML
windows, Direct DBMS action SQL, and in the text of scripts for the
Script action.
Examples
 <@IF EXPR="<@VAR CD>='ABBA'" TRUE="Cool!" FALSE="Too
Bad">

Evaluates to “Cool!” if the CD variable is equal to the text ABBA;
otherwise, returns “Too Bad”.

<@IF EXPR="<@CURRENTTIME FORMAT='%H'> <4 &&
<@CURRENTTIME FORMAT='%H'>> 0">

Wow, you’re up late!
</@IF>

Displays “Wow, you're up late!” if the current time is between 1:00 AM
and 3:59 AM.

<@IF EXPR="<@VAR NAME='choice'>=1">
 first choice HTML
<@ELSEIF EXPR="<@VAR NAME='choice'>=2">
 second choice HTML
<@ELSEIF EXPR="<@VAR NAME='choice'>=3">
 third choice HTML
<@ELSE>
 default choice HTML
</@IF>

This example displays different HTML based on the value of the choice
variable. If it evaluates to “1”, “first choice HTML” is displayed; if it
evaluates to “2”, “second choice HTML” is displayed; and so on. If it does
not evaluate to “1”, “2”, or “3”, “default choice HTML” is displayed.
There is a shortcut syntax
for returning variables as
well, with or without
scope: use a double “@”
and the name of the
variable. The following two
notations are equivalent:
<@VAR
NAME="homer"> or
@@homer
<@IF EXPR="@@category=color">
<@IF EXPR="@@color=red">
Fire engines, apples, and embarrassed
faces come in this color.
<@ELSEIF EXPR="@@color=blue">
Ah, the color of clear skies, the ocean,
and recycling boxes.
<@ELSE>
I'm sure that's a fine hue, but I know
nothing about it.
</@IF>

<@ELSEIF EXPR="@@category=shape">
<@IF EXPR="@@shape=circle">
Reminds me of the moon, clock faces, and
my old LPs.
<@ELSEIF EXPR="@@shape=triangle">
Yield signs, slices of hot apple pie, and
dog ears have this form.

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
<@ELSE>
Hmm. The shape of things to come, perhaps?
</@IF>

<@ELSE>
Colors and shapes are my only areas of expertise.
</@IF>

This example demonstrates nested ifs. The outer if block checks for the
category. Inside the block for each category, a nested if block checks for
particular values in the category.
See Also <

<

@CALC> page 105
@IFEMPTY>, <@ELSE> page 214

<@IFEQUAL>, <@ELSE> page 215
213213

<@IFEMPTY> <@ELSE> </@IF>

21
<@IFEMPTY> <@ELSE> </@IF>
Syntax <
2144
@IFEMPTY VALUE=value>
trueSubstitutionText

[<@ELSE>
falseSubstitutionText]

</@IF>
Description I
f the value specified in VALUE is an empty string, <@IFEMPTY
VALUE=value><@ELSE></@IF> includes trueSubstitutionText; otherwise, it
includes falseSubstitutionText. The VALUE attribute value may be a meta
tag or literal value (though it makes little sense to use a literal value). The
<@ELSE> portion is optional.

The trueSubstitutionText and falseSubstitutionText may include other
<@IF>,<@IFEMPTY>, and <@IFEQUAL> meta tags.
Example
 <@IFEMPTY VALUE="<@CGIPARAM NAME='USERNAME'>">
Here are the guest options:
...guest options...

<@ELSE>
<@IF "<@CGIPARAM NAME='USERNAME'>=Admin">
<H3>Administrator Options</H3>
...administrator options...
<@ELSE>
<H3>Hi, <@CGIPARAM NAME="USERNAME">!</H3>
Here are your options
...user options...
</@IF>

</@IF>

This example returns different HTML based on the value of <@CGIPARAM
NAME="USERNAME">.
See Also <

<

@ELSEIF> page 210
@ELSEIFEMPTY> page 210
<@ELSEIFEQUAL> page 210
<@IF>,<@ELSE> page 210
<@IFEQUAL>,<@ELSE> page 215

<@IFEQUAL> <@ELSE> </@IF>
<@IFEQUAL> <@ELSE> </@IF>
Syntax <
@IFEQUAL VALUE1=value1 VALUE2=value2>
trueSubstitutionText

[<@ELSE>
falseSubstitutionText]

</@IF>
Description I
f the value of the VALUE1 attribute and the value of the VALUE2 attribute
are equal, <@IFEQUAL> includes trueSubstitutionText; otherwise it includes
falseSubstitutionText. Each of the attributes may be a meta tag or a literal
value, or a combination of both. Literal values must be quoted if they
contain a space. The <@ELSE> portion is optional.

<@IFEQUAL> can be used to do begins-with type comparisons. An asterisk
at the end of either value acts as a wildcard character, matching any
characters at the end of the other value attribute. (You can search for an
asterisk character by using <@CHAR 42>.)

When comparing the values, Witango attempts to convert both values to
numbers and perform a numeric comparison. If one or both values
cannot be converted to numbers, Witango performs a string comparison.

The trueSubstitutionText and falseSubstitutionText may include other <@IF>,
<@IFEMPTY>, and <@IFEQUAL>.
Examples
 <@IFEQUAL VALUE1="<@CGIPARAM NAME='user_agent'>"
VALUE2="Mozilla*">
...HTML for Netscape Navigator...
<@ELSE>
...HTML for other Web browsers...
</@IF>

This example returns different HTML depending on the user’s Web
browser.

<SELECT NAME="region">

<OPTION VALUE="NE"
<@IFEQUAL VALUE1="<@COLUMN 'customer.region'>"
VALUE2="NE">SELECTED</@IF>>North East

<OPTION VALUE="NW"
<@IFEQUAL VALUE1=<@COLUMN
customer.region>VALUE2"NW">SELECTED</@IF>>North
West
215215

<@IFEQUAL> <@ELSE> </@IF>

216216
<OPTION VALUE="SE" <@IFEQUAL VALUE1=<@COLUMN
customer.region>VALUE2="SE">SELECTED </@IF>>South
East

<OPTION VALUE="SW" <@IFEQUAL VALUE1=<@COLUMN
customer.region>
VALUE2="SW">SELECTED</@IF>>South West

</SELECT>

This example sets the correct pop-up menu item to SELECTED based on
the value of a database field.
See Also <

<

@ELSEIF> page 210
@ELSEIFEMPTY> page 210
<@ELSEIFEQUAL> page 210
<@IF>, <@ELSE> page 210
<@IFEMPTY>, <@ELSE> page 214

<@INCLUDE>
<@INCLUDE>
Syntax <
@INCLUDE FILE=file>
Description R
w

eturns the contents of the specified file. The file may contain meta tags,
hich are processed normally. The FILE attribute is a slash-separated path

from the Web server root. The FILE attribute may include literal text,
meta tags, or both.

If Witango cannot find the referenced file, the meta tag returns an empty
value. This meta tag may be used in Results, No Results and Error HTML,
Direct DBMS SQL, variable assignment values, External action attributes,
and in database action insert, update, and criteria value fields.
Examples
 <@INCLUDE FILE="/Footers/my_footer.html">

This example includes the my_footer.html file residing in the Footers
directory in the Witango application file root directory.

<@INCLUDE FILE="<@APPFILEPATH>my_footer.html">

This example includes the my_footer.html file residing in the same
directory as the currently executing application file.

<@INCLUDE FILE="<@COLUMN NAME='invoice.filename'>">

This example includes the contents of the file specified in the filename
column in the invoice table.
217217

<@INTERSECT>

21
<@INTERSECT>
Syntax <

[

2188
@INTERSECT ARRAY1=arrayVarName1 ARRAY2=arrayVarName2
COLS=compCol [compType] [, ...]] [SCOPE1=scope1]
[SCOPE2=scope2] [{array attributes}]>
Description R
t

eturns the intersection of two arrays, that is, an array containing only
hose rows that exist in both input arrays.

The two input arrays are not modified. To store the result of this meta
tag in a variable, use a variable assignment.

The ARRAY1 and ARRAY2 attributes specify the names of variables
containing arrays. The optional COLS attribute specifies the column(s) to
consider when determining whether two rows are the same: the columns
are specified using column numbers or names (compCol), with an optional
comparison type (compType). The arrays must have the same number of
columns; otherwise, an error is generated.

Valid comparison types are SMART (the default), DICT, ALPHA and NUM.
DICT compares columns alphabetically, irrespective of case. ALPHA
performs a case-sensitive comparison. NUM compares columns
numerically. SMART checks whether values are numeric or alphabetic and
performs a NUM or DICT comparison.

If no COLS attribute is specified, the intersection of the two arrays is
accomplished via a SMART comparison type that examines all columns.

The SCOPE1 and SCOPE2 attributes specify the scope of the variables
specified by ARRAY1 and ARRAY2, respectively. If the attribute is not
specified, the default scoping rules are used.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

Meta tags are permitted in any of the attributes.
Examples •
 If the variable p_items contains the following array:

 red

 blue

 green

<@INTERSECT>
The variable new contains the following array:

<@INTERSECT ARRAY1="p_items" ARRAY2="new"> returns:

• If the variable test contains:

and the variable test2 contains:

<@INTERSECT ARRAY1="test" ARRAY2="test2"> returns:

• The variable usr1 contains the following array:

The variable usr2 contains the following array:

 orange

 orange

 pink

 blue

 pink

 blue

 orange

 1 a a

 2 b c

 3 c c

 4 b c

 1 a a

 2 b b

 3 c c

 1 a a

 3 c c

Gilbert Steve 1823-1344 $433.00

Brown Robert 5543-1233 $332.50

Brown Marsha 1122-5778 $541.00

Kelly Herbert 5543-1443 $100.50

Brown Robert 6670-1123 $1123.75
219219

<@INTERSECT>

220220
To find users that appear in both arrays, you would find the
intersection of the two arrays based on the first two columns:
<@INTERSECT ARRAY1="usr1" ARRAY2="usr2" COLS="1, 2">
returns:

Only columns 1 and 2 are specified as relevant; the different values in
the other columns are ignored for the purposes of comparison.

• In conjunction with <@IF>, <@INTERSECT> may be used to test for
the existence of a row in another array. If Var_A contains the
following array:

Var_B contains the following array:

<@IF EXPR="<@INTERSECT Var_A Var_B>">
 Var_B is in Var_A
<@ELSE>
 Not in Var_A
</@IF>

Brown Robert 6670-1123 $1123.75 *

* Witango returns just one of the rows that have the
same values in the specified columns (1 and 2).

1 John Tesh A

2 Mary Hart B

3 Bob Mackie C

4 Sharon Tate D

3 Bob Mackie C
For more information, see
Array evaluation on
page 106.
This is because an array value specified as an expression (in <@CALC>
or <@IF>) returns the number of rows in that array.
See Also A
<

rray-to-Text Conversion Attributespage 80
@DISTINCT> page 167
<@FILTER> page 201
<@SORT> page 288
<@UNION> page 306

<@ISALPHA>
<@ISALPHA>
Syntax <
@ISALPHA STR=mystring>
Description E
valuates to non-zero if the expression specified in STR is an contains
only alphabetic characters (that is, A-Z and a-z).

An empty or blank expression is not considered a string.
Examples
 <@ISALPHA STR="abcdefg"> true

<@ISALPHA STR="1"> false
See Also <

<

@ISDATE> page 222
@ISTIME> page 222

<@ISTIMESTAMP> page 222
<@ISNUM> page 228
221221

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>

22
<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
Syntax <
2222
@ISDATE VALUE=date>

<@ISTIME VALUE=time>

<@ISTIMESTAMP VALUE=timestamp>
Description T
t

hese tags attempt to parse the input value and see if it is a valid date,
ime, or timestamp, respectively. The intent of the tags is to detect as

wide a variety of formats as possible, thus allowing users greater choice in
inputting values. The tags evaluate to the value “1” or “0”.

If the value contains spaces, it must be quoted (single or double, as
appropriate).

The tags currently support the following date/time/timestamp formats:

• configuration variable defaults

• ISO 8601 formats (complete representations only)

• ODBC formats

• numeric formats

• textual formats.

All formats assume the Gregorian calendar; that is, they use Gregorian
rules for all time periods as opposed to switching back to the Julian
calendar for years before the adoption of the Gregorian calendar, which
may vary depending on the country. All years must be greater than zero.

A date unacceptable in one format may be acceptable in another. For
example, 98-02-12 is not a valid ODBC nor ISO date, but is detected as a
general numeric date because it is sufficiently unambiguous.

ISO Date Format

There are three ways to specify a date in ISO format:

• Calendar Date Format: yyyy-mm-dd. An ISO Calendar Date
format gives years, months, and dates in numeric values. All digit
places of each field must be filled. Use leading zeroes to pad fields to
full width. Hyphens are optional, but if present, all must be present;
they are all-or-none optional, for example, “1998-05-01” or
“19980501”.

• Week/Day Format: yyyy-Www-d. An ISO Week/Day format
specifies a date with its week number in the given year, plus its day in

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
the week. The capital W is required, the hyphens are all-or-none
optional, and numbers must be full-width. Weeks range from W01
to W53, and days in each week are numbered one (Monday) to
seven (Sunday).

Week W01 of any year is defined as the first week with the majority
of the days of that week in that year; for example, it is the week that
January first is in if January first falls on a Monday to a Thursday, or
else it is the next week. Alternately, the week containing January 04
is W01. Remember that ISO defines a week as Monday to Sunday.

Note Note that the calendar year may be different from the week
year. For example, 1998-W01-2=1997-12-31, is December 31, 1997.

• Ordinal Date Format: yyyy-ddd. An ISO Ordinal Date format
specifies a year and the day in that year numbered from January first
as 001. The day number ranges from 001 to 365 (366 in leap years).
The hyphen is optional. The full width of the digit fields must be
provided; use leading zeroes to pad fields.

ISO Time Format

An ISO time is specified in a 24-hour clock format: hh:mm:ss

The string may be preceded by a capital T, and may have a decimal
fraction portion consisting of a comma or period followed by one to nine
digits. Colons are all-or-none optional.

Note ISO allows 24:00 to indicate 00:00:00 on the next day, but
Witango does not allow this.

ISO Timestamp Format

An ISO timestamp format is simply the concatenation of a date and a time
in that order, with the capital T before the time mandatory. Again, no
spaces ever appear in an ISO format, for example,
“1998-05-01T12:00:00”.
ODBC Formats O
i

DBC date/time string formats are very strict. No special interpretation
s required.
223223

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>

224224
ODBC Date Format

Dates are specified yyyy-mm-dd using calendar dates. The full width of
each field must be provided. Use leading zeroes to pad fields to full width.
Hyphens are required.

ODBC Time Format

The time format hh:mm:ss.fffffffff is a triple of two-digit numbers
representing a 24-hour time, with colons required, followed by an
optional fraction portion consisting of a period with one to nine decimal
digits afterwards. Use leading zeroes to pad fields to full width.

ODBC Timestamp Format

Timestamps are made by specifying a date, followed by a single space,
followed by the time.
Numeric
Formats

A
n
A

 numeric format is defined to be a date or time specified fully by using
umbers, separating punctuation, and possibly an “AM” or “pm” marker.
ny strings with words inside fall into the Textual category.

These tags do not attempt to resolve ambiguities according to the
current locale or Witango Server settings. Ambiguous values are not
accepted.

Dates are composed of three numbers separated by identical punctuation
character sequences: “/”, “//”, “.”, or “-”. Times are specified by three
numbers separated by identical punctuation characters: “:” or “.”, with an
optional am/pm (case insensitive) marker afterwards. If an am/pm marker
is present, then a single space may separate it and the time numbers.
Timestamps are created by writing a date, followed by white space,
followed by a time. A time may never be specified first.
Textual
Formats

A
c
i

 textual format is any date/time string that includes alphabetic
haracters. These words are assumed to be weekday and month names
n a variety of different languages. Input text must use high-ASCII
characters instead of HTML &#xxx; escapes to represent accented
characters. The following languages that use the ISO-Latin-1 character
coding set are supported:

• C/POSIX DEFAULT

• Danish

• German

• English

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
• Spanish

• Finnish

• French

• Icelandic

• Italian

• Dutch

• Norwegian

• Portuguese

• Swedish.

A date may be written in any of the following formats, with [] indicating
optional items.

• [weekday] month day year

• [weekday] day month year

• year month day (hyphen delimiters allowed).

The weekday may only be followed by an optional comma and a space.
Other items may use dots, or single dots as well. If a weekday is specified,
it must be correct. For example, June 13 1997 was a Friday, and anything
else is wrong. No extraneous words should appear in the string, such as
the “de” in Spanish “viernes, 20 de junio de 1997”. In general, no
punctuation is best. (Punctuation is supported to the point of allowing
what is commonly in use today.) All word comparisons are case-
insensitive.

If a time is given, it must have three numbers, two digits long (1–2 for the
hour), separated by “.” or “:”, and an optional space with an optional am/
pm marker used in that native language. No delimiters follow or precede
a time otherwise. A time may appear anywhere in the text.

Note The current implementation of the IS[DATE/TIME/
TIMESTAMP] tags only works with languages that use the ISO-Latin-1
character set.
225225

<@ISMETASTACKTRACE>

22
<@ISMETASTACKTRACE>
Syntax <
2266
@ISMETASTACKTRACE>
Description E
o

valuates to 1 if the Meta Stack Trace is available - that is, if the error
ccurred while processing the Results HTML (as opposed to when

processing an action). In all other cases it will evaluate to 0.
See Also <
@METASTACKTRACE> on page 243

<@ISNULLOBJECT>
<@ISNULLOBJECT>
Syntax <
@ISNULLOBJECT OBJECT=variable [SCOPE=scope]>
Description T
o

he <@ISNULLOBJECT> meta tag evaluates whether a variable is a null
bject. This tag returns 1 if the specified variable is an object variable and

is null. The OBJECT attribute is required and specifies the name of an
object variable. The SCOPE is optional, and specifies the scope of the
object variable.
Example I
<

f a Witango class file returned an object variable, you could use
@ISNULLOBJECT> to check whether this object was null before calling

methods on it. Because the type of the returned variable from the
Witango class file is “object”, an object variable is always returned;
however, if some error occurs within the Witango class file such that the
particular object is not accessible, a null object is returned. This meta tag
is useful for checking for such errors.
See Also <

<

@CALLMETHOD> page 116
@CREATEOBJECT> page 145

<@NUMOBJECTS> page 249
<@OBJECTAT> page 251
<@OBJECTS></@OBJECTS> page 252
227227

<@ISNUM>

22
<@ISNUM>
Syntax <
2288
@ISNUM VALUE=number>
Description E
n

valuates to non-zero if the expression specified in VALUE is a valid
umber. A number cannot contain characters other than numbers except

the character(s) specified in currencyChar and the characters specified
in decimalChar and thousandsChar to delimit parts of the string.

An empty or blank expression is not considered a valid number.
Examples
 <@ISNUM VALUE="$1,000,000.00"> true

<@ISNUM VALUE="1 + 2"> false
See Also c

d

urrencyChar page 398
ecimalChar page 403
<@ISDATE> page 222
<@ISTIME> page 222
<@ISTIMESTAMP> page 222
thousandsChar page 424

<@KEEP>
<@KEEP>
Syntax <
@KEEP STR=string CHARS=char [ENCODING=encoding]>
Description R
eturns the string specified in STR stripped of all characters except those
specified in CHARS. The operation of this meta tag is case sensitive. To
retain both upper and lower case variations of a character include both
characters in the CHARS.

Each of the attributes to <@KEEP> may include both literal values and
meta tags that return values.
Examples
 <@KEEP STR="The quick fox" CHARS="aeiou">

This example evaluates to “euio”.

<@KEEP STR="$200.00" CHARS="0123456789.">

This example evaluates to “200.00”.

<@KEEP STR="This is the HTML" CHARS="TH">

This example evaluates to “THT”.

<@KEEP STR="<COLUMN NAME=Invoice.totalcost>"
CHARS="0123456789.">

This example returns the value in the total cost column, stripped of any
non-numeric characters.
See Also E
<

ncoding Attribute
@OMIT> page 254
229229

<@LEFT>

23
<@LEFT>
Syntax <
2300
@LEFT STR=string NUMCHARS=numChars [ENCODING=encoding]>
Description R
a

eturns the first NUMCHARS characters from the string specified in STR
nd returns the extracted substring.

If the string contains any spaces—except for space embedded within
meta tags—the string must be quoted.

Both STR and NUMCHARS attributes are mandatory. If a syntax error is
encountered while the expression is parsed—no attributes at all, no
string or no number of characters—the tag returns an empty string.
Examples
 <@LEFT STR="alpha" NUMCHARS="3">

This example returns “alp”, the first three characters of “alpha”.

<@LEFT STR="<@INCLUDE
FILE='<@APPFILEPATH>BrownFox.txt'>" NUMCHARS="3">

This example returns “The”, the first three characters of “The Quick
Brown Fox Jumps Over The Lazy Dog” (the contents of the
BrownFox.txt file).
See Also E
<

ncoding Attribute
@REPLACE> page 269
<@RIGHT> page 271
<@SUBSTRING> page 293

<@LENGTH>
<@LENGTH>
Syntax <
@LENGTH STR=string>
Description R
eturns the number of characters in the string specified in STR. The STR
attribute may be a literal value, a meta tag that returns a value, or a
combination of both.

Note For a more efficient means of returning the length of a variable,
see <@VARINFO> on page 325.
Examples
 <@LENGTH STR="This is a test">

This example evaluates to “14”.

<@LENGTH STR="<@POSTARG NAME='SSN'>">

This example evaluates to the number of characters entered into the SSN
form field.

<@LENGTH STR="<@COLUMN NAME='customer.lastname'>">

This example evaluates to the length of the customer’s last name.
231231

<@LITERAL>

23
<@LITERAL>
Syntax <
2322
@LITERAL VALUE=value [ENCODING=encoding]>
Description C
s

auses Witango to suppress meta tag substitution for the VALUE
upplied.

One use for this meta tag is assigning meta tags to variables, as you need
to do with the userKey, altUserkey, and domainScopeKey
configuration variables.
Example
 <@ASSIGN NAME="metaTag" VALUE="<@VAR NAME='myVar'>">

This would assign the value of the myVar variable to the metaTag
variable, that is, not using the <@LITERAL> meta tag.

<@ASSIGN NAME="metaTag" VALUE="<@LITERAL
VALUE='<@VAR NAME="myVar">'">

This assigns the text “<@VAR NAME=myVar>” to the metaTag variable,
using the <@LITERAL> meta tag.
See Also d
omainScopeKey page 406
Encoding Attribute page 72
userKey, altuserKey page 428

<@LOCATE>
<@LOCATE>
Syntax <
@LOCATE STR=string FINDSTR=substring>
Description R
eturns the starting position of substring in string. If substring is empty,
omitted, or not in string, <@LOCATE> returns “0”. If substring occurs more
than once in string, the position of the first occurrence is returned.

The operation of <@LOCATE> is case sensitive. In order for a match to be
found, substring must occur inside string exactly as it is specified, including
case.

Each of the attributes to <@LOCATE> may be specified as a literal value, a
meta tag that returns a value, or a combination of both.
Examples
 <@LOCATE STR="A test string" FINDSTR="test">

This example evaluates to “3”.

<@LOCATE STR="Not in here" FINDSTR="help">

This example evaluates to ”0”.

<@LOCATE STR="The rain in Spain" FINDSTR="ain">

This example evaluates to “6”.

<@LOCATE STR="Welcome to my home page."
FINDSTR="come">

This example evaluates to “4”.

<@LOCATE STR="Witango Studio" FINDSTR="witango">

This example evaluates to “0”, because an exact match of “witango”,
including case, is not found in the source string.

<@LOCATE STR="<@LOWER STR='Witango Studio'>"
FINDSTR="Witango">

This example evaluates to “1.”
233233

<@LOGMESSAGE>

23
<@LOGMESSAGE>
Syntax <

[

2344
@LOGMESSAGE MESSAGE=messagetext [LOGLEVEL=loglevel]
TYPE={ACTIVITY*|EVENT}]>
Description T
W

he <@LOGMESSAGE> meta tag allows you to print a message to the
itango Server log file.
A
dditionally, if debugging is on for the Witango application file or class file
where the <@LOGMESSAGE> meta tag is specified, the message appears in
the debug output if the LOGLEVEL attribute of the tag is set to 2 or
greater.

The MESSAGE attribute specifies the text to be written to the log file.

The LOGLEVEL attribute is optional, and indicates the minimum log level
at which the message is output. This value is compared to the current
value of the configuration variable loggingLevel. This can be one of 1,
2, 3, 4, 5, or SUPPRESS; SUPPRESS means that no message is written to
the log file. The default is 1.

The message appears in the log file or debug stream with the prefix
[User Message].

Values for both attributes of this tag may contain meta tags.
Example T
a

he following meta tags log any unauthorized attempts to access a certain
rea on a Witango-based Web site, and includes the name of the user

attempting the access (using the userName variable):

<@LOGMESSAGE MESSAGE="Unauthorized access attempted
by user: <@VAR NAME='userName'>" LOGLEVEL="2">
See Also l

l

oggingLevel page 414
ogToResults page 415

<@LOWER>
<@LOWER>
Syntax <
@LOWER STR=string [ENCODING=encoding]>
Description R
eturns the value specified in STR converted to lowercase. The STR
attribute may be a literal value, a meta tag that returns a value, or a
combination of both.
Examples
 <@LOWER STR="This is a test">

This example evaluates to “this is a test”.

<@LOWER STR=<@POSTARG NAME=product_code>>

This example returns the contents of the form field product_code,
converted to lowercase.

<@LOWER STR=<@COL NUM=1>>

This example returns the value from column one of the result set,
converted to lowercase.
See Also E
<

ncoding Attribute
@UPPER> page 309
235235

<@LTRIM>

23
<@LTRIM>
Syntax <
2366
@LTRIM STR=string [ENCODING=encoding]>
Description R
eturns the value specified in STR stripped of leading spaces. The STR
attribute may be a literal value, a meta tag that returns a value, or a
combination of both.
Examples
 <@LTRIM STR=" this is padded">

This example returns “this is padded“.

<@LTRIM STR="<@COL NUM='2'>">

This example returns value of column 2, less any leading spaces.
See Also E
<

ncoding Attribute
@KEEP> page 229
<@OMIT> page 254
<@RTRIM> page 274
stripCHARs page 424
<@TRIM> page 303

<@MAKEPATH>
<@MAKEPATH>
Syntax <
|

@MAKEPATH [PATH1]=path1 [[PATH2=]path2] [TYPE={URL
FILESYSTEM}]>
Description T
o

he <@MAKEPATH> tag normalizes and combines paths to make a path
f the requested type.

In its simplest form, when only one path is provided, the path is
normalized - all path demlimiters are converted to the requested type
(URL path or physical path) and the end of the path is appended with a
path delimiter character.

When two paths are provided, each one of them will be normalized
(except the second path will NOT be appended with the delimiter, so
that a filename can be used) and combined into a single path, returned by
the meta tag.

Note This tag may return ambiguous or unpredictable results when
virtual directories within virtual hosts are used. Under these
circumstances the tag should not be used.
Example F
or non-Windows platforms:

<@MAKEPATH “c:\inetpub/wwwroot” “<@APPFILEPATH>”
TYPE=”FILESYSTEM”>

The above example will evaluate to:

c\:inetpub\wwwroot\appfilepath\

For Windows platforms:

<@MAKEPATH “c:\inetpub/wwwroot”
“<@APPFILEPATH>filename.ext” TYPE=”FILESYSTEM”>

The above example will evaluate to:

c\:inetpub\wwwroot\appfilepath\filename.ext
See Also <

<

@APPNAME> page 89
@APPPATH> page 90

<@APPKEY> page 88
237237

<@MAKEPATH>

238238

<@MAP>
<@MAP>
Syntax <
@MAP NAME VALUE [SCOPE] [ENCODING]>
Description T
t

he <@MAP> tag takes an array and returns a single column array with
he values of specificed array cells of the same row, concatenated

together. The VALUE attribute may contain meta tags that evaluate
expressions (like <@IF>) which will use the value of each row to evaluate
the expression.
Examples S
w

tart with an array, which, for this example contains age and gender, it
ill be known as @@request$people:

<@ASSIGN request$people "<@ARRAY
value='Mr,Rawson,Cole,Male,2;Mrs,Joanne,Ball,Female
,40;,Madeline,Ryan,Saint,80;Mrs,Gemma,Falker,Female
,36;Ms,Briana,Fitzgerald,Female,8;Ms,Abbie,Savell,F

emale,10;'>">

To perform a simple <@MAP> concatenation on the people’s
names:

<@MAP request$people "#1 #2 #3" encoding="NONE">

To perform an expression based concatenation which will give the
females over 16 years of age flowers, the men beer, and, all others
sweets:

Mr Rawson Cole Male 2

Mrs Joanne Ball Female 40

Madeline Ryan Saint 80

Mrs Gemma Falker Female 36

Ms Briana Fitzgerald Female 7

Ms Abbie Savell Female 10

Mr Rawson Cole

Mrs Joanne Ball

Madeline Ryan

Mrs Gemma Falker

Ms Briana Fitzgerald

Ms Abbie Savell
239239

<@MAP>

240240
<@MAP request$people value='<@IF "((#5 > 16) && (#4 =
Female))">Flowers: #1 #2 #3<@ELSEIF "#4 = Male">Beer:

#1 #2 #3<@ELSE>Sweets: #1 #2 #3</@IF>'>

To perform a conditional expression based <@MAP> concatenatation
which will give the females over 16 years of age flowers, and, females
under 16 years old sweets:

<@MAP request$people value='<@IF "((#5 > 16) && (#4
= Female))">Flowers: #1 #2 #3<@ELSEIF "((#5 <= 16)

&& (#4 = Female))">Sweets: #1 #2 #3</@IF>'>

To perform an <@MAP> concatenation where the concatenation itself
contains the expression which will give all the full names of the people
with only the first letter of their first name

<@MAP request$people value='Full Name: #1 <@LEFT

STR="#2" NUMCHARS="1">. #3'>

Beer: Mr Rawson Cole

Flowers: Mrs Joanne Ball

Sweets: Madeline Ryan

Flowers:Mrs Gemma Falker

Sweets: Ms Briana Fitzgerald

Sweets: Ms Abbie Savell

Flowers: Mrs Joanne Ball

Flowers:Mrs Gemma Falker

Sweets: Ms Briana Fitzgerald

Sweets: Ms Abbie Savell

Full Name : Mr R. Cole

Full Name : Mrs J. Ball

Full Name : M. Ryan

Full Name : Mrs G. Falker

Full Name : Ms B. Fitzgerald

Full Name : Ms A. Savell
See Also <
@ARRAY> page 93

<@MAXROWS>
<@MAXROWS>
Description R
c

eturns the value specified in the Maximum Matches field for the
urrent Search or Direct DBMS action. If No Maximum was specified,
<@MAXROWS> returns “0”. This meta tag may be used only in a Search or
Direct DBMS action.

This meta tag is especially useful when you specify a meta tag as the
Maximum Matches value for a search action (allowing a form field or
search argument value to determine, at execution time, the maximum
number of matches to return).
Example
 <@IFEQUAL VALUE1="<@MAXROWS>" VALUE2="0">
Here are the matching records:
<@ELSE>
Here are the <@MAXROWS> matching records:
</@IF>
<@ROWS>
...
</@ROWS>

This example indicates to you the maximum number of matches that are
displayed.
See Also <

<

@NUMROWS> page 250
@STARTROW> page 292

<@TOTALROWS> page 301
241241

<@METAOBJECTHANDLERS>

24
<@METAOBJECTHANDLERS>
Syntax <
2422
@METAOBJECTHANDLERS [{array attributes}]>
Description T
o

his meta tag returns an array with a row of three columns for each
bject-handling plug-in that were successfully loaded by the Witango

Server on startup as well as static handlers (eg the TCF handler).

The first column of the returned array is the object handler’s public name
(for example, Witango JavaBean Object Handler); the second
column is the type of object handler (a short string used internally by
Witango to refer to the handler, such as JavaBean, TCF, or COM); the
third column is the path to the handler (on Windows and Unix, this is the
path to the library), which is used to identify the handler to the operating
system when Witango wants to load it.

Row zero of the returned array contains the column headers.
Example <
@METAOBJECTHANDLERS> in a Witango application file returns:

On Windows:

On Linux:

On OS X:

Witango Class Files TCF [Internal]

COM / DCOM Objects COM WITANGO_PATH\wshcm501.dll

Java Beans JAVABEA
N

WITANGO_PATH\wshbn501.dll

Witango Class Files TCF [Internal]

Java Beans JAVABEA
N

WITANGO_PATH/lshbn501.so

Witango Class Files TCF [Internal]

Java Beans JAVABEA
N

WITANGO_PATH/mshbn501.so
See Also A
rray-to-Text Conversion Attributespage 80

<@METASTACKTRACE>
<@METASTACKTRACE>
Syntax <
@METASTACKTRACE>
Description T
S

his meta tag returns a two dimensional array representing the Meta
tack Trace that occurs when an error occurs when processing Results

HTML. The first column of the array is the line number on which the
error occurred. The second column of the array is the meta tag that
caused the error.

This tag will work with all the usual formatting attributes that will allow a
user to change an array’s appearance.
See Also <
@ISMETASTACKTRACE> on page 226
243243

<@MIMEBOUNDARY>

24
<@MIMEBOUNDARY>
Syntax <
2444
@MIMEBOUNDARY LEVELID=levelid [BOUNDARY=boundary]>
Description T
c

his tag generates a MIME boundary string that can be used when
omposing mulitpart messages. If the parameter BOUNDARY is omitted

(which is recommended), the value of the request scope identifier will be
used to generate boundary. The LEVELID parameter is a number that
identifies the boundary level (if a multilevel message is being composed).
Example T
n

he resulting boundary will take the following form where the first
umber is the levelID and the following alphanumeric sequence is the

request scope identifier at the time when <@MIMEBOUNDARY> wa
being processed:

<@MIMEBOUNDARY LEVELID=1>

would return

----=MimePart__0001__33A8F4D74DE30EF93CBEFAA4
See Also <

<

@EMAIL> page 190
@EMAILSESSION> page 193

<@NEXTVAL>
<@NEXTVAL>
Syntax <
@NEXTVAL NAME=variable [SCOPE=scope] [STEP=increment]>
Description I
t

ncrements the specified variable by the specified increment and returns
he new value. <@NEXTVAL> operates only on integer values. The default

increment is “1”, if no STEP is specified. You can specify a variable scope
as well; see <@VAR> for a explanation of scoping rules.

If the variable does not exist, is non-integer, is not text, or if the step is
non-integer, <@NEXTVAL> evaluates to nothing, and an error is logged if
LogLevel is greater than 0.

Text variables (that is, standard variables) or individual array items may
be updated by <@NEXTVAL>.
Example P
(

lacing the following line in the Results HTML after each database access
Search, New Record, and so on) returns the number of times the user

has accessed the database in their session:

<P>You have accessed the database
<@NEXTVAL NAME="user$access">
times in this session.</P>
See Also l

<

oggingLevel page 414
@VAR> page 320
245245

<@NULLOBJECT>

24
<@NULLOBJECT>
Description T
d

2466
he <@NULLOBJECT> meta tag allows you to create objects that do not
o anything, but allow conditional tests that check whether a variable is

empty to return a result. This tag can also be used to initialize object
variables within the Assignment action.
Example T
o

he following example assigns a variable myObject the value of an empty
bject whose value is undetermined.

<@ASSIGN NAME=myObject VALUE=<@NULLOBJECT>>

The <@IFEMPTY @@myObject> and <@ISNULLOBJECT @@myObject>
meta tags return true and the LEN function of the <@CALC> meta tag
yields a zero value. This meta tag could be used to return null objects
when certain errors take place.
See Also <

<

@ASSIGN> page 96
@CALC> page 105
<@CALLMETHOD> page 116
<@CREATEOBJECT> page 145
<@IFEMPTY> page 214
<@ISMETASTACKTRACE> page 226
<@NUMOBJECTS> page 249
<@OBJECTAT> page 251
<@OBJECTS></@OBJECTS> page 252

<@NUMAFFECTED>
<@NUMAFFECTED>
Description R
D

eturns the number of database rows affected by the last Insert, Update,
elete, or Direct DBMS action executed. All other actions have no effect

on what the tag returns. The value returned by the tag is always the
number of rows affected by the last Insert, Update, Delete, or Direct
DBMS action executed. This tag only works for Oracle,
JDBC and ODBC data source types. The tag has no attributes.

At the start of execution, and until an Insert, Update, Delete, or Direct
DBMS action is executed, the tag returns “-1”.

Note
• If the last Direct DBMS action performed a search, the tag also returns

“-1”.
• For Mac OS X, this tag works only with ODBC and OCI data sources.

It does not work with FileMaker Pro and JDBC data sources, and hence
always returns “-1”.

• Some ODBC drivers do not support this meta tag. For data sources
using these drivers, the tag always returns “-1”.
Example A
R

n Update action in your application file updates a product code. In the
esults HTML for that Update action, you could use <@NUMAFFECTED>

to return to the user the number of records changed:

<P><@NUMAFFECTED> records were
updated in the database.</P>
247247

<@NUMCOLS>

24
<@NUMCOLS>
Syntax <
2488
@NUMCOLS [ARRAY=array]>
Description R
eturns the number of columns in each row.

Without the ARRAY attribute, this meta tag is valid in the Results HTML
of any results returning action, and returns the number of columns in the
result rowset.

With the optional ARRAY attribute, which accepts the name of a variable
containing an array, the tag may be used anywhere meta tags are valid and
returns the number of columns in the named array.
Example
 Here are your results. There are <@NUMROWS> rows of
<@NUMCOLS> columns in the rowset

<@ROWS>
 <@COLS>

<@COL>
 </@COLS>

</@ROWS>
See Also <

<

@COLS> </@COLS> page 137
@CURCOL> page 148
<@NUMROWS> page 250

<@NUMOBJECTS>
<@NUMOBJECTS>
Syntax <
@NUMOBJECTS OBJECT=objectvariable [SCOPE=scope]>
Description T
r

his tag returns the count of the objects in a collection or iterator object
eturned by a COM or JavaBean method call.

The OBJECT attribute defines the name of a variable containing an object
instance. This must be a collection or iterator. The optional SCOPE
attribute defines the scope of the object variable.

Note For large collections, this meta tag could be very slow, as
Witango must iterate through every item in order to get the count.
Example T
l

he following <@NUMOBJECTS> could be used within an <@OBJECTS>
oop:

Displaying 1 of <@NUMOBJECTS OBJECT=myCollection>
See Also <

<

@CALLMETHOD> page 116
@CREATEOBJECT> page 145

<@OBJECTAT> page 251
<@OBJECTS></@OBJECTS> page 252
249249

<@NUMROWS>

25
<@NUMROWS>
Syntax <
2500
@NUMROWS [ARRAY=array]>
Description R
s

eturns the number of rows in an action’s result rowset or in the
pecified array.

Without the ARRAY attribute, this meta tag is valid in the Results HTML
of any results returning action, and returns the number of rows in the
result rowset.

With the optional ARRAY attribute, which accepts the name of a variable
containing an array, the tag may be used anywhere that meta tags are
valid, and returns the number of rows in the named array.
Example
 <@NUMROWS> records were returned:<P>

<@ROWS>
Name: <@COLUMN
NAME="contact.name">

Phone: <@COLUMN
NAME="contact.phone">

</@ROWS>

This example returns a message indicating the number of records
retrieved, then lists the name and phone number of each contact.
See Also <

<

@MAKEPATH> page 237
@NUMCOLS> page 248
<@STARTROW> page 292
<@TOTALROWS> page 301

<@OBJECTAT>
<@OBJECTAT>
Syntax <
@OBJECTAT OBJECT=variable NUM=index [SCOPE=scope]>
Description G
m

iven an iterator or collection object (returned from a COM or JavaBean
ethod call) and an index, this tag returns a single item from the object.

The OBJECT attribute defines the name of a variable containing an object
instance. This must be a collection or iterator. The optional SCOPE
attribute defines the scope of the object variable. The NUM attribute sets
the index of the item to return (1 is the first item).

Caution There is no direct access to collection items; the collection
must be stepped through to reach a particular item. This can create
poor performance in application files that use this tag.

The <@OBJECTAT> tag is not supported inside an <@OBJECTS>
loop. Using it there may generate unpredictable results.
Example T
he following assigns the first item in myCollection to myItem.

<@ASSIGN request$myItem VALUE=<@OBJECTAT
OBJECT=myCollection SCOPE=user NUM=1>>

Assuming that myIterator is a list of strings, the following example
returns the third string.

<@OBJECTAT OBJECT=myIterator NUM=3>
See Also <

<

@CALLMETHOD> page 116
@GETPARAM> page 206

<@CREATEOBJECT> page 145
<@NUMOBJECTS> page 249
<@OBJECTS></@OBJECTS> page 252
251251

<@OBJECTS></@OBJECTS>

25
<@OBJECTS></@OBJECTS>
Syntax <

[

2522
@OBJECTS OBJECT=objectvariable ITEMVAR=itemvariablename
SCOPE=objectscope] [ITEMSCOPE=itemvariablescope] [START=start]
[STOP=stop]></@OBJECTS>
Description T
r

his meta tag loops through collection and iterator objects in variables
eturned by COM object and JavaBean method calls.

The OBJECT attribute defines the name of a variable containing an object
instance. This must be a collection or iterator. The optional SCOPE
attribute defines the scope of the object variable.

The ITEMVAR attribute defines the name of the variable in which to put
the current item, and the optional ITEMSCOPE attribute defines the
scope of the current item variable.

If the optional START attribute is specified, the loop skips the first
(START-1) objects. If the attribute value is not a number, it is ignored. If
the optional STOP attribute is specified, the loop stops after processing
the item number given. If the attribute value is not a number, it is ignored.
Example T
r

he following example loops through a collection object in
equest$foo that contains e-mail messages, and calls methods on each

object within the collection to return Subject and Contents of the e-mail
messages, and set the read flag:

<@OBJECTS OBJECT=foo SCOPE=request
ITEMVAR=request$currItem>Here is your unread
mail:
<@IF EXPR="!(<@CALLMETHOD OBJECT=request$currItem
METHOD=ReadFlag() METHODTYPE=GET>)">
<@CALLMETHOD OBJECT=request$currItem
METHOD=Subject() METHODTYPE=GET>

<@CALLMETHOD OBJECT=request$currItem
METHOD=Content() METHODTYPE=GET>

<@CALLMETHOD OBJECT=request$currItem
METHOD=ReadFlag(1) METHODTYPE=SET>
<HR></@IF></@OBJECTS>
See Also <

<

@CALLMETHOD> page 116
@GETPARAM> page 206
<@CREATEOBJECT> page 145

<@OBJECTS></@OBJECTS>
<@NUMOBJECTS> page 249
<@OBJECTAT> page 251
253253

<@OMIT>

25
<@OMIT>
Syntax <
2544
@OMIT STR=string CHARS=char [ENCODING=encoding]>
Description R
C

eturns the value specified in STR stripped of all characters specified in
HARS. The operation of this meta tag is case sensitive. To omit both the

upper and lower case variations of a character, you must include both
characters in CHARS.

Each of the attributes of <@OMIT> may be specified using a literal value,
meta tags that return values, or a combination of both.
Examples
 <@OMIT STR="$200.00" CHARS="$">

This example evaluates to “200.00”.

<@OMIT STR=" spacey" CHARS=" ">

This example evaluates to “spacey”.

<@OMIT STR=green CHARS=gren>

This example evaluates to an empty string.

<@OMIT STR="$200.00" CHARS="01234567890.">

This example evaluates to “$”.

<@OMIT STR="<@POSTARG NAME='PHONENUMBER'>"
CHARS="()-">

If the form field PHONENUMBER contains “(905) 819-1173” then this
would evaluate to “9058191173”.
See Also E
<

ncoding Attribute
@KEEP> page 229
<@LTRIM> page 236
<@RTRIM> page 274
<@TRIM> page 303

<@PAD>
<@PAD>
Syntax <
@PAD STR=string NUMCHARS=padToLength [CHAR=padcharacter]
[POSITION=BEFORE|AFTER] [ENCODING=encoding]>
Description T
l

he <@PAD> meta tag returns an input string expanded to a specified
ength by prefixing or appending a given character as many times as
necessary. It can be used to construct values to be passed to a function
that expects fixed length data or to build up a table or other
preformatted text for display in a monospaced font.

The STR attribute specifies the string to be padded.

The NUMCHARS attribute specifies the length to which the string is
padded. If the specified string to be padded (STR) is longer than the
length specified in NUMCHARS, the original string is returned.

The CHAR attribute specifies the character to use to pad the string. If
more than one character is specified here, only the first character is used.
If the CHAR attribute is absent, the space character is used to pad the
string.

The POSITION attribute is optional, and indicates whether to pad the
beginning (BEFORE) or end (AFTER) of the string. The default is AFTER.

All attributes of <@PAD> may contain meta tags.
Example
 <@PAD STR="alpha" CHAR="x" NUMCHARS="8"
POSITION="after">

This example returns “alphaxxx”; that is “alpha” followed by three “x”
characters.
See Also <

<

@KEEP> page 229
@LEFT> page 230

<@LENGTH> page 231
<@LTRIM> page 236
<@OMIT> page 254
<@RIGHT> page 271
<@RTRIM> page 274
<@SUBSTRING> page 293
<@TRIM> page 303
255255

<@PLATFORM>

25
<@PLATFORM>
Syntax <
2566
@PLATFORM [ENCODING=encoding]>
Description R
c

eturns the name of the operating system on which Witango Server is
urrently running. You may want to use this tag in Branch actions to

branch to different External actions based on the current Witango Server
platform.
Example F
or example, <@PLATFORM> may evaluate to one of the following:

• SunOS/5.5; sun4m

• Windows NT/4.0; Intel
See Also E
<

ncoding Attribute
@VERSION> page 329

<@POSTARG>
<@POSTARG>
Syntax <

[

@POSTARG NAME=name [TYPE=type] [FORMAT=format]
ENCODING=encoding]>
Description R
H

eturns the value(s) of the named post argument (form field) in the
TTP request calling the application file. References to post arguments

not present in the request evaluate to empty.

The NAME attribute may be specified as a literal value, value-returning
meta tag, or a combination of both.

The TYPE attribute accepts one of two possible values: TEXT or ARRAY.
ARRAY causes the tag to return a single-column, multi-row array of
values, one for each value received for the named post argument. A
<SELECT> form field with the MULTIPLE attribute, for example, sends
multiple instances of the form field, one for each value selected by the
user. Using the ARRAY type lets you access all those values. TEXT, which
is the default type if the TYPE attribute is not specified, causes the tag to
return a single value. If you specify this type when multiple values were
received for the argument, the value returned is the first one received by
Witango.

The optional FORMAT and ENCODING attributes determine how the value
is formatted by Witango. These attributes are ignored if TYPE=ARRAY is
specified.
Example
 You asked for properties in <@POSTARG NAME="city">

This example includes the value from the form field “city” in the HTML.
See Also <

E

@ARG> page 91
ncoding Attribute

Format Attribute
<@POSTARGNAMES> page 258
<@SEARCHARG> page 278
<@SEARCHARGNAMES> page 279
257257

<@POSTARGNAMES>

25
<@POSTARGNAMES>
Syntax <
2588
@POSTARGNAMES [{array attributes}]>
Description R
eturns an array containing the names of all post arguments.

Post arguments are passed to Witango through forms. A form that has a
method of POST returns the results of its fields through post arguments.
<@POSTARGNAMES> provides a mechanism for identifying the names of all
post arguments received in the current request.

The array returned has one column and n rows where there are n unique
post arguments.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.
Example T
f

he following returns all post argument names using the default array
ormatting:

<@ASSIGN NAME="mypostargs" VALUE="<@POSTARGNAMES>">

<@VAR NAME="mypostargs">

Note If multiple post arguments with the same name are received, the
name of the post argument is listed only once.
See Also A
<

rray-to-Text Conversion Attributespage 80
@ARG> page 91
<@ARGNAMES> page 92
<@SEARCHARGNAMES> page 279

<@PRODUCT>
<@PRODUCT>
Syntax <
@PRODUCT [ENCODING=encoding]>
Description R
eturns the name of Witango Server’s product type.
Example <
@PRODUCT> on a licensed copy of Witango returns one of the following:

Witango Application Server
Witango Developer Studio
See Also E
<

ncoding Attribute
@PLATFORM> page 256

<@VERSION> page 329
259259

<@PURGE>

26
<@PURGE>
Syntax <
2600
@PURGE [NAME=name] [SCOPE=scope]>
Description U
a

sed to remove a variable from a scope, or to remove all variables from
 scope.

Note Purging variables in the cookie scope does not cause the
Web browser to forget a cookie. If you want to make a Web browser
forget a cookie, you must set the expiry time to immediate, for
example, “in -1 days” in the Properties dialog box for a cookie variable
when assigning values to variables with an Assign action.

This meta tag cannot purge variables of system scope.
Examples T
g

he following examples demonstrate how to remove a variable from a
iven scope:

<@PURGE NAME="foo" SCOPE="user">
<@PURGE NAME="foo" SCOPE="domain">
<@PURGE NAME="foo" SCOPE="request">
<@PURGE NAME="foo" SCOPE="cookie">

The following examples demonstrate how to remove all variables from a
given scope:

<@PURGE SCOPE="user">
<@PURGE SCOPE="domain">
<@PURGE SCOPE="request">
See Also <

<

@ASSIGN> page 96
@VAR> page 320

<@PURGECACHE>
<@PURGECACHE>
Syntax
<@PURGECACHE [PATH=pathToPurge] [TYPES=all|taf|include]>
Description T
p

he purpose of the <@PURGECACHE> meta tag is to allow selective
urging of Witango’s file cache. The design of this meta tag includes

considerations for Witango Servers deployed in an ISP environment.

The PATH attribute specifies the path (relative to the Web server’s
document root) to the directory (and any contained subdirectories) to
purge. This path attribute only functions if the contents of
user$configPasswd match system$configPasswd; that is, if the
user has appropriate rights on the Witango system. For example, in an
ISP environment, requiring that the password be set allows system
administrators to purge the entire cache while restricting customers to
purging only their own documents from the cache.

The TYPE attribute specifies the type of files to purge from the cache.
taf refers to any application file; include refers to include files; all
refers to both application and include files. Default is all.
Example
 <@PURGECACHE>

Purges all files cached from the calling application file’s directory, as well
as any subdirectories.

<@PURGECACHE TYPES=include>

Purges all include files cached from the calling application file’s directory,
as well as any subdirectories.

<@PURGECACHE PATH="/test">

If the variable user$configPasswd has not been set, this results in an
error.

<@ASSIGN user$configPasswd value="myConfigPasswd">
<@PURGECACHE PATH="/test">

Purges all files cached from the calling application file’s directory, as well
as any subdirectories.

<@ASSIGN user$configPasswd value="correctPassword">
<@PURGECACHE PATH="/">

Purges all files from Witango Server’s cache.
261261

<@PURGECACHE>

26
See Also c
2622
acheIncludeFiles page 395

<@PURGERESULTS>
<@PURGERESULTS>
Description E
mpties the currently accumulated Results HTML.

Note <@PURGERESULTS> can only clear results that have been
accumulated in previous actions. It does not clear the accumulated
results of the current action.
See Also <

<

@ACTIONRESULT> page 82
@RESULTS> page 270
263263

<@RANDOM>

26
<@RANDOM>
Syntax <
2644
@RANDOM [HIGH=high] [LOW=low]>
Description R
v

eturns a random number between HIGH and LOW, inclusive of their
alues.

The HIGH and LOW attributes may range from zero to 2,147,483,647. If
only one attribute is specified, a number between zero and that number
is returned. If no attribute is specified, a number between zero and 32767
is returned.

Either of the attributes for <@RANDOM> may be specified using literal
values or by using meta tags that return values.
Examples
 <@RANDOM HIGH="100" LOW="1">

This example returns a random number between 1 and 100.

<@RANDOM LOW="1" HIGH="<@NUMROWS>">

This example returns a random number between 1 and the number of
rows returned by the current action.

<@RANDOM HIGH="<@POSTARG NAME='pickANumber'>">

This example returns a random number between zero and the
pickANumber form field value submitted with the current request.
See Also <
@CALC> page 105

<@REGEX>
<@REGEX>
Syntax <
@REGEX EXPR=expression STR=text TYPE=type>
Description P
f

rovides an interface to POSIX regular expression matching routines
rom inside Witango. This gives you powerful tools to match text
patterns if they are needed.

<@REGEX> accepts as attributes the regular expression (EXPR), the text
to match the pattern against (STR), and the type of the regular expression
(TYPE), basic or extended. If the attributes contain spaces, they must be
quoted—single or double, as appropriate. <@REGEX> returns its results in
the form of an array and should be assigned to a variable via <@ASSIGN>.

Upon a successful match, <@REGEX> returns an array with three columns
and n+1 rows, where n is the number of parenthesized subexpressions in
the pattern. The first column contains the matching text, the second
column contains the start index of the matching portion, and the third
column gives the length of the matching portion. The start and length are
compatible with the <@SUBSTRING> tag.

Rows i from 1 to n give the ith matching parenthesized subexpression,
and row n+1 gives the entire matching portion of the text. (If there are
no parenthesized subexpressions, the whole match is returned in the first
row.)

The table gives a sample array returned from <@REGEX>.

<@REGEX EXPR="([[:alpha:]]+),[[:space:]]+([A-Z]{2})[[:space:]]+([A-
Z][0-9][A-Z] [0-9][A-Z][0-9])" STR="in Mississauga, ON L5N 6J5."
TYPE=E>.

If attributes are missing, <@REGEX> returns a string with the problem
attributes. Upon an error condition, <@REGEX> returns a single
character, “C” for a pattern compile failure, and an “M” for a match
failure. If any attributes are missing, a textual message is displayed

 Mississauga 4 11

 ON 17 2

 L5N 6J5 20 7

 Mississauga, ON L5N 6J5 4 23
265265

<@REGEX>

266266
indicating the missing items. You can easily test for success by using
<@VARINFO NAME=variable ATTRIBUTE=TYPE>.

Tip For more information on constructing POSIX regular expressions,
ask your local UNIX guru, consult the FreeBSD regex man page, or try
doing an Internet search for the term “POSIX 1003.2“.

<@RELOADCONFIG>
<@RELOADCONFIG>
Description T
his meta tag forces a reload of the following configuration files:

• Witango Server Configuration File

• witango.ini

• Object Configuration File

• Application Configuration File

• Domain Configuration File

• Timed URL processing setup file.

Witango Server writes out all changed configuration variable values to
the Witango Server configuration file before reloading.

Security Feature

This tag requires that a user scope configPasswd variable with the
same value as the system configPasswd exists when it is executed;
otherwise, an error is generated and the configuration files are not
reloaded.
267267

<@RELOADCUSTOMTAGS>

26
<@RELOADCUSTOMTAGS>
Syntax <
2688
@RELOADCUSTOMTAGS [SCOPE=system|application]>
Description T
s

his meta tag forces a reload of the custom tags files of the specified
cope. For more information on custom tags, see Custom Meta Tags on

page 329.
T
he default value of the SCOPE attribute is SYSTEM.

Security Feature

This tag requires the configPasswd for the scope requested. If a user
scope configPasswd variable with the same value as the system or
application scope configPasswd does not exist, an error is generated
and the tag file is not reloaded.

This meta tag does not return a value.
See Also <
@CUSTOMTAGS> page 152

<@REPLACE>
<@REPLACE>
Syntax <

R

@REPLACE STR=string FINDSTR=findString
EPLACESTR=replaceString [POSITION=position]
[ENCODING=encoding]>
Description R
v

eturns a text string in which all the occurrences of FINDSTR in the
alue specified in STR are replaced with the substitute as specified in

REPLACESTR. If the POSITION attribute is specified, only that occurrence
of FINDSTR is replaced.

Strings that contain spaces must be quoted.

If a syntax error is encountered while the expression is parsed—no
attributes at all, no string, no keyword, no substitute, or no
occurrence—the tag returns an empty string.

<@REPLACE> is case insensitive.
Examples
 <@REPLACE STR="alpha" FINDSTR="a" REPLACESTR="u"
POSITION="2">

This example returns “alphu”, replacing the second occurrence of “a”.

<@REPLACE STR="<@INCLUDE
FILE='<@APPFILEPATH>BrownFox.txt'>"
FINDSTR="<@INCLUDE
FILE='<@APPFILEPATH>BrownFox.txt'>" REPLACESTR="A">

This example replaces “The Quick Brown Fox Jumps Over A Lazy Dog”
(the content of the BrownFox.txt file) with “A”.
See Also E
<

ncoding Attribute
@LEFT> page 230

<@LOCATE> page 233
<@REGEX> page 265
<@REPLACE> page 269
<@RIGHT> page 271
<@SUBSTRING> page 293
269269

<@RESULTS>

27
<@RESULTS>
Syntax <
2700
@RESULTS [ENCODING=encoding]>
Description E
t

valuates to the accumulated Results HTML for the current execution of
he application file.

The returned value includes the Results HTML for all the actions up to,
but not including, the current action.

The accumulated Results HTML can be cleared with the
<@PURGERESULTS> tag.
Example T
f

his tag can be used to give a variable the value of the Results HTML
rom a database query so that the results can be used in other application
file calls without re-doing the search. (This technique is useful only with
data that does not change often—a list of product categories, for
example.) After generating the HTML and assigning <@RESULTS> to a
variable (cached_list, for example), subsequent calls to the application
file can be handled by checking the contents of the variable with a Branch
action. If cached_list is not empty, you can immediately return <@VAR
NAME="cached_list" ENCODING="NONE">. If the variable is empty,
you would branch to the normal processing to query the database.
See Also <

E

@ACTIONRESULT> page 82
ncoding Attribute
<@PURGERESULTS> page 263

<@RIGHT>
<@RIGHT>
Syntax <
@RIGHT STR=string NUMCHARS=numChars [ENCODING=encoding]>
Description E
a

xtracts the last number of characters from the string specified in STR
nd returns the extracted substring.

If the string contains any spaces—except for spaces embedded within
meta tags—it must be quoted.
Examples
 <@RIGHT STR="alpha" NUMCHARS="3">

This example returns “pha”, the last three characters of “alpha”,
beginning from the right.

<@RIGHT STR="<@INCLUDE
FILE='<@APPFILEPATH>BrownFox.txt'>" NUMCHARS="3">

This example returns “Dog”, the last three characters of “The Quick
Brown Fox Jumps Over The Lazy Dog” (the content of the
BrownFox.txt file).
See Also E
<

ncoding Attribute
@LEFT> page 230

<@LOCATE> page 233
<@REGEX> page 265
<@REPLACE> page 269
<@SUBSTRING> page 293
271271

<@ROWS> </@ROWS>

27
<@ROWS> </@ROWS>
Syntax <

[

2722
@ROWS [ARRAY=array] [SCOPE=scope] [PUSH=push] [START=start]
STOP=stop] [STEP=step]></@ROWS>
Description T
e

he Results HTML appearing between this tag pair is processed once for
ach row of the result set generated by an action.

This tag pair also allows iteration over the rows of an array. This tag
places a copy of the text between the opening and closing tags for each
row of the array.

ARRAY is the array to loop over. It can be the name of an array variable
or an array value. The default value is resultSet. All results-returning
actions (Search, Direct DBMS, External, Script, and Mail) perform an
automatic assignment of their results array to the request variable
resultSet.

START refers to the starting value for the index. The default value is 1.

STOP refers to the stopping value for the index. The loop terminates
when this value is exceeded, not when it is reached. The default value is
<@NUMROWS>.

STEP refers to the increment added to the index after each iteration. The
default value is 1.

PUSH allows the sending of data to the client after the specified number
of iterations have taken place.

Note This tag must appear in pairs and cannot span multiple actions.
START and STOP can only be used to specify points inside the array. If
the index exceeds the number of rows in the result set or reaches a
negative value, the loop terminates. If the specified STEP does not take
the index from START to STOP, no iterations are made. If the START
equals the STOP, one iteration is made, regardless of the step or array
sizes.

<@ROWS> blocks can be nested. In that case, the tags that get their
reference from a <@ROWS> block (for example, <@COL>, <@COLUMN>,
<@MAXROWS>) refer to the innermost <@ROWS> block.

<@ROWS> </@ROWS>
Examples
 <@ROWS ARRAY="<@VARNAMES SCOPE='USER'>"
START="<@MAXROWS>" STOP="1" STEP="1">
Variable <@CURROW> is named <@COL NUM="1">

</@ROWS>

Variable x is named varname. It is printed for each variable in the user’s
scope, going in reverse order.

<@ROWS PUSH=100>
<@COLUMN NAME="ACTIVITYLOG.LOGTIMESTAMP">
<@COLUMN NAME="ACTIVITYLOG.DOMAINNAMEID">

</@ROWS>

This example allows you to see the resulting HTML 100 rows at a time.
The effects of the PUSH attribute depend on the HTML presentation of
the result set and the Web browser that is used to access Witango.
Sometimes, even though Witango and the Web server are sending data
to the Web browser, the Web browser holds up the data without
displaying it. For example, if the <@ROWS> block in the previous
paragraph sits between a <TABLE></TABLE> with rows of the result set
corresponding to the rows of the table, a Netscape Web browser does
not display the result file until the HTML <TABLE> block is completed.
See Also <

<

@COL> page 136
@COLUMN> page 138

<@MAKEPATH> page 237
273273

<@RTRIM>

27
<@RTRIM>
Syntax <
2744
@RTRIM STR=string [ENCODING=encoding]>
Description R
a

eturns the value specified in STR stripped of trailing spaces. The STR
ttribute may be a literal value or a meta tag that returns a value.

This meta tag is useful for stripping spaces from the end of CHAR column
values returned from DBMSs such as Oracle, which pad values to the
declared length of the column. You may also use the stripChars
configuration variable to accomplish this task.
Examples
 <@RTRIM STR="this is padded ">

This example returns “this is padded”.

<@RTRIM STR="<@COL NUM='2'>">

This example returns value for column two, less any trailing spaces.
See Also E
<

ncoding Attribute
@KEEP> page 229
<@LTRIM> page 236
<@OMIT> page 254
stripCHARs page 424
<@TRIM> page 303

<@SCRIPT>
<@SCRIPT>
Syntax <
@SCRIPT [SCOPE=scope]>script here</@SCRIPT>

or

<@SCRIPT EXPR=expr [SCOPE=scope]>
Description U
sed for server-side execution of scripts written in JavaScript.

The tag syntax can take one of two forms, and which one you use
depends on how much script you have. Functionally, the two forms are
equivalent and the result of evaluating the tag is the output from the
script; so, for example, <@SCRIPT EXPR="2+2"> evaluates to “4”.

Usage One: <@SCRIPT [SCOPE=scopeSpec]> your script
here</@SCRIPT>

This is the long form of the tag. You can use this syntax for large chunks
of script where it makes sense for the script to be blocked out by begin/
end tags. The script can contain other Witango tags; those tags are
substituted prior to script execution. In order for the script to be able to
interact with the Witango environment, there are predefined object/
methods that can be called from the script. For more information, see
Predefined Objects on page 276.
T
he optional SCOPE attribute defines the lifetime of the objects and
functions declared in the script, and is similar to the scope of variables.
All Witango scopes are supported. The default scope is REQUEST, so
anything defined in one script can be referenced in another script in the
same file execution. IMMED, which is specific to script executions,
specifies that the execution context for the script is completely deleted
immediately after running the script, and is used to ensure no name/space
clashes occur between the script and other longer-lived objects. You can
also specify METHOD, INSTANCE, USER, APPLICATION, and DOMAIN
scopes, or a custom scope.

Nesting of <@SCRIPT> blocks is not supported.

Usage Two: <@SCRIPT EXPR=“your script here”
275275

<@SCRIPT>

276276
[SCOPE=SCOPESPEC]>

This is a shorthand form of the tag for small script snippets. As with the
long form of this tag, the script snippet can contain other Witango tags
that are substituted prior to script execution.

Note If the script expression attribute is supplied, then it is
syntactically invalid to include the closing </@SCRIPT> tag, and the
closing tag is left unsubstituted. Also note that all attributes to
<@SCRIPT> must be named.

Predefined Objects

The following predefined objects and methods exist in the JavaScript
environment of Witango Server to allow scripts to interact with Witango
in a controlled and meaningful way:

• server: object representing Witango Server.

• getVariable(name): gets Witango a variable. Using default scoping
rules, returns variable value.

• getVariable(name, scope): as in the previous paragraph, but
defined with scope.

• setVariable(name, value): sets a Witango variable, using default
scoping rules, returns nothing.

• setVariable(name, value, scope): as in the previous paragraph,
but with defined scope.

Note Witango variables are accessed by value, not by reference. You
must therefore use setVariable to update Witango with any changes you
make to variable values. Also, because they are passed by value, getting
large Witango arrays can consume a lot of memory because the entire
array is duplicated inside of JavaScript.

Because Witango supports only two-dimensional arrays, it is an error to
try to put a JavaScript array of more than two dimensions into a Witango
variable.

For more information on the JavaScript capabilities of Witango, see the
online help for JavaScript that is distributed with Witango (in the Help
directory under the Witango root directory).
Examples
 <@SCRIPT EXPR="1*2*3*4">

This example returns a value of “24”.

<@SCRIPT>
<@SCRIPT EXPR="server.setVariable ('foo', 'bar');">

This example sets the Witango variable “foo” to the value “bar”, so that a
subsequent <@VAR NAME="foo"> returns “bar”.

<@SCRIPT EXPR="server.getVariable('foo');">

This example is equivalent to <@VAR NAME="foo">.
See Also <

<

@ASSIGN> page 96
@VAR> page 320
277277

<@SEARCHARG>

27
<@SEARCHARG>
Syntax <
2788
@SEARCHARG NAME=name [TYPE=type] [FORMAT=format]
[ENCODING=encoding]>
Description R
a

eturns the value(s) of the named search argument (name/value pairs
fter a “?” in the URL, or form fields in a GET method form) in the HTTP

request calling the application file. References to search arguments not
present in the request evaluate to empty.

The NAME attribute may be specified as a literal value, value-returning
meta tag, or a combination of both.

The TYPE attribute accepts one of two possible values: TEXT or ARRAY.
ARRAY causes the tag to return a single-column, multi-row array of
values, one for each value received for the named search argument. A
URL like http://www.yoursite.com/my.taf?x=1&x=2&x=3, for
example, sends three separate values for the x search argument. Using
the ARRAY type lets you access all those values. TEXT, which is the default
type if the TYPE attribute is not specified, causes the tag to return a single
value. If you specify this type when multiple values were received for the
argument, the value returned is the first one received by Witango.

The optional FORMAT and ENCODING attributes determine how the value
is formatted by Witango. These attributes are ignored if TYPE=ARRAY is
specified.
Example
 The items in the <@SEARCHARG NAME="category_name">
category are:

<@ROWS>
<@COLUMN NAME="product.name">

</@ROWS>

This example includes the requested category name in a heading prior to
listing the products.
See Also <

E

@ARG> page 91
ncoding Attribute

Format Attribute
<@POSTARG> page 257

<@SEARCHARGNAMES>
<@SEARCHARGNAMES>
Syntax <
@SEARCHARGNAMES [{array attributes}]>
Description R
eturns an array containing the names of all search arguments.

Search arguments are passed to Witango through the URL.

For the URL:

http://hostname/path_to_cgi/
path_to_taf?sarg1=value1&sarg2=value2&...
&sargn=val

<@SEARCHARGNAMES> returns an array containing a subset of the names
sarg1, sarg2,...,sargn. The result array has one column and n
rows where there are n unique search arguments.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.
Example T
f

he following returns all search argument names using the default array
ormatting:

<@SEARCHARGNAMES>
See Also A
<

rray-to-Text Conversion Attributespage 80
@ARG> page 91

<@ARGNAMES> page 92
<@POSTARGNAMES> page 258
279279

<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>

28
<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>
2800
See the following meta tags:

<@DATETOSECS>, <@SECSTODATE>page 157
<@TIMETOSECS>, <@SECSTOTIME>page 297
<@TSTOSECS>, <@SECSTOTS> page 304

<@SERVERNAME>
<@SERVERNAME>
Description T
t

his meta tag returns the name of the Witango Server that is processing
he current application file. The name is determined by the stanza name

for the Witango Server in the Witango Server configuration file
(witango.ini). This tag can be used while using multiple Witango
Servers to share load (load splitting).

<@SERVERNAME> has no attributes.
Example
 <@SERVERNAME>

Returns the name of the Witango Server you are running. An example of
a returned Witango Server name is:

Witango__Server
281281

<@SERVERSTATUS>

28
<@SERVERSTATUS>
Syntax <

[

2822
@SERVERSTATUS [VALUE=value] [ENCODING=encoding]
{array attributes}]>
Description R
a

eturns status information on Witango Server. The tag has an optional
ttribute, VALUE. The value of this attribute must be one of the

categories specified in the following table (case insensitive).

If the value attribute is not specified, a two-column array is returned,
giving all status values with the category name in the first column and the
value in the second column. With this form of the tag, the ENCODING
attribute, if specified, is ignored.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

Category Description

Version version of status information (not the server). Witango
returns “4”

ProcessID system process ID number

UpTime server running time (in minutes)

ActiveQryThr number of threads marked in use

AvgQryProcTime average time to process a request, in milliseconds,
accurate to 1/60 second

LstQryProcTime time to process last request, in milliseconds, accurate to
1/60 second

DataSrcCount number of data source connections allocated

NumQryServed number of requests served since server inception

MinQryProcTime minimum request processing time so far, in milliseconds,
accurate to 1/60 second

MaxQryProcTime maximum request processing time so far, in milliseconds,
accurate to 1/60 second

AvgQryReadTime average time to read a prepare a request for processing,
in milliseconds, accurate to 1/60 second

<@SERVERSTATUS>
AvgQryWriteTime average time to return results to the user after
processing, in milliseconds, accurate to 1/60 second

NumAFRead number of Witango application files read from disk,
cache, or network

AvgAFReadTime average amount of time taken to read an application file
from disk, cache, or network, in milliseconds, accurate to
1/60 second

AvgAFSize average size of application file read from disk, cache, or
network

QryThrCount number of processing threads allocated

ActiveDataSrc number of data sources marked in use

NumQrykilled number of requests killed (timed out) since server
inception

TotlTripRdBytes total number of bytes read via network

TotlTripRdFiles total number of files read via network

TotlTripRdTime total amount of time taken to read all files read via
network, in milliseconds, accurate to 1/60 second

NumCachedDocs number of application files currently in application file
cache

NumCachedIncl number of include files currently in include file cache

ProcessSize current size of server process (bytes)

HeapSize current amount of working memory consumed (bytes)

NumTripBadConn number of network CGI-server connections failed

NumUsersShared number of user references in the shared variable store

NumVarsShared number of variables in the shared variable store

NumUsersLocal number of user references in the request variable store

NumVarsLocal number of variables in the request variable store

CacheBytesUsed number of bytes used by application and include files in
Witango Server’s file cache. If caching is turned off, this
category returns “0”

NumQryErrors number of requests ended by an error since Witango
Server’s inception

VariableStoreSize number of bytes used by all variables in all shared scopes
and the local scope of the currently processed request.

MaxQryThreadCount maximum number of threads that are in use at one time
in the server

Category Description
283283

<@SERVERSTATUS>

284284
QryStartTime time at which a query thread was started, in milliseconds
since the restart of the current operating system — used
by the Server Watcher to check whether Witango
Server is running correctly

QryLapsedTime time elapsed since the last query was executed, in
milliseconds since the restart of the current operating
system — used by the Server Watcher to check whether
Witango Server is running correctly

Category Description
Notes •
 NumAFRead, AvgAFReadTime, and AvgAFSize include cache reads,
and reflect the performance of the application file cache.

• QryProc values may include time taken to push intermediate data
back to the user.

• NumQryServed includes any requests killed and tallied in
NumQryKilled.

• Windows and UNIX only: TripRd values measure actual network and
disk accesses, and represent true overhead to read include/
application files that are new, uncached, or changed since being
cached.

Retrieving these values via the tag means executing a request, which
affects the status values as specified:

• A thread is used to process the request, and that bumps up the
ActiveQryThr count.

• Since the current request has not completed yet, the QryProcTime
times and the NumQryServed count do not reflect the currently
executing request.

• Executing a request involves reading it, so NumAFRead and the
AvgAF values reflect the current request.

• If a network read was required to load the application file and other
include files, the TotlTripRd values are updated.
See Also E
ncoding Attribute

<@SETCOOKIES>
<@SETCOOKIES>
Description F
or use in an HTTP header. Returns the correct Set-Cookie lines to set
the values of cookie variables assigned in the current application file
execution.

Note Make sure you include this meta tag in any custom headers you
create for Witango. If you do not, the cookie scope does not work
properly.
See Also h

<

eaderFile page 411
@HTTPREASONPHRASE> page 208

<@HTTPSTATUSCODE> page 209
285285

<@SETPARAM>

28
<@SETPARAM>
Syntax <
2866
@SETPARAM NAME=name VALUE=value>
Description <

c

@SETPARAM> sets the value of a parameter variable within a Witango
lass file. This tag is similar to <@ASSIGN>, but performs error checking

to ensure that only Out and In/Out parameters of a Witango class file can
be set.

This meta tag is specifically used for setting the value of a parameter in a
Witango class file. If the variable specified by the NAME attribute is not a
Witango class file In/Out or Out parameter, this tag returns an error.

This tag is only valid within a Witango class file method.
The NAME attribute specifies the name of the parameter to assign the
value to. Similar restrictions apply to parameter names assigned by
<@SETPARAM> as apply to all variables; see <@ASSIGN> on page 96.

Note Because the parameter variables specified by <@SETPARAM>
are only valid in method scope, scope cannot be specified in the NAME
attribute, unlike the <@ASSIGN> meta tag (for example,
NAME=request$foo generates incorrect results).

The VALUE attribute specifies the value to assign to the variable. The
VALUE attribute may specify text, an array (using the <@ARRAY> meta tag
or an array variable), a DOM variable, or an object variable.

Arrays

If the parameter being assigned to exists and contains an array, this tag
also lets you set the values of individual elements in that array.
<@SETPARAM> can assign an array (or array section) to a variable, or to
another array (or array section). Array assignments require that the
source and target arrays (or array sections) have the same dimensions.

If you are assigning to an array variable element or section, the name
includes the element or section specification specified within square
brackets as [rownumber,colnumber], with an asterisk indicating all
rows or all columns; for example, NAME=myArray[1,2] or
NAME=myArray[*,3].

If you are assigning to an array section, the value specified here must
match the dimensions of the array variable specification in NAME.

<@SETPARAM>
Example W
t

ithin the Results HTML of a Witango class file method, you could use
he following series of meta tags to get the value of an In parameter (in

this case, the radius of a sphere), perform calculations on it (calculating
the surface area of a sphere), and set the value of a returned (Out)
parameter accurate to two decimal places:

<@SETPARAM NAME=OutSurface VALUE=<@CALC
EXPR="4*P*(<@GETPARAM NAME=Radius>^2)"
PRECISION=2>>
See Also <

<

@ASSIGN> page 96
@GETPARAM> page 206
287287

<@SORT>

28
<@SORT>
Syntax <

.

2888
@SORT ARRAY=arrayVarName [COLS=sortCol [sortType] [sortDir] [,
..]] [SCOPE=scope]>
Description S
a

orts the input array by the column(s) specified. This tag does not return
nything.

The ARRAY attribute specifies the name of a variable containing an array.
The COLS attribute specifies the column(s) to sort by, specified using
column numbers or names, with optional sort types (sortType) and
directions (sortDir).

Valid sort types are SMART (the default), DICT, ALPHA and NUM. DICT
sorts the column alphabetically, irrespective of case. ALPHA is a case-
sensitive sort. NUM sorts the column numerically. SMART checks whether
values are numeric or alphabetic and sorts using a NUM or DICT type.

Valid sort directions are ASC (the default) and DESC. ASC sorts the
column in ascending order, with lower values coming before higher ones.
DESC sorts in descending order, with higher values coming before lower
ones.

If the COLS attribute is omitted, all columns are sorted left to right using
the SMART sort type and the ASC (ascending) sort direction.

The order of the type and direction options are not important, that is,
COLS="1 NUM ASC" is equivalent to COLS="1 ASC NUM".

Multiple columns may be specified, separated by commas. Each sort
column specification may include a sort type specifier and/or a sort
direction specifier. If included, these must follow the sort column,
separated by a space.

Multiple sort columns cause the array to be sorted by the first column
specified, then, rows with the same value in that column are sorted by
the second sort column specified within that previously-created sort
order, and so on.

The SCOPE attribute specifies the scope of the variable specified by
ARRAY. If not specified, the default scoping rules are used.

Meta tags are permitted in any of the attributes.

<@SORT>
Examples •
 If the request variable test contains the following array:

The same array in sorted order can be gotten by using <@SORT
ARRAY="test" SCOPE="request" COLS="1
NUM">@@request$test, as shown in the following example:

• <@SORT ARRAY="customer" COLS="cust_state, cust_num">
sorts the array stored in customer. The default SMART sort type
checks the cust_state column, finds it is alphabetic, and uses sort
type DICT; similarly, it checks the cust_num column, finds it is
numeric, and uses sort type NUM in the cust_num column for the
rows with the same cust_state value.

 4 example

 2 is

 7 sorting

 3 an

 5 of

 1 here

 6 array

 1 here

 2 is

 3 an

 4 example

 5 of

 6 array

 7 sorting
See Also <

<

@DISTINCT> page 167
@FILTER> page 201

<@INTERSECT> page 218
<@UNION> page 306
289289

<@SQ>

29
<@SQ>
2900
See the following section:

<@DQ>, <@SQ> page 177

<@SQL>
<@SQL>
Syntax <
@SQL [ENCODING=encoding]>
Description R
eturns last action-generated SQL.

This meta tag accesses your last action-generated SQL.

This meta tag is not valid for use with FileMaker Pro data sources.
See Also E
ncoding Attribute
291291

<@STARTROW>

29
<@STARTROW>
Description R
D

2922
eturns the position of the first row retrieved by a Search or Direct
BMS action within the set of records matching the action’s criteria. This

value corresponds to the one specified in the Start retrieval at match
number field in the Results section of the Search action.
Example
 <@TOTALROWS> records matched your criteria. Listed
here are <@NUMROWS> records, starting with record
<@STARTROW>.

<@ROWS>
...
</@ROWS>

This example returns a message indicating the number of records found
and returned, and the position of the first record shown within the found
rowset.
See Also <

<

@ABSROW> page 81
@CURROW> page 151
<@MAKEPATH> page 237
<@NUMROWS> page 250
<@ROWS> </@ROWS> page 272
<@TOTALROWS> page 301

<@SUBSTRING>
<@SUBSTRING>
Syntax <

[

@SUBSTRING STR=str START=start NUMCHARS=numChars
ENCODING=encoding]>
Description E
r

xtracts a NUMCHARS long substring, starting at START from STR and
eturns a copy of the extracted substring.

If the string contains any spaces except for spaces embedded within meta
tags, the string must be quoted.

All three attributes are mandatory. If a syntax error is encountered while
the expression is parsed (no attributes at all, no string, or no number of
characters) the tag returns an empty string.
Examples
 <@SUBSTRING STR="alpha" START="3" NUMCHARS="2">

This example returns “ph”, the two characters starting at the third
position.

<@SUBSTRING STR="<@INCLUDE
FILE='<@APPFILEPATH>BrownFox.txt'>" START="3"
NUMCHARS="2">

This example returns “e ” and a space, which are the two characters
starting at the third position in “The Quick Brown Fox Jumps Over The
Lazy Dog” (the contents of the BrownFox.txt file).
See Also E
<

ncoding Attribute
@LEFT> page 230

<@LOCATE> page 233
<@REPLACE> page 269
<@RIGHT> page 271
293293

<@THROWERROR>

29
<@THROWERROR>
Syntax <
2944
@THROWERROR [NUMBER=string] [DESCRIPTION=string]>
Description T
a

his meta tag generates (“throws”) an error with the specified number
nd description.

Errors generated with this meta tag cause the same behavior as built-in
Witango errors:
•
 If the current action has Error HTML, the Error HTML is processed.

• If the current action has no Error HTML, the system-wide default
error message is processed (defined by the defaultErrorFile
configuration variable; by default, this is error.htx).

• If there is no system-wide default error message, Witango's built-in
error message is used.

Execution then halts and the processed error message is returned.

Tip See <@CLEARERRORS> on page 135 for a way to continue
execution of an application file after an error occurs.

The ability to generate your own errors is useful when handling error
conditions or other exception cases in your applications. Instead of
handling these cases in your main code, you can use <@THROWERROR>
and put the error-handling parts of your code in Error HTML. This makes
for cleaner, more readable, and more maintainable code.

The optional NUMBER attribute defines the number of the error that is
generated. If the attribute is not present, empty, or is not a number, 0 is
returned.
Tip All built-in Witango errors codes are negative (for example, -3,
-108). It is recommended that you use positive error codes so they do
not conflict with current or future built-in errors.

The optional DESCRIPTION attribute contains a text description of the
error.

You can access the values for the error number and the error description
from the Error HTML or the system-wide default error message, using
the <@ERROR> meta tag with the PART="number1" and
PART="message1" attributes, respectively. The class of all errors
generated by the <@THROWERROR> meta tag is “Application”. Use

<@THROWERROR>
<@ERROR PART="class"> in Error HTML to access the class of an
error.

This meta tag cannot be used in either Error HTML or in the system-
wide default error message.
Example
 <@IF EXPR="<@ARG thePassword>='Correct Password'">
Welcome Back!

<@ELSE>
<@THROWERROR NUMBER="88334" DESCRIPTION="You

have entered the wrong password.">
</@IF>

If linked with a user’s logging in and if the wrong password is entered, this
example displays the built-in Witango error (assuming there is no system-
wide default error message and no Error HTML associated with the
action), which resolves to the following:

Error

An error occurred while processing your request:
File: myfile.taf
Position: Login_Check
Class: Application

Main Error Number: 88334

You have entered the wrong password.
See Also <

<

@CLEARERRORS> page 135
@EMAIL> page 190

<@ERRORS> </@ERRORS> page 198
295295

<@TIMER>

29
<@TIMER>
Syntax <
2966
@TIMER [NAME=name] [VALUE=value]>
Description A
w

llows you to create and use named timers. These timers exist only
ithin the scope of a single application file execution. <@TIMER> accepts

and returns its numbers in milliseconds.

Upon application file start-up, the default timer named ELAPSED is
created to track elapsed time, and is set to zero.

You can create new timers or update existing ones by calling <@TIMER>
with an optional NAME and a required VALUE attribute. If the name
attribute is not specified, the default timer (ELAPSED) is updated with the
value specified.

If a non-numeric value is given, the timer is set to zero. Values may be
negative. When setting a timer, the tag returns nothing.

The value of a timer is retrieved if only the NAME attribute and no VALUE
attribute is specified. Retrieving a non-existent timer returns nothing.

Because NAME is optional, the most simple and direct use of the tag is
<@TIMER>, which returns the elapsed time for the current application
file.

Values returned by <@TIMER> are accurate to 1/60 of a second.
Examples
 <@TIMER>

Returns the value of the default timer (ELAPSED).

<@TIMER VALUE="-30000">

Sets the value of the default timer (ELAPSED) to -30,000 milliseconds.

<@TIMER NAME="Fred" VALUE="3000">

Creates a new timer named Fred and sets its value to 3000 milliseconds.

<@TIMER NAME="Fred">

Returns the current value of Fred.

<@TIMETOSECS>, <@SECSTOTIME>
<@TIMETOSECS>, <@SECSTOTIME>
Syntax <
@TIMETOSECS TIME=time [FORMAT=format]>
<@SECSTOTIME SECS=seconds [FORMAT=format]
[ENCODING=encoding]>
Description <
@TIMETOSECS> checks the entered time and, if valid, converts it into
seconds. Conversely, <@SECSTOTIME> converts the entered seconds to
a time.
For details, see
<@ISDATE>, <@ISTIME>,
<@ISTIMESTAMP> on
page 222.

B

I
n

oth handle ODBC, ISO, and some numeric formats.

f the time is entered incorrectly—wrong separators or a nonexistent
umber of hours, minutes or seconds—the tag returns, “Invalid time!”.

The TIME attribute is mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.
Examples
 <@TIMETOSECS TIME=02:00:04>

This example returns “7204”, the number of seconds contained in two
hours and four seconds.

<@SECSTOTIME SECS=7204>

This example returns “02:00:04”, the time in hour, minute and second
format, assuming that is how times are configured with the timeFormat
configuration variable.
See Also E
<

ncoding Attribute
@FORMAT> page 205

Format Attribute
<@ISDATE> page 222
<@ISTIME> page 222
<@ISTIMESTAMP> page 222
timeFormat page 426
297297

<@TMPFILENAME>

29
<@TMPFILENAME>
Syntax <
2988
@TMPFILENAME [ENCODING=encoding]>
Description G
S

enerates a unique temporary file name on the file system that Witango
erver is currently executing on.
Example
 <@ASSIGN NAME="myfile1" VALUE="<@TMPFILENAME>">

<@ASSIGN NAME="myfile2" VALUE="<@TMPFILENAME>">

The myfile1 and myfile2 variables can now be referenced in a File
action (for example, writing interim information to a temporary scratch
file) and are guaranteed to be unique file names on the system running
Witango Server.
See Also E
ncoding Attribute

<@TOGMT>
<@TOGMT>
Syntax <
@TOGMT TS=timestamp [ENCODING=encoding] [FORMAT=format]>
Description T
ransforms local time, given by the TS argument, to GMT (Greenwich
Mean Time). The transformed time can be formatted according to the
optional FORMAT attribute.

The difference between GMT and local time is influenced by daylight
savings time. That is, for Toronto, Ontario, the regular difference is 5
hours, but the summertime difference is 4 hours. Witango accounts for
daylight savings time.

Note When a two-digit year is given, the following centuries are
assumed:

For example, a two-digit year of 99 is evaluated as 1999, and a two-digit
year of 00 is evaluated as 2000.

Value Century

00-36 2000s

37-99 1900s
Example
 <@TOGMT TS="<@CURRENTTIMESTAMP>">
See Also <

<

@CURRENTDATE> page 150
@CURRENTTIME> page 150

<@CURRENTTIMESTAMP> page 150
Encoding Attribute
<@FORMAT> page 205
Format Attribute
299299

<@TOKENIZE>

30
<@TOKENIZE>
Syntax <
3000
@TOKENIZE VALUE=text CHARS=delimiters [NULLTOKENS={TRUE |
FALSE}] [{array attributes}]>
Description P
a

rovides you with a way of sectioning a string into multiple pieces
ccording to a set of delimiting characters. It accepts as attributes the

VALUE of the text and the delimiting CHARS, and returns its results as an
array. The result is a one row array, with a column for each token. If the
entire string consisted of only delimiters, a one by one empty array is
returned.

Each character in CHARS is taken as a separate delimiter.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

The NULLTOKENS attribute can be used with this tag to recognize
empty tokens. It may be set to true to process empty tokens, or, false to
skip them. If NULLTOKENS is ommitted, the behaviour assumes the
value of false.
Example
 Note There are extra spaces in the string specified in the VALUE
attribute in the following example.

<@TOKENIZE VALUE=" There is no ‘try’. Do, or do
not. " CHARS=" ,.">

The array returned looks like this:

There is no ‘try’ Do or do not
See Also A
<

rray-to-Text Conversion Attributespage 80
@LTRIM> page 236
<@RTRIM> page 274
<@SUBSTRING> page 293

<@TOTALROWS>
<@TOTALROWS>
Description R
S

eturns the total number of rows matching the criteria specified in the
earch action the meta tag is used in. The actual number of rows

returned by the Search action is determined by the Maximum Matches
and Start Row settings.

This tag returns a meaningful value only if the Get total number of
matches option is selected in the Results section of the Search action. If
this option is not selected, or if the tag is used outside of a Search action,
this tag returns “-1”.
Example
 <@TOTALROWS> records matched your criteria. Listed
here are <@NUMROWS> records, starting with record
<@STARTROW>.

<@ROWS>
...
</@ROWS>

This example returns a message indicating the number of records found
and the number shown.
See Also <

<

@ABSROW> page 81
@CURROW> page 151

<@MAKEPATH> page 237
<@NUMROWS> page 250
<@ROWS> </@ROWS> page 272
<@STARTROW> page 292
301301

<@TRANSPOSE>

30
<@TRANSPOSE>
Syntax <

[

3022
@TRANSPOSE ARRAY=arrayVarName [SCOPE=scope]
{array attributes}]>
Description E
e

xchanges row and column specifications for values in an array; for
xample, the value in the third row, first column is transposed to the first

row, third column. The ARRAY attribute specifies the array to transpose.
The optional SCOPE attribute specifies the scope.

This tag returns a new array. The original array is not modified; you can
use the <@ASSIGN> meta tag or Assign action to assign the result of this
tag to a variable.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.
Example I
f the request variable fred contains a 3 x 4 array of the following form:

<@ASSIGN NAME="fred_transposed" VALUE='<@TRANSPOSE
ARRAY="fred" SCOPE="request">'>

@@fred_transposed returns a 4 x 3 array of the following form:

1 USA 1.72

2 Canada 84.2

3 Brazil 34

4 Argentina 47

1 2 3 4

USA Canada Brazil Argentina

1.72 84.2 34 47
See Also <
@ASSIGN> page 96

<@TRIM>
<@TRIM>
Syntax <
@TRIM STR=string [ENCODING=encoding]>
Description R
T

eturns the value specified in STR stripped of leading and trailing spaces.
he value of the STR attribute may be a literal value or a meta tag that

returns a value.
Examples
 <@TRIM STR=" this is padded ">

This example returns “this is padded”.

<@TRIM STR="<@COL NUM='2'>">

This example returns the value of column “2”, less any leading and trailing
spaces.
See Also E
<

ncoding Attribute
@KEEP> page 229

<@LTRIM> page 236
<@OMIT> page 254
<@RTRIM> page 274
303303

<@TSTOSECS>, <@SECSTOTS>

30
<@TSTOSECS>, <@SECSTOTS>
Syntax <

<

3044
@TSTOSECS TS=timestamp [FORMAT=format]>
@SECSTOTS SECS=seconds [FORMAT=format]

[ENCODING=encoding]>
Description <

s

@TSTOSECS> checks the entered timestamp and converts it into
econds, using as a reference, midnight (00:00:00) January 1, 1970 (1970-

01-01). Conversely, <@SECSTOTS> converts the entered seconds to a
timestamp.

These tags support dates in the range 1970–2037.

All formats assume the Gregorian calendar. All years must be greater
than zero. <@TSTOSECS> handles ODBC, ISO, and some numeric
formats.

If the date is entered incorrectly—wrong separators or a nonexistent
number of hours, minutes or seconds—the tag returns “Invalid day!”
If the time is entered incorrectly (wrong separators or a nonexistent
number of hours, minutes or seconds) the tag returns “Invalid
time!”.

The time attribute is mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

If the optional FORMAT attribute is not used, the value in the configuration
variable timestampFormat is used as the output format of this tag.
Examples
 <@TSTOSECS TS="2000-01-01 12:00:00">

This example returns “946728000”.

<@SECSTOTS SECS="5">

This example returns “1970-01-01 00:00:05”, assuming the default
configuration variables correspond to the example’s format.
See Also <

E

@DATETOSECS> page 157
ncoding Attribute
<@FORMAT> page 205
Format Attribute
<@ISDATE> page 222
<@ISTIME> page 222
<@ISTIMESTAMP> page 222

<@TSTOSECS>, <@SECSTOTS>
<@SECSTODATE> page 157
<@SECSTOTIME> page 297
timestampFormat page 400
<@TIMETOSECS> page 297
305305

<@UNION>

30
<@UNION>
Syntax <

[

3066
@UNION ARRAY1=arrayVarName1 ARRAY2=arrayVarName2
COLS=compCol [compType]] [SCOPE1=scope1] [SCOPE2=scope2]>
Description R
o

eturns the union of two arrays. The union consists of the combination
f both arrays, with duplicates removed. Duplicates are found based on

the values of the specified columns, checked using the specified
comparison type.

The two input arrays are not modified. To store the result of this meta
tag in a variable, use a variable assignment.

Note To join two arrays without removing duplicates, use the
<@ADDROWS> tag.

The ARRAY1 and ARRAY2 attributes specify the names of variables
containing arrays. The optional COLS attribute specifies the column(s) to
consider when eliminating duplicates: the columns are specified using
column numbers or names, with an optional comparison type
(compType). The arrays must have the same number of columns;
otherwise, an error is generated.

Valid comparison types are SMART (the default), DICT, ALPHA and NUM.
DICT compares columns alphabetically, irrespective of case. ALPHA
performs a case-sensitive comparison. NUM compares columns
numerically. SMART checks whether values are numeric or alphabetic and
performs a NUM or DICT comparison.

If no COLS attribute is specified, the elimination of duplicates is
accomplished via a SMART comparison type that examines all columns in a
row.

The SCOPE1 and SCOPE2 attributes specify the scope of the variables
specified by ARRAY1 and ARRAY2, respectively. If the attribute is not
specified, the default scoping rules are used.

Meta tags are permitted in any of the attributes.
Examples •
 If the variable old_items contains the following array:

 blue

 green

<@UNION>
and the array new_items contains the following:

<@UNION ARRAY1="old_items" ARRAY2="new_items">
returns:

• If the variable test contains the following array:

and the variable test2 contains:

<@UNION ARRAY1="test" ARRAY2="test2"> returns:

• Variable usr1 contains the following:

 orange

 orange

 pink

 blue

 pink

 blue

 green

 orange

 pink

 1 a a

 2 b c

 3 c c

 1 a a

 2 b b

 3 c c

 3.0 c c

 1 a a

 2 b c

 3 c c

 2 b b

Gilbert Steve 1823-1344 $433.00

Brown Robert 5543-1233 $332.50

Brown Marsha 1122-5778 $541.00
307307

<@UNION>

308308
Variable usr2 contains the following:

To find the unique users in both arrays, you would find the union of
the two arrays based on the first two columns.

<@UNION ARRAY1="usr1" ARRAY2="usr2" COLS="1, 2">
returns:

The values in columns 3 and 4 are ignored for the purpose of the
union operation since COLS="1, 2" is specified.

Kelly Herbert 5543-1443 $100.50

Brown Robert 6670-1123 $1123.75

MacDonald Bill 1551-0787 $150.75

Gilbert Steve 1823-1344 $433.00

Brown Robert 6670-1123 $1123.75 *

* Witango returns just one of the rows that have the same
values in the specified columns (1 and 2).

Brown Marsha 1122-5778 $541.00

Kelly Herbert 5543-1443 $100.50

MacDonald Bill 1551-0787 $150.75
See Also <

<

@ADDROWS> page 83
@DISTINCT> page 167
<@FILTER> page 201
<@INTERSECT> page 218
<@SORT> page 288

<@UPPER>
<@UPPER>
Syntax <
@UPPER STR=string [ENCODING=encoding]>
Description R
t

eturns the string specified in STR converted to uppercase. The value of
he STR attribute may be a literal value or a meta tag that returns a value.
Examples
 <@UPPER STR="This is a Test">

This example returns “ΤΗΙΣ ΙΣ Α ΤΕΣΤ”.

<@UPPER STR="<@POSTARG NAME='product_code'>">

This example returns the contents of the form field product_code,
converted to uppercase.
See Also E
<

ncoding Attribute
@LOGMESSAGE> page 234
309309

<@URL>

31
<@URL>
Syntax <

[

3100
@URL LOCATION=location [BASE=base] [USERAGENT=useragent]
FROM=from] [ENCODING=encoding] [USERNAME=username]
[PASSWORD=password] [POSTARGS=postarglist]
[POSTARGARRAY=arrayvariable] [WAITFORRESULT=true|false]
[DETAILEDRESPONSE=true|false] [MAXRESULTSIZE=size]>
Description R
h

equests the specified URL and returns its data, stripped of the HTTP
eader.

<@URL> supports HTTP URLs, and HTTPS URLs. The HTTP-type URL
must be of the following form:

http[s]://hostname:port/path?search-arguments

where port defaults to 80 if not specified, and path and search-arguments
are defaulted to an empty list.

The BASE attribute adds the specified value as an HTML <BASE> tag (that
is, <BASE HREF=base>) within the HTML <HEAD> element of the
retrieved HTML. This is necessary to load any inline data (for example,
images) that are specified in relative URL format on the page retrieved.
Witango prepends the specified value of the BASE attribute to the
relative path.

The USERAGENT attribute is placed in the User-Agent line of the request.
If USERAGENT is not specified, or is empty, the value of the userAgent
configuration variable is used. For more information, see “userAgent” in
the Meta Tags and Configuration Variables manual.

The User-Agent value in HTTP requests gives the destination server
information about the program (such as, name, version, and platform)
that is requesting the URL. For example, the User-Agent value passed by
Netscape Navigator 4.04 for Windows NT is:

Mozilla/4.04 [en] (WinNT; I)

Servers often use the user agent information to determine the format of
the results returned. (Witango application files can get the user agent
information from a request using <@CGIPARAM NAME="USER_AGENT">.)
For example, a server may return a special version of a page, including
Web browser-specific HTML for additional features, when the Web
browser is Netscape Navigator or Microsoft Internet Explorer.

<@URL>
Use the USERAGENT attribute when you want Witango Server to
emulate a specific Web browser so the server returns the data in the
format you want.

The FROM attribute sets the value for the From line of the HTTP header
specified for in the <@URL> meta tag.

You should use the FROM attribute to specify the e-mail address of the
person to contact if the URL request is causing problems at the
destination server. Supplying an e-mail address is especially important
when the <@URL> meta tag is included in an application file that is
executed automatically using Witango’s timed URL processing
functionality. If something goes wrong, the destination server
administrator knows who to contact.

(Witango application files can get the FROM information from a request
using <@CGIPARAM NAME="FROM_USER">.)

If you do not specify a value, the default value is given by the configuration
variable, mailDefaultFrom.

The optional USERNAME attribute is used to indicate the username
required to communicate with a protected site.

The optional PASSWORD attribute is used to indicate the password
required to communicate with a protected site.

The username and optional password can also be specified using the
standard URL syntax:

<@URL LOCATION=
"http://username:password@www.example.com/">

If this syntax is used, it overrides username and password values specified
using the USERNAME and PASSWORD attributes.

The optional POSTARGS attribute specifies the post content for the
request, for example, a list of name-value pairs. They may not be specified
with an array variable; to specify post arguments with an array, use the
POSTARGARRAY attribute.

The names and values must be separated with = (equal sign) characters,
and name-value pairs must be separated with & (ampersand) characters.
Additionally, the names and values must be encoded. You may perform
this encoding using the <@URLENCODE> meta tag: Witango does not
automatically encode data passed in the POSTARGS attribute.

The optional POSTARGARRAY attribute is used to specify post arguments
(name-value pairs) with an array. The value of POSTARGARRAY is the
name of a variable containing an array of exactly two columns: the first
column of the array must contain the names, and the second column
must contain the values. Witango extracts these from the array and uses
311311

<@URL>

312312
them in the HTTP request. If an array of more than two columns is
referenced, an error is returned.

When the POSTARGS or POSTARGARRAY attribute is present, the type of
HTTP request issued by the <@URL> meta tag changes to POST from
GET.

Sometimes, you use the <@URL> tag to trigger processing of a task but
you do not care about the result. In this situation, performance of a
Witango application is improved if Witango Server does not have to wait
for the result of the HTTP request. The optional WAITFORRESULT
attribute is used to indicate whether Witango Server waits for the results
of the HTTP request. Possible values are true and false. The default is
true. If the WAITFORRESULT attribute is set to false, <@URL> does not
return a value.

The optional attribute MAXRESULTSIZE allows a size limitation to be
placed on the results received from the <@URL> target server. The
default value for this attribute is 64K, the minimum value may vary but
can be as small as 512 bytes.

Note Even though the allocated buffer will be released after the results
have been processed, specifying large sizes for the MAXRESULTSIZE
attribute may disrupt the server’s operations by consuming large
amounts of memory. Caution should be exercised when
MAXRESULTSIZE is set to large values (tens of megabytes).

The optional DETAILEDRESPONSE attribute is used to indicate the type
of response returned by <@URL>. Possible values are true and false.
The default is true. If this attribute is set to false, <@URL> returns the
HTML content resulting from the HTTP request; if this attribute is set to
true, <@URL> returns an XML document containing the information
resulting from the HTTP request.The format of this document is shown
in the example below.

Detailed Response Format

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE HTTP_RESPONSE>
<HTTP_RESPONSE>
<STATUS>

<CODE>200</CODE>
<TEXT>OK</TEXT>

</STATUS>
<HEADER NAME="Date"><![CDATA[Day, Date, Time]]>
</HEADER>
<HEADER NAME="Server"><![CDATA[AV/1.0.1]]></HEADER>

<@URL>
<HEADER NAME="MIME-Version"><![CDATA[1.0]]></HEADER>
<HEADER NAME="Content-Length"><![CDATA[18576]]>
</HEADER>
<HEADER NAME="Content-Type"><![CDATA[text/html]]>
</HEADER>
<HEADER NAME="Set Cookie"><![CDATA[Sample Cookie]]>
<HEADER>
<BODY><![CDATA[<html>[page goes here]</html>]]></BODY>
</HTTP_RESPONSE>

The <@URL> meta tag returns an error message if a time out or error
condition occurs.

Note If you intend to display the value of <@URL> in a Web browser
when DETAILEDRESPONSE is set to false, you must use the
ENCODING=NONE attribute.

Windows only

The Windows Witango Server supports 40-bit SSL (Secure Sockets
Layer) connections for use in encryption. On Windows 2000/NT with
128-bit SSL support, Witango Server supports 128-bit SSL connections.

Note Witango Server on Unix platforms uses the open SSL library.
HTTPS calls may be affected by different versions on this library.

XML Element Description

<HTTP_RESPONSE> The content of the HTTP parsed into an XML format.

<STATUS> Contains the <CODE> and <TEXT> fields.

<CODE> The HTTP code returned by the URL request.

<TEXT> The returned HTTP response status message.

<HEADER> The NAME attribute of <HEADER> describes the type
of HTTP parameter returned. The <HEADER> element
contains the content of the HTTP parameter.

<BODY> The page’s HTML in a CDATA block.
Examples
 <@URL LOCATION="http://www.example.com/">

Returns the front page of http://www.example.com/.
313313

<@URL>

314314
<@URL LOCATION="http://www.example.com/"
BASE="http://www.example.com/"
USERAGENT="Mozilla/4.04 [en] (WinNT; I)"
FROM="Witango-admin@mycompany.com" ENCODING="NONE">

Returns the front page of http://www.example.com/ with a defined
user agent, base URL, and from attribute.

<@URL LOCATION="https://auscommerce1.With
Enterprise.com">

This uses HTTPS to connect you to With Enterprise Software’s online
store system via SSL.
See Also E
m

ncoding Attribute
ailDefaultFrom page 415
userAgent page 427

<@URLDECODE>
<@URLDECODE>
Syntax <
@URLDECODE STR=string>
Description T
e

his meta tag decodes strings encoded in URL format, such as strings
ncoded with <@URLENCODE> meta tag or passed in the HTTP header;

for example, the value of <@CGIPARAM NAME=HTTP_COOKIE>.

The STR attribute specifies the string to be URL-decoded. It may be
specified using text, a variable, or another meta tag.
Example
 <@URLDECODE STR="Hello%20World">

This example returns “Hello World”.
See Also <

<

@URL> page 310
@URLENCODE> page 316
315315

<@URLENCODE>

31
<@URLENCODE>
Syntax <
3166
@URLENCODE STR=string>
Description M
e

akes this string specified in STR compatible for inclusion in a URL by
scaping characters that have special meaning in URLs, such as spaces and

slashes according to the protocol specified in RFC 1630.

This tag works exactly like the ENCODING=URL attribute, but can be
used to URL-encode any value.
Examples
 <@URLENCODE STR="Hello World">

This example returns “Hello%20World”.

<@URLENCODE STR="<@ACTIONRESULT NAME='action1'
NUM='1'>">

This example returns the result of the <@ACTIONRESULT> with special
characters escaped.
See Also <
@URL> page 310

<@USERREFERENCE>
<@USERREFERENCE>
Description R
f

eturns a unique number identifying the user executing the application
ile in which the tag appears. If no user reference number was received
(via the “_userReference” search argument or an HTTP cookie) when
the application file was called, a new number is generated; otherwise, the
number passed in is returned.
T
he user reference number can be used for reliable tracking of user
variables.
See Also u

<

serKey, altuserKey page 428
@USERREFERENCEARGUMENT> page 318

<@USERREFERENCECOOKIE> page 319
317317

<@USERREFERENCEARGUMENT>

31
<@USERREFERENCEARGUMENT>
Description E
3188
valuates to _userReference=<@USERREFERENCE>.
T
y

his meta tag is intended for use in Results HTML anchor URLs when
ou are tracking user variables by user reference and require support for

Web browsers that do not support HTTP cookies.
Example
 <A HREF="<@CGI>/shop/
add_item_to_basket.taf?item=29&
<@USERREFERENCEARGUMENT>">Add item

This example includes the user’s user reference ID value in the URL of
the link.
See Also u

<

serKey, altuserKey page 428
@USERREFERENCE> page 317
<@USERREFERENCECOOKIE> page 319

<@USERREFERENCECOOKIE>
<@USERREFERENCECOOKIE>
Description U
p

sed in the default HTTP header of Witango when returning results. It
ermits intelligent setting of the user reference cookie, a value that can

be used to track user variables.
I
f no Witango user reference number was received, either via cookie or
search argument, with the current HTTP request,
<@USERREFERENCECOOKIE> returns the following:

Set-Cookie: Witango_UserReference=<@USERREFERENCE>;
path=/[CRLF]

([CRLF] stands for a carriage return/linefeed (ASCII 13/10)
combination.)

If a user reference number was received with the current HTTP request,
<@USERREFERENCECOOKIE> returns nothing. Because the cookie has
already been set, there is no need to set it again.
Example T
his is the content of Witango’s default HTTP header::

HTTP/1.1 200 OK [CRLF]
Server: <name of webserver> [CRLF]
MIME-Version: 1.0 [CRLF]
Content-type: text/html [CRLF]
<@USERREFERENCECOOKIE>[CRLF]
See Also u

<

serKey, altuserKey page 428
@USERREFERENCE> page 317

<@USERREFERENCEARGUMENT> page 318
319319

<@VAR>

32
<@VAR>
Syntax <
3200
@VAR NAME=name [SCOPE=scope] [ELEMENT=Xpointer]
[TYPE=text] [ENCODING=encoding] [FORMAT=format]
[{array attributes}]>
Description <
@VAR> retrieves the contents of a variable, and, depending on the
operation being performed, formats the data appropriately. Any of the
attribute values of <@VAR> may be specified by other meta tags.
For more information on
variables see Working
With Variables
page 343

T

W
<

ext

hen retrieving the contents of a text (standard variable), the result of
@VAR> is always a text string.

Arrays

<@VAR> may also be used to retrieve an array. However, <@VAR> does
different things to arrays based on context: <@VAR> converts the array to
text whenever the result of the tag is returned in Results HTML, or when
TYPE=text is specified; <@VAR> returns an internal reference to the array
when it is used to copy an array from one place to another. So, if <@VAR>
is used within <@ASSIGN>, then no conversion to text is performed
(unless the TYPE="text" attribute is specified).

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.

DOM (XML document instance)

<@VAR> can be used to retrieve all or part of a document instance (XML)
variable. The ELEMENT attribute can specify part of the document
instance using Xpointer syntax.

A document instance is returned by <@VAR> as XML with no conversion
of characters to HTML entities if the ENCODING attribute is not present.
No conversion occurs even when XML is placed in HTML (for example,
to be displayed as a Web page). All other ENCODING attribute settings
function normally.

You can display encoded XML by first assigning the XML text to a
variable (using the TYPE=TEXT attribute, which forces XML to be

<@VAR>
returned, not a document instance), and then returning the value of that
variable in the HTML. The default encoding of variables returned with
<@VAR> then takes place, for example:

<@ASSIGN tempXML <@VAR myDOM TYPE=TEXT>>
<@VAR tempXML>

The XML is returned with the appropriate text converted to HTML
entities.
Scoping Rules S
o

coping is the method by which variables can be organized and disposed
f in an orderly and convenient fashion. It is highly recommended that all

variables be explicitly scoped when referenced. There are various levels
of scoping, each of which has an appropriate purpose:
For more information, see
“Configuration Variables”
on page 387.

•
 System Scope contains any variables that are general to all users.
This scope contains only Witango Server configuration variables. To
use this scope, specify SCOPE=system or SCOPE=sys.
For more information, see
“domainScopeKey” on
page 406 .

•
 Domain Scope contains variables that users can share if they are
accessing a particular Witango application file from a specified
Witango domain. Witango domains are specified in a domain
configuration file, or default to the domain name (base URL or IP
address) of the path to the Witango application file. This scope is
defined by setting the system configuration variable
domainScopeKey appropriately; that is, setting it to a value that can
differentiate such users. By default, this is <@DOMAIN>, which returns
the value of the current Witango domain.To use this scope, specify
SCOPE=domain.
•
 Application Scope contains variables that are shared across
Witango applications. Witango applications are defined by Witango
users in an application configuration file. To use this scope, specify
SCOPE=application or SCOPE=app.
•
 User Scope contains variables that a user defines and expects to be
able to access from many application files or invocations of single
application files. To use this scope, specify SCOPE=user or
SCOPE=usr.

• Request Scope contains variables that should be unique to every
invocation of any application file. For example, this scope could be
used for temporary variables that reformat output from a search
action. All variables of this scope are removed when the application
file concludes execution. To use this scope, specify SCOPE=request,
or SCOPE=doc.

• Instance Scope contains variables that are valid in an instance of a
Witango class file. These variables can be shared across methods
321321

<@VAR>

322322
called on a Witango class file, if the methods are called on the same
instance. To use this scope, specify SCOPE=instance.

• Method Scope contains variables that should be unique to a
method of a Witango class file. To use this scope, specify
SCOPE=method.

• Cookie Scope contains variables that are sent to the user’s Web
browser as cookies (that is, a small text file kept by the Web
browser for a specified amount of time). To use this scope specify
SCOPE=cookie.

• Custom Scope is user-specified. It is outside of the scope search
hierarchy.

Specifying Scopes

There are two methods of specifying a variable with a particular scope.

• Use the SCOPE=scope attribute.

• Leave out the SCOPE=scope attribute and specify a variable name as
scope$myvariable; scope may be any valid scope specifier.

The behavior is undefined when both methods are used at once.

Scoping Precedence

When no scope is specified, Witango must find the variable by looking for
the variable name within the various scopes. Witango has a set order in
which it tries to find scopes. They are:

(in a Witango application file)
request—»user—»application—»domain—»system

(in a Witango class file)
method—»instance—»request—»user—»application—»
domain—»system

Note Variable scoping precedence for variables and configuration
variables does not check cookie scope.
For more information, see
“domainScopeKey” on
page 406.

I
f domainScopeKey resolves to empty for the current user, then domain
is not checked. If there is no current application, application scope is not
checked.
Variable
Shortcut
Description

T
s

here is a shortcut syntax for returning variables as well, with or without
cope: use a double @ and the name of the variable. The following two

notations in each of the examples are equivalent:

<@VAR>
<@VAR NAME="homer">
@@homer

<@VAR NAME="homer" SCOPE="domain">
@@domain$homer

Configuration Variables

For a detailed list of
configuration variables, see
Chapter 3 of this manual.

W
t

itango reserves special variables that contribute to the configuration of
he server and also that provide default behaviors for users.
C
onfiguration variables that control basic configuration of the server only
exist in the system scope. Some configuration variables are valid in all
scopes, or some scopes (for example, certain configuration variables are
valid only in application and system scope); if so, they are subject to
the full scoping mechanism described previously. Default values read from
the preference file are stored in the system scope.
Examples A
ccessing a request variable:

<@VAR NAME="foo" SCOPE="request">
<@VAR NAME="request$foo">
@@request$foo

Accessing a user variable:

<@VAR NAME="foo" SCOPE="user">
<@VAR NAME="user$foo">
@@user$foo
<@VAR NAME="foo" SCOPE="usr">
<@VAR NAME="usr$foo">
@@usr$foo

Accessing a system scope variable:

<@VAR NAME="foo" SCOPE="system">
<@VAR NAME="system$foo">
@@system$foo
<@VAR NAME="foo" SCOPE="sys">
<@VAR NAME="sys$foo">
@@sys$foo

Accessing a domain scope variable:

<@VAR NAME="foo" SCOPE="domain">
<@VAR NAME="domain$foo">
@@domain$foo

Accessing variable using scoping precedence:

<@VAR NAME="foo">
@@foo
323323

<@VAR>

324324
Getting an array and formatting it for Results HTML:

<@VAR NAME="array">

Getting part of an array and formatting it for Results HTML:

<@VAR NAME="array[3,*]">

Getting an array and formatting it for Results HTML with attributes:

<@VAR NAME="array" APREFIX='<TABLE BORDER="2">'
ASUFFIX= </TABLE>' RPREFIX='<TR>' RSUFFIX='</TR>'
CPREFIX='<TD BORDER="2">' CSUFFIX='</TD>'>

Copying an array without formatting it (converting it to text):

<@ASSIGN NAME="array2" VALUE="<@VAR NAME='array'>">

Copying part of an array without formatting it:

<@ASSIGN NAME="array2" VALUE="<@VAR
NAME='array[*,4]'>">

Copying the formatted representation of an array to a variable:

<@ASSIGN NAME="array2" VALUE="<@VAR NAME='array'
FORMAT=text>">

Getting a document instance variable (XML) and performing no encoding
on it:

<@VAR NAME="myDom">

Getting part of a document instance variable:

<@VAR NAME="myDom" ELEMENT="root().child(2)">

Copying a document instance:

<@ASSIGN NAME="myDom2" VALUE="<@VAR NAME='myDom'>">

Copying part of a document instance:

<@ASSIGN NAME="myDom2" VALUE="<@VAR NAME='myDom'
ELEMENT='root().child(2)'>">
See Also A
<

rray-to-Text Conversion Attributespage 80
@ARRAY> page 93
<@ASSIGN> page 96
<@DEFINE> page 162
Encoding Attribute page 72
Format Attribute page 75
variableTimeout page 430
Working With Variables page 343

<@VARINFO>
<@VARINFO>
Syntax <
@VARINFO NAME=variable ATTRIBUTE=attribute [SCOPE=scope]>
Description R
eturns information about variables and accepts three ATTRIBUTE
values, TYPE, ROWS, and COLS:

• TYPE returns either text or array.

• ROWS returns the number of rows if the variable is an array, or “0”
otherwise.

• COLS returns the number of columns if the variable is an array, or
“0” otherwise.

• SIZE returns the number of bytes used by the variable or array.
Examples I
f the following variable assignments are made:

<@ASSIGN NAME="scalar" SCOPE="user" VALUE="abcdef">
<@ASSIGN NAME="array" SCOPE=user" VALUE="<@ARRAY
ROWS='5' COLS='3'>">

<@VARINFO> returns the following values:

<@VARINFO NAME="scalar" SCOPE="user"
ATTRIBUTE="type">

(returns “text”)
<@VARINFO NAME="scalar" SCOPE="user"
ATTRIBUTE="rows">

(returns “0”)
<@VARINFO NAME="scalar" SCOPE="user"
ATTRIBUTE="cols">

(returns “0”)
<@VARINFO NAME="array" SCOPE="user"
ATTRIBUTE="type">

(returns “array”)
<@VARINFO NAME="array" SCOPE="user"
ATTRIBUTE="rows">

(returns “5”)
<@VARINFO NAME="array" SCOPE="user"
ATTRIBUTE="cols">

(returns “3”)
325325

<@VARINFO>

32
See Also <

<

3266
@ASSIGN> page 96
@VAR> page 320
<@VARNAMES> page 327

<@VARNAMES>
<@VARNAMES>
Syntax <
@VARNAMES SCOPE=scope [{array attributes}]>
Description R
eturns an array containing all variable names for a given scope.
 For an explanation of the
scoping rules, see
<@VAR> on page 320.

T
he result array has one column and n rows where n is the number of
variables in the specified scope.

There are array-returning attributes that can be used to specify prefixes
and suffixes for the returned array, rows within the array, and columns
within the rows. They are described in the section Array-to-Text
Conversion Attributes on page 80. By default, the returned array is
formatted as an HTML table.
Example T
t

he following returns all variable names for the current user scope using
he default array formatting:

<@ASSIGN NAME="myvarnames" VALUE="<@VARNAMES
SCOPE='user'>">
<@VAR NAME="myvarnames">
See Also <

<

@ASSIGN> page 96
@VAR> page 320
327327

<@VARPARAM>

32
<@VARPARAM>
Syntax <
3288
@VARPARAM NAME=varname [DATATYPE=datatype] [SCOPE=scope]>
Description T
<

he <@VARPARAM> meta tag is used to explicitly pass a value in the
@CALLMETHOD> meta tag. This meta tag instructs Witango Server to

generate the appropriate binding call.

The NAME attribute is the name of a Witango variable to be used for
parameter binding. The SCOPE attribute is an optional attribute defining
the scope of the variable named in the NAME attribute.

The DATATYPE attribute is used only for COM Variants, and accepts the
name of a COM data type to use (this is equivalent to using the
parameter Type drop-down menu in the Call Method action). DATATYPE
is ignored for non-Variant parameters.
Example F
m

or examples of the use of <@VARPARAM> within the <@CALLMETHOD>
eta tag, see <@CALLMETHOD> on page 116.
See Also <
@CALLMETHOD> page 116

<@VERSION>
<@VERSION>
Syntax <
@VERSION [ENCODING=encoding]>
Description R
eturns the version number of Witango Server.
Example <
@VERSION> returns the version number of Witango Server, for
example, “3.0.012”.
See Also E
<

ncoding Attribute
@PLATFORM> page 256
329329

<@WEBROOT>

33
<@WEBROOT>
Description T
r

3300
his meta tag returns the absolute path to the Web server document
oot.

<@WEBROOT> is useful for creating paths in File and External actions,
which require absolute paths rather than paths relative to the Web
server document root.

<@WEBROOT> does not include a trailing slash separator; this means that
you must add one in certain cases.

For example, if your Web server document root on Windows
corresponds to the root of a drive (D:), you must append a slash to
create a well-formed path to that directory (<@WEBROOT>/); this is
necessary if you want to read or write files to that directory.
Example
 <@WEBROOT>

This meta tag returns the path to the Web server document root.

For example, if the Windows Apache Web server is installed to its
default location, this tag returns: C:\Program Files\Apache
Group\Apache2\htdocs\

<@WEBROOT><@APPFILEPATH>

These meta tags return the absolute path to where the current
application file is located.
See Also <

<

@APPFILEPATH> page 87
@APPPATH> page 90
<@CLASSFILEPATH> page 134

<@!>
<@!>
Syntax <
@! COMMENT=comment>
Description U
t

sed to insert short comments in your application files. This tag is similar
o the <@COMMENT> meta tag, except the comment goes inside the

required attribute COMMENT, rather than between the <@COMMENT> and
</@COMMENT> tags.

The tag and its contents are not returned the browser and any meta tags
in the COMMENT attribute are not processed.

The attributes of this tag must obey all the quoting rules specified in
Quoting Attributes on page 70; for example, if the COMMENT attribute
contains spaces, you may not omit the quotes surrounding the attribute
value.
Example
 <@! COMMENT="Here is a comment.">

<@! "This code was written by Fred on 5/4.">
See Also <

<

@COMMENT> </@COMMENT> page 139
@EXCLUDE> </@EXCLUDE> page 199
331331

<@!>

332332

4
C H A P T E R 4

Custom Meta Tags

A Guide to Custom Meta Tags
Witango allows the use of custom meta tags, which are user-defined
Witango meta tags that map directly to any method call supported by
Witango, and can be used to call Witango class files, COM objects, and
JavaBeans from Witango application files and Witango class files.

Custom meta tags can apply to all of Witango Server (system scope) or
be specific to an application (application scope). Custom meta tags can be
shared with other developers by distributing the tag definition file and any
objects called by the custom meta tag.

This chapter describes using custom meta tags, creating a file that defines
one or several custom meta tags, and the process of installing custom
meta tags.
329

Using Custom Meta Tags

33
Using Custom Meta Tags
3300
Once a custom meta tag has been created and installed on your system,
all a user needs to do is type in the custom meta tag with any required
attributes in any place where meta tags can be specified. The object
instance is created, and a method call to the specified object is made
when Witango Server executes the file. There are some issues to be
aware of when using custom meta tags, described in this section.
Attributes of
Custom Meta
Tags

R
c
t

equired attributes of a custom meta tag must be specified when that
ustom meta tag is used; otherwise, Witango generates an error (naming
he first missing attribute), and execution ends.
For more information, see
“Encoding Attribute” on
page 72 and Format
Attribute on page 75.

A
R

ll custom tags have two standard attributes: FORMAT, and ENCODING.
eturned values are encoded according to the ENCODING attribute, and

formatting according to the FORMAT attribute, if either or both of these
attributes is specified when the custom meta tag is used in an application
file or class file.
Tag Name
Conflicts

A
c
a

pplication-specific custom meta tags can share names with system scope
ustom meta tags, in which case the application scope tag is used. Within
 particular scope—application or system—tag names must be unique;

Witango generates a warning in the event log and uses the first tag when
a duplicate name is encountered within a scope.

Caution If a custom meta tag has the same name as a built-in Witango
meta tag, the custom meta tag does not work; the Witango meta tag
takes precedence. To reduce the chance of this happening use an
underscore “_” in your custom tag name.
Custom Meta
Tag Limitations

A
a

ll custom meta tags are “empty” tags; that is, custom meta tags can have
ttributes but not content, because they do not have start and end tags.

Tags can only call objects that are defined within the current tag
definition file.

Creating Custom Meta Tags: Tag Definition File
Creating Custom Meta Tags: Tag Definition File
You define custom meta tags in tag definition files, which are XML files.
These files must reside in a specific directory for system scope custom
meta tags, and specific directories for application-specific custom meta
tags (different directories for each application).
For more information, see
customTagsPath on
page 399.

T
a
f

he customTagsPath configuration variable, available in system and
pplication scope, defines the path to the directories where tag definition
iles reside.

A tag definition specifies a custom tag and the object and method to call
for the custom tag. A custom tag definition file contains one or more tag
packages, which each contain at least one object specification and at least
one tag definition. A tag package groups related tags and shares objects
with other tag packages.

You define custom meta tags by creating tag definition files based on a
specific XML document type definition (DTD) developed by With
Enterprise Software.
Custom Tag
Definition File
Format

T
c

he format of the XML custom meta tag definition file is given by
tags.dtd, which resides in the XML directory under your Witango

directory.

Note XML is case-sensitive. The names of the XML elements in tag
definition files must be capitalized exactly as shown (for example,
<packages>).

The following is an annotated custom meta tag definition XML file,
describing each element:

<tagpackages>

<packagedef ID=required; defines package with unique identifier >

<author>optional; author of package</author>

<version>optional; version of package</version>

<copyright>optional; package copyright info</copyright>

<packagedesc>optional; description of package</packagedesc>

<objects>

root

specifies settings
331331

Creating Custom Meta Tags: Tag Definition File

332332
<objectdef

ID=required; a name you choose to uniquely identify the object used in the
tag definition.

type=required; type of object (COM, JavaBean, or TCF [Witango class
file])

systemobject=optional; default is false; if true, Witango uses an existing
instance instead of creating a new one (COM objects only).

>

<name>

required; ProgID or ClassID (for COM); Witango class file name; or
JavaBean name. This is the same name that must be specified in the
<@CREATEOBJECT> meta tag. For COM and JavaBean methods, the
method name is case-sensitive.

</name>

<varname>

optional; when specified, Witango uses this object instance variable. If you
want the tag processing to create the object instance named here, you
must specify the scope and name elements and the TYPE and ID attribute
of <objectdef>. If you want to be responsible for creating the instance
before calling the custom tag, you need only specify the <scope> element.
If the named object instance variable does not exist, it is created.

If <varname> is not specified, a temporary variable is used to create the
instance of the object called by the custom meta tag; this instance goes
away immediately after processing of this tag has finished.

<varname> may contain Witango meta tags.

</varname>

<initstring>

optional; used to create monikers for COM objects

</initstring>

<scope>

scope in which object instance is created or obtained from (application,
domain, user & request are allowed). May contain Witango meta tags.

</scope>

</objectdef>

</object>

<tags>
list of tags

Creating Custom Meta Tags: Tag Definition File
<tagdef

name= tag name; must begin with a letter and may contain letters,
numbers or underscores; no ‘@’ is required.

objectid=identifies object (ID of an OBJECT element in the same package)
whose method is called by this tag.

methodtype=(JavaBeans and COM only): INVOKE (default), SET or GET.
>

<method> name of method to call </method>

<encoding>

optional; determines the encoding used for the return value of the tag; if
NONE is specified, value is not encoded, even if the tag is used in Results
HTML. If element is not specified, Witango encodes the return value as it
does other tags, determined by context; special characters are encoded if
in Results HTML. Can be overridden by the ENCODING attribute of the
custom meta tag.

</encoding>

<tagdesc>

optional; describes tag for editing environments

</tagdesc>

<attrdef

name=name of custom tag attribute

required=optional; TRUE or FALSE (default) determines whether this
attribute may be omitted when tag is used >

<defaultvalue>

sets an optional default value for the attribute; ignored if required set
to TRUE

</defaultvalue>

<attrdefdesc>

optional description of the attribute

</attrdefdesc>

</attrdef>

</tagdef>

</tags>

</packagedef>

</tagpackages>

zero or
more
attribute
333333

Creating Custom Meta Tags: Tag Definition File

334334
All leading and trailing whitespace between and within start and end tags
in the custom tag definition files is ignored.

Note Witango meta tags are supported only in the above-noted
elements of tag definition files; elsewhere, they cannot be used.

Loading Tags
Loading Tags
Witango Server loads tag definition files from the directories defined by
the customTagsPath configuration variable. All files in the directory
specified by customTagsPath, and any subdirectories, are loaded.
For more information, see
startupUrl on page 423.

T
s

ag definition files for system scope load before the URL defined by the
tartupURL configuration variable; this means that custom meta tags

are available for use in the application file called by the startupURL
configuration variable.
Reloading
Custom Meta
Tags
For more information, see
“<@RELOAD-
CUSTOMTAGS>” on page
268.

T

s

he <@RELOADCUSTOMTAGS> meta tag forces a reload of the specified
scope’s custom tags file. The default value of the scope attribute is
ystem. This tag requires that the user scope configPasswd match the

configPasswd configuration variable for the scope requested (system
or application).
Returning
Information on
Custom Meta
Tags
For more information, see
“<@CUSTOMTAGS>” on
page 152.

T
i
a

he <@CUSTOMTAGS> meta tag returns an array of all custom meta tags
n the specified scope. The names of the array’s columns (name, package,
nd scope) are put into row 0 of the array. No password is required to

use this tag.
335335

Installing Custom Meta Tag Definition Files

33
Installing Custom Meta Tag Definition Files
3366
Follow these steps to install custom meta tag definition files:

• Install the object(s) that your custom meta tags call

Follow your operating system instructions for installing objects or
refer to the object vendor’s documentation for installation.

• Copy the custom tag definition XML file(s) to the folder pointed to
by customTagsPath configuration variable; by default, this is the
CustomTags folder under the configuration folder. You may need to
set the customTagsPath configuration variable to point to a
different folder. If Witango Server is already running, load your
custom meta tags by running an application file containing the
<@RELOADCUSTOMTAGS> meta tag, or restart Witango Server.
Application-
specific Custom
Meta Tags

I
n order to use application-specific custom meta tags, the system
administrator must set the value of the customTagsPath configuration
variable in application scope when setting up an application. Application-
specific custom meta tags are loaded when that application is started; that
is, when a Witango application file in the application is called.

Custom Meta Tag Example: tabletag.xml
Custom Meta Tag Example: tabletag.xml
You create custom meta tag definition XML files based on the annotated
custom meta tag definition file (see Custom Tag Definition File Format
on page 331). This section describes an example of the files necessary to
create and use a custom meta tag.

1. Defining the Custom Meta Tag

tabletag.xml contains the following XML:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE TAGPACKAGES SYSTEM "ctags.dtd" >

<tagpackages Version="0x02000001">

<packagedef ID="MyPackage">

<objects>

<objectdef ID="arrayutils" type="TCF"
systemobject="false">

<name>array_utils.tcf</name>

<varname>arrayutilsinstance</varname>

<scope>request</scope>

</objectdef>

</objects>

<tags>

<tagdef name="table" objectid="arrayutils">

<method>format_array</method>

<encoding>NONE</encoding>

<attrdef name="the_array"required="true">

</attrdef>

<attrdef name="border" required="false">

</attrdef>

<attrdef name="cellspacing" required="false">

</attrdef>

<attrdef name="cellpadding" required="false">

</attrdef>
337337

Custom Meta Tag Example: tabletag.xml

338338
<attrdef name="height" required="false">

</attrdef>

<attrdef name="width" required="false">

</attrdef>

<attrdef name="bgcolor" required="false">

</attrdef>

<attrdef name="bgcolor2" equired="false">

</attrdef>

</tagdef>

</tags>

</packagedef>

</tagpackages>

tabletag.xml defines the <@TABLE> custom meta tag with the
following syntax:

<@TABLE the_array=arrayname [BORDER=num]

[CELLSPACING=num] [CELLPADDING=num] [HEIGHT=num/
percent] [WIDTH=num/percent] [BGCOLOR=color]
[BGCOLOR2=color]>

2. Installing the Custom Meta Tag

The custom tag definition file must be put into the folder specified by the
customTagPath configuration variable, for either application or system
scope.

To use the <@TABLE> custom meta tag in your application files, you load
the custom meta tag definition file by restarting Witango Server or
executing the <@RELOADCONFIG> tag; in the case of applications, the tag
definition file for that application is loaded when that application is
created.

3. Installing the Object

The <@TABLE> custom meta tag calls a Witango class file named
array_utils.tcf.
For more information, see
“TCFSearchPath” on
page 424.

T
he array_utils.tcf class file must be installed in a directory where
Witango Server looks for Witango class files. These directories are
specified using the TCFSearchPath configuration variable.

Custom Meta Tag Example: tabletag.xml
The parameters of Format_array from array_utils.tcf are shown
below.

These parameters map to the attributes displayed in the table.taf
Results HTML:

• the_array is the name of a variable (for example,
request$myArray) containing an array to be returned as an
HTML table.

• The next five attributes are straightforward; they are included in
the resulting <@TABLE> custom meta tag.

• The BGCOLOR attribute, if included, is used for the tables
background color. If BGCOLOR2 is also specified, you get a table
whose rows alternate between BGCOLOR and BGCOLOR2.

The Format_array Results HTML is processed by Witango Server, and
the results are displayed in the table.taf Results HTML, which is read
by the Web browser when table.taf is executed.

The Format_array Results HTML from array_utils.tcf looks like
this:

<@EXCLUDE>

<@IF expr="len(@@method$bgcolor) and
len(@@method$bgcolor2)">

<@ASSIGN method$alternate 1>

<@ELSE>

<@ASSIGN method$alternate 0>

</@IF>

</@EXCLUDE>

<TABLE
339339

Custom Meta Tag Example: tabletag.xml

340340
<@IFEMPTY "@@method$border">

<@ELSE> border=@@method$border</@IF>

<@IFEMPTY "@@method$cellspacing">

<@ELSE> cellspacing=@@method$cellspacing</@IF>

<@IFEMPTY "@@method$cellpadding">

<@ELSE> cellpadding=@@method$cellpadding</@IF>

<@IFEMPTY "@@method$height">

<@ELSE> height=@@method$height</@IF>

<@IFEMPTY "@@method$width">

<@ELSE> width=@@method$width</@IF>

<@IF expr="!(@@method$alternate) and

len(@@method$bgcolor)" >

bgcolor=@@method$bgcolor</@IF>

>

<@ROWS array=@@method$the_array>

<TR ALIGN=center

<@IF "@@method$alternate and ((<@currow> % 2) !=
0)">

BGCOLOR=@@method$bgcolor

<@ELSEIF expr="@@method$alternate">

BGCOLOR=@@method$bgcolor2

</@IF>

>

<@COLS>

<TD><@COL></TD>

</@COLS>

</TR>

</@ROWS>

</TABLE>

4. Using the Custom Meta Tag in a Witango Application

Custom Meta Tag Example: tabletag.xml
File

The Witango application file, table.taf, contains an Assign action and
Results HTML containing the <@TABLE> custom meta tag

Executing table.taf in your Web browser after the custom meta tag
definition file and the object (in this case, a Witango class file) has been
properly installed gives you the following result:

You could modify this example to allow users to specify other table
attributes to be passed through to the Witango class file in the
<@TABLE> custom meta tag.
341341

Custom Tag Generator

34
Custom Tag Generator
3422
A tool to produce Custom Definition Files is available on-line on from the
witango.com web site. It is available in the Developer Resources Section
of the website under Custom Tags. Here you will find instructions on
how to use the custom tag generator, and, access to the tool itself.

The output of the Custom Tag Generator is a tag definition file in XML
format.

5
C H A P T E R 5

Working With Variables

Using Variables in Witango
Variables are placeholders that you can assign a value to; they are created
and assigned values using the Assign action or the <@ASSIGN> meta tag.
See “<@ASSIGN>” on page 96.

Every variable belongs to a scope, which tells Witango if the variable is to
be used only for the particular application file execution, within a
Witango application, for a user, or for a particular domain being served
with Witango. Variables can also belong to special scopes within Witango
class files that apply to a method or an instance of a Witango class file.

Arrays are a special variable type that allow you to create a structured
data table with multiple values, as opposed to standard variables which
only store one value.

You can also create variables that contain XML data structures
(document instance variables) and variables that contain objects.

One important set of variables determines the behavior of certain
Witango options. These are called configuration variables.

This chapter covers the following topics:

• introduction to variables—standard and array—including variable
scope and its effects

• how to assign values to variables

• configuration variables

• the user key.
343

About Variables

34
About Variables
3444
Variables are defined and given values with an Assign action in a Witango
application file or a Witango class file.

Variables can also be assigned values by using the <@ASSIGN> meta tag.

You can assign any combination of literal values and meta tag values to a
variable.

For example, to assign to a variable a combination of meta tags that could
evaluate to a full phone number using values from area code and phone
number form fields, you could use the following meta tags:

<@ASSIGN NAME=PhoneNum
VALUE="(<@POSTARG area>) <@POSTARG phone>">

This assigns to a variable called PhoneNum (in default scope). The variable
is created, if it does not already exist, and the value of the variable is set
to what the meta tags within the VALUE attribute evaluate to when the
Witango application file is executed, plus the characters within the
double-quotes before and after the meta tags.
Naming
Variables

A

•

ll variable names:

must start with a letter

• may contain numbers, letters, and the underscore (“_”) character

• may be no longer than 31 characters.

Variable names are case insensitive; for example, myVar is the same
variable as MYVAR and MyVaR.
Variable Types V
a

ariables can be Text, Arrays, DOMs or Objects. Details of these types
re set out below.

Text

Which is used to reference a text string.

Arrays

Which is used to reference an array. For more
information see Arrays on page 354.

DOM (XML document instance)

About Variables
Which is used to reference a document instance (XML) variable. For
more information see Document Object Model on page 367.

OBJECT

Which is used to reference a variable of an object instance.
Understanding
Scope

E
f
d

very variable belongs to a scope. There are several scopes that are used
or different purposes within Witango. The following diagram shows the
ifferent scopes and their relationships.

Variables that are assigned values in more restrictive scopes override
variables with the same name that are assigned values in more general
scopes.

Six scopes are available to all Witango files (Witango application files and
Witango class files).

Within these six scopes:

• Request scope is the most restrictive: variables that belong to this
scope are used only for the execution of a particular Witango
application file.

• Cookie scope refers to variables that are sent to and kept by Web
browsers.

• User scope refers to variables that are set for particular users
within Witango.

System

Domain

Cookie User

Request

m
or

e
re

st
ri

ct
iv

e
sc

op
es

m
or

e
ge

ne
ra

l s
co

pe
s

Instance

Method

us
e

in

us
e

in
 W

ita
ng

o
ap

pl
ic

at
io

n
fil

es

an
d

W
ita

ng
o

cl
as

s
fil

es

Application

W
ita

ng
o

cl
as

s
fil

es
 o

nl
y

345345

About Variables

346346
• Application scope refers to variables that apply to all Witango
application files in a particular Witango application.

• Domain scope refers to variables that are used in a particular
Witango domain, which is a single domain name (base URL or IP
address) or a defined group of domain names (a Witango domain).

• System scope is the most general, applying to the entire Witango
Server. This scope is restricted to configuration variables.
I
n addition to these basic Witango scopes, you can also define custom
scopes.
W
y

hen you use Witango class files, two additional scopes are available to
ou. The variables in these scopes are only available in methods within

Witango class files.

• Method scope refers to variables that are used only in the current
invocation of the method.

• Instance scope refers to variables that are used in the instance of the
Witango class file to which the current method belongs.

You can find more details on these scopes in the following sections.
Basic Witango
Scopes

R

R

equest Scope

equest scope is used for variables that expire after an application file is
executed. That is, after the application file (and its branches, if any) has
finished executing, the variable is purged from memory.

Request scope is created at the beginning of the Witango application file
execution, persists in any Witango application files branched to and
Witango class file methods called, and is destroyed when the Witango
application file ends execution and returns results to the user.

An example of the use of a local variable is a variable for a counter within
a loop. The counter is not needed outside the application file that it is in,
so using a local variable is appropriate.

For another example, a user might enter a choice during the execution of
an application file to have full explanations returned during the execution
of an application file (for a beginning user), or rather terse commands (for
an experienced user). At the beginning of the application file, a local
variable is set, and that variable is used in the rest of the application file to
determine what HTML is returned to the user.

About Variables
Cookie Scope

Cookie scope is used for variables that are sent to the user’s Web
browser as cookies (that is, saved in a small text file and kept by the Web
browser for a specified amount of time).

Cookies are saved by the Web browser and then are sent to the site by
the Web browser when it returns to the site that generated the cookie
in the first place. Cookie variables can be used to save state information
between Web browser sessions or in a single Web browser session.
T
here are a variety of cookie options that can be set for cookie variables,
such as when the cookies expire.

Note Witango only supports cookies up to 3071 bytes in length.
Cookies that are set which are longer than 3071 bytes will be
truncated.

The default values for new cookies are as shown:

• Expiry

When user quits browser is the default cookie behavior as
described in the cookie specifications. When this option is chosen,
the Expires value is omitted from Set-Cookie line in the cookie
header.

After __ [time units]. The drop-down menu for time units has
minutes, hours, days, and years options. The text entry field holds up
to 31 characters; a meta tag can be specified there.

• Domain

Current server omits the Domain value from the Set-Cookie
line, causing the cookie to be valid for the current server.
347347

About Variables

348348
Other allows specification of any domain string up to 31 characters.
“.example.com”, for example, would cause the cookie to be sent
back to www.example.com, demo.example.com,
sales.example.com, and so on.

• Path

Server root (/) specifies that the cookie be sent for all paths within
the specified domain.

Other allows specification of a path string up to 31 characters. For
example, /Witango/ would cause the cookie to be sent back only
for URLs below the Witango folder.

• Require secure connection for client send

True (enabled) or False (disabled). This option sets the Secure
value of the Set-Cookie line. If the value is set to true, then the
cookie is sent back by the Web browser only if a secure connection
is being made.

User Scope

Variables that have user scope let you store and access values associated
with a particular user. Once an assignment has been made to a user
variable, its value is available in subsequent actions within the same
application file execution and in any application files executed afterward.

For example, user variables would be necessary in an application file that
logs users in to a private area of your Web site, displaying a Web page
that prompts for a user’s name and password. You might want to save
the entered name so you can display it on personalized pages in
subsequent queries. Or you may need to use the name to restrict
database queries performed by that user. Both of these operations would
be performed with the use of a user variable.
For more information, see
“variableTimeoutTrigger”
on page 431.

U
a
o

ser variables expire 30 minutes after the user associated with them last
ccesses Witango. You can change the expiry time by changing the value
f the Witango configuration variable variableTimeout in user scope.

Application Scope

Application scope defines variables that apply to all application files within
a Witango application. When Witango checks for variables, application
scope is less restrictive than user scope but more restrictive than domain
scope.
A
p

pplications are defined as a group of Witango application files in a
articular application folder, which is defined in the application

About Variables
configuration file or configured with the Witango Administration
Application (the config.taf application file).

You can define many configuration variables in application scope; they
apply only to the Witango applications.

Because application scope is more restrictive than domain scope, if you
want a certain application scope to apply to all domain names in a
particular domain, you must specify the Witango domain when you
specify the Witango application.
Application Scope variables do NOT timeout.
You can turn application scope on or off using the applicationSwitch
configuration variable. You improve performance by setting this switch to
off when applications are not being used.

Domain Scope

Domain scope is used for variables that are relevant to a particular
domain name or Witango domain. Domain variables, like system
variables, are persistent across applications, application files, and users.

To explain domains, it is useful to distinguish between domain names and
Witango domains.

Domain names are different base URLs and IP addresses: for example, one
Web server could be hosting several different domains
(www.my_company.com, www.your_company.com,
www.a_non_profit.org) at several different IP addresses (for example,
152.23.23.45, 152.65.34.32, and so on).
For more information, see
domainScopeKey on
page 406.

B
t
S

y default, the domain key (that is, the piece of information Witango uses
o determine which domain a user belongs to) is based on the
ERVER_NAME CGI parameter. The value of the SERVER_NAME

parameter comes from the URL used to initiate each request by a user.
Witango by default uses an encrypted form of the domain name used to
access a Witango application file—base URL or IP address—as the
domain scope key, and any variable set with scope=DOMAIN is set for the
particular domain name where the application file is executed. For
example, if a user requests

http://www.yourserver.com/foo.taf

the domain variable is keyed on “www.yourserver.com”. Everyone
using “www.yourserver.com” to access a Witango application file gets
the same values for domain variables.

However, if a user accesses the exact same application files with the IP
address of the Web server (http://206.186.95.106/foo.taf), the
domain scope variable is different because the key value is now the IP
349349

About Variables

350350
address, and not the domain name. The same applies if you access the
Web site locally with http://localhost/foo.taf.

There are cases where you want the same domain variables to be
available even though a user is hitting your Web site through different
domain names (base URLs or IP addresses).

You can set up a Witango domain which incorporates several domain
names and IP addresses.
Witango domains are listed in the domain configuration file. To set up a
Witango domain, use the Administration Application config.taf
application file to specify which domain names should be part of the
Witango domain. Depending on how users access your Witango Server,
you may need to set up one or several Witango domains. You may also
need to list localhost and 127.0.0.1 as domain names that belong to
a particular Witango domain, so that hits coming in from those domain
names (which always reference the current machine) are part of a
Witango domain, and share domain scope variables correctly.
Domain scope variables do not timeout.

System Scope

System scope is used for variables that are set at the system level, that is,
only configuration variables. Many configuration variables that affect the
behavior of Witango are set with system scope. For example, the variable
dateFormat sets the way the date is displayed when it is returned by
Witango with a meta tag such as <@CURRENTDATE>. If this variable is set
with system scope, then all dates returned by Witango are in that format.
For more details on
different scopes for
configuration variables, See
“Understanding Scope” on
page 345.

C
m
s

F

ertain configuration variables can be set for different scopes. This
eans that the value changes in one particular scope (and all scopes that

cope dominates) while maintaining its default value elsewhere.

or example, dateFormat can be set with scope=LOCAL, which changes
the format of the date for the current application file; scope=USER,
which would change the format of the date for all application files
executed by a particular user; or scope=DOMAIN, which would change
the format of the date for all application files and users that access
Witango from a particular URL or Witango domain.

To set system configuration variables
. Y
ou can set system configuration variables with the Witango
Administration Application (the config.taf application file). This
application file prompts you for a password and then presents groups of
related configuration variables on different screens, allowing you to easily
set system configuration variables.

About Variables
To set configuration variables without using the Administration
Application (the config.taf application file)—that is, in an application
file—you must know the correct password. This password is stored in
the t4server.ini configuration file and a configuration variable called
configPasswd.

When you attempt to set a system configuration variable, Witango
checks to see if there is a variable called configPasswd with
scope=USER that matches configPasswd with scope=SYSTEM. If there
is, Witango lets you change configuration variables. If not, Witango
returns an error message.
Setting configPasswd
scope=USER can
interact with user keying
mechanisms;

T
<

c

<

hat is, you must assign the value of an entered string (for example,
@POSTARG NAME="Password">) to the configuration variable
onfigPasswd with scope=USER using the Assign action or the
@ASSIGN> meta tag.

Note You do not need this password to get the values of system
configuration variables, except for configPasswd itself.
Witango Class
File-only Scopes

I

I

nstance Scope

nstance scope is available only when using object instances of Witango
class files. A variable in this scope persists across all calls to methods in
the same object instance.
W
itango Server creates this scope when it creates an object instance.
This scope goes away when Witango Server destroys the object instance
(more precisely, after the Witango class file calls the On_Destroy
method).

Method Scope

Method scope is available only in Witango class file methods. A variable in
this scope exists for the duration of a single Call Method action. All
parameters are part of method scope.

Witango Server creates this scope when it begins to execute a Witango
class file method. This scope goes away when the method returns.
Custom Scopes I
W

n addition to specifying variables that apply to methods, instances,

itango application files, users, applications, domains or to all of
Witango Server, Witango allows you to create custom scopes that are
used to store variables.
351351

About Variables

352352
Custom scopes are useful for values that should be available everywhere,
to all users.

Custom scopes are less restrictive than other scopes because they apply
to all of Witango Server, regardless of the domain name.

Custom scopes fall outside of the Witango scope hierarchy; therefore,
only explicitly specifying the scope when returning the variable allows
Witango Server to find the variable. You must specify a custom scope to
access a variable assigned to it; custom scopes are not searched when
variables are assigned or referenced without scope.

Example: Setting Up a Chat Room

You are creating an application file to set up a chat room for all users of
your Witango Server — no matter what application they are currently in.
You create a series of variables in custom chat scope to set up your chat
server; for example, a variable called chat$allusers that stores a list of
current “chatters”. All variables in chat scope can be accessed by all
users of your Witango Server who execute application files that specify
the custom chat scope.

Specifying Custom Scope

You can specify a custom scope anywhere Witango accepts a scope; for
example, you can create a custom scope in the text field/drop-down
menu in the Assign action. The following are examples of how custom
scope is used:

<@ASSIGN NAME="foo" SCOPE="myCustomScope">

<@VAR NAME="myCustomScope$foo">

Timeout for Custom Scope

For more information, see
“variableTimeout” on
page 430.

v

s
(

ariableTimeout can be used to set the timeout value of a custom
cope. variableTimeout allows you to specify the expiration interval
in minutes) of custom scope variables.

By default, variableTimeout of a custom scope is set to the timeout of
user scope; that is, 30 minutes.

To set variableTimeout for a custom scope, assign a value to
variableTimeout in that custom scope; for example:

<@ASSIGN NAME=variableTimeout
SCOPE="myCustomScope">

About Variables
For more information and
the format and restrictions
of this value, see
variableTimeoutTrigger on
page 431.

v

a
c
t

ariableTimeoutTrigger allows you to specify an HTTP URL to
ctivate just prior to expiry of the custom scope’s variables. This
onfiguration variable can be used for a variety of purposes, for example,
o clear the database of expired variables used in custom scope.

There is no default timeout trigger for variableTimeoutTrigger.

Configuration Variables and Custom Scope

For more information, see
customScopeSwitch on
page 399.

Y
c

ou can enable and disable custom scope using the
ustomScopeSwitch configuration variable. Applications that use

custom scope do not work when this switch is disabled. The default
setting for customScopeSwitch on Witango Server is off.
Returning
Variable Values

T
<

o have Witango return the value of a particular variable, use the
@VAR> meta tag. This tag is replaced with the variable value at the time

that the application file is executed. For example, to return the value of
the variable named fred in user scope, use the following meta tag and
scope attribute:

<@VAR NAME="fred" SCOPE="user">

Default Scoping Rules

If you do not specify a scope attribute, Witango checks for matching
variables in different scopes, from the most restrictive to the most
general. For example, if you use the following meta tag:

<@VAR NAME="fred">

Witango checks for matching variables in request, user, application,
domain, and system scope.

Note Cookie scope is a special scope, and Witango does not check for
matching variables with this scope when returning unscoped variable
values with <@VAR>.

Witango returns the value for the first matching variable that it finds in
the scope hierarchy.

Caution Witango does not search any custom scope. If you want to
assign a value to or retrieve a value from a custom scope, you must
explicitly specify the scope.
353353

About Variables

354354
Shortcut Syntax for Returning Variables -@@request$foo

There is a shortcut syntax for returning variables: use a double “@” and
the scope and name of the variable. Use a scope parameter with this
shortcut, place it in front of the variable being accessed, with a dollar sign
(“$”) in between. The following two notations are equivalent:

<@VAR NAME="fred" SCOPE="user">

is same as

@@user$fred

If you are creating complicated meta tag syntax, using this shortcut may
help to make things clearer.

The 31-character length limit on variable names is exclusive of any scope
specifier; for example, in local$longvariablename, the length limit
applies to the variable name portion.
Purging
Variables

Y
u
s

ou can clear obsolete or no-longer-needed variables from memory by
sing the <@PURGE> meta tag to remove a particular variable from a
cope or to remove all variables from a scope.
For more information, see
“<@PURGE>” on
page 260.

F
s

or example, using <@PURGE> to remove the variable foo from DOMAIN
cope looks like this:

<@PURGE NAME="foo" SCOPE="domain">

Clearing a user’s variables when they log out is one example of using the
<@PURGE> meta tag to remove all variables from a specific scope. The
following example shows how to remove all variables from USER scope:

<@PURGE SCOPE="user">
Arrays A
v

rrays are a special type of variable that allow you to store many different
alues in a structured format. This is distinct from the standard variable,

which only stores one value.

Arrays are structured as a table with rows and columns; values are saved
at each row and column intersection. This is similar to the way values are
saved in a database table: as rows and columns.

For example, a three-row by four-column array with the values of the
first twelve integers looks like this:

1 2 3 4
5 6 7 8
9 10 11 12

About Variables
Setting Arrays

For more information see
<@ARRAY>page 93

T
u

o create an array—for example, the one in the previous paragraph—
se the <@ARRAY> meta tag within the Assign action or the <@ASSIGN>

and <@ARRAY> meta tags together:

You can use the <@ARRAY> tag to create arrays by using only rows and
columns (ROW attribute and COLS attribute), which creates an array with
the specified dimensions, all of whose elements are empty, or by using
the VALUE attribute to create and initialize the array with values. If ROWS,
COLS, and VALUE are specified, they must match in terms of the number
of rows and columns specified.

The meta tag assignment of an array to a variable looks as follows:
For more information see
<@ASSIGN>page 96
<@ASSIGN NAME="arrayVar" VALUE=<@ARRAY ROWS="3"
COLS="4" VALUE="1,2,3,4;5,6,7,8;9,10,11,12">>

When using an Assign action to create an array and assign it to a variable,
the Value field would contain an <@ARRAY> meta tag.
For more information, see
cDelim on page 396 and
rDelim on page 420.

(

a

The row and column delimiters for VALUE are set with the configuration
variables rDelim and cDelim, or with the <@ARRAY> tag’s optional
ttributes RDELIM and CDELIM. By default, they are set to “;” and “,”

respectively.)

Array cells can contain single values only. They cannot contain other
arrays.

Array Formats

How arrays are returned depends on context, that is, where an array-
returning meta tag such as <@VAR> is used.

Arrays are returned as array variables (with their special internal
structure) when used in assignments to other variables, for example:

<@ASSIGN NAME="fred" VALUE="<@VAR NAME=
'array_variable'>">

When referred to anywhere else (for example, returned in Results
HTML using the <@VAR> meta tag), arrays are converted to a text
representation using the supplied array-returning attributes for prefixes
and suffixes, or the configuration variable defaults, if no attributes are
specified.

Returning the Values of Arrays

An array is not just a list of values; it has two-dimensional structure. For
example, if you set up and give values to the variable fred as above and
then ask Witango to return the value of the array in HTML only, Witango
355355

About Variables

356356
returns the structured string of values, using delimiters to separate rows
and columns.
For more information, see
Array-to-Text Conversion
Attributes on page 80.

A
o
H

long with many other uses for programming and database work, arrays
ffer a quick method of returning a table or ordered list of values in
TML. All meta tags that return arrays, such as <@VAR>, have attributes

that can be used with arrays:

APrefix: the array prefix string
ASuffix: the array suffix string
RPrefix: the row prefix string
RSuffix: the row suffix string
CPrefix: the column prefix string
CSuffix: the column suffix string
The defaults of these parameters are set with configuration variables. If
the above array variable is returned using <@VAR> with the default
parameters:

APrefix='<TABLE BORDER=1>'
ASuffix='</TABLE>'
RPrefix='<TR>'
RSuffix='</TR>'
CPrefix='<TD>'
CSuffix='</TD>'>
For more information on
arrays, see <@ARRAY> on
page 93.

T
he following simple table is returned when <@VAR NAME="fred"> is
retrieved in Results HTML:

<TABLE BORDER=1><TR><TD>1</TD><TD>2</TD><TD>3</TD>
<TD>4</TD></TR><TR><TD>5</TD><TD>6</TD><TD>7</TD>
<TD>8</TD></TR><TR><TD>9</TD><TD>10</TD>
<TD>11</TD><TD>12</TD></TR></TABLE>

The rendered HTML code displayed in a Web browser looks like this:

Using different suffixes and prefixes could create different kinds of HTML
code, such as various kinds of lists.

You can retrieve one single value from an array by specifying row and
column co-ordinates:

<@VAR NAME="FRED[2,3]">
⇒ Witango returns 7

You can return one column or one row from an array by specifying only
one of the co-ordinates, and setting the other to *:

1 2 3 4

5 6 7 8

9 10 11 12

About Variables
<@VAR NAME="FRED[2,*]">
⇒ Witango returns a one-column array with the values 5 6 7 8
<@VAR NAME="FRED[*,3]">
⇒ Witango returns a one-row array with the values 3 7 11

Special Array: resultSet

Whenever an action returns a result rowset in Witango (for example, a
Search action), that rowset is assigned, in array format, to the local
variable resultSet. This variable could be used in Results HTML to
return your search result, for example:

Your search returned the following results:
<@VAR NAME="resultSet" SCOPE="local">.

As with any array variable, you can use the prefix and suffix attribute
name/value pairs to change how the array is formatted in HTML.

resultSet Named Columns

A special property of resultSet is that when it returns the results of a
Search action or Direct DBMS query, its columns are named. This means
that you can refer to the names of columns (instead of the column
number) when returning the value of the resultSet array. For example,
if you selected these columns in the order shown (as the result of a
Search action):

The following expressions in Results HTML evaluate as shown:

<@VAR NAME="resultSet[3,2]">
⇒ Witango returns 1234

Using named columns, you could return the same values using the
following syntax:

<@VAR NAME="resultSet[3,customer_ID]">
⇒ Witango returns 1234

You can use a combination of asterisks and named columns:

<@VAR NAME="resultSet[*,customer_last_name]">
⇒ Witango returns Smith Jones Johnson (a one-column array).

customer_last_name customer_ID phone_number

Smith 8099 555-1155

Jones 3334 555-1454

Johnson 1234 555-0023
357357

About Variables

358358
Row Zero of Arrays

Many returned arrays, such as the resultSet array returned from a
Search action (as in the previous example), have column names saved in
row zero of the array.

As in the previous example, you can use the row zero column names to
access the columns in the array using array-returning syntax. You can also
return these values (column names) by specifying row and column co-
ordinates [0,*]. For example, to return only column names from a
resultSet array:

<@VAR NAME="resultSet[0,*]">

When you use meta tags other than <@VAR> which return arrays (such as
<@DATASOURCESTATUS>), you cannot access row zero of that array
directly, even though it exists. To access row zero, you must put the
returned result of the array-returning meta tag into a temporary array,
and then return row zero of that temporary array.

For example:
For more information, see
“<@DATASOURCE-
STATUS>” on page 153.
<@ASSIGN NAME=tempArray SCOPE=local
value=<@DATASOURCESTATUS>>

<@VAR NAME=tempArray[0,*]>
How Witango
Determines
Default Scope
in Variable
Assignments

W
W

•

hen you assign a value to a variable but do not specify a scope,
itango performs these steps to determine which scope to use:

Witango looks for an existing variable with that name. The search
starts in the request scope, and continues up through user,
cookie, application, domain, and finally to system scope. If
Witango finds the variable, it assigns the value to it and stops looking.

Caution Witango does not search any custom scope. If you want to
assign a value to or retrieve a value from a custom scope, you must
explicitly specify the scope.
For more information, see
defaultScope on page 405.

•
 If no variable with the specified name is found, Witango creates the
variable in the default scope for new variables. This is by default
request scope, and can be changed using the defaultScope
configuration variable.

About Variables
Here are some examples. Assume that these variables are already
defined:

<@ASSIGN NAME="foo" VALUE="myVal"> assigns myVal to the
existing local variable foo.

<@ASSIGN NAME="doh" VALUE="myVal"> creates a new request
variable called doh and assigns myVal to it.

<@ASSIGN NAME="ipsum" VALUE="myVal" SCOPE="request">
 creates a new request variable called ipsum and assigns myVal to it.

<@ASSIGN NAME="lorem" VALUE="myVal"> assigns myVal to the
domain variable lorem..

Name Scope

foo local

doh domain

ipsum user

lorem domain
359359

Using Configuration Variables

36
Using Configuration Variables
3600
Configuration variables are special values that control basic Witango
behaviors. For example, there are configuration variables for controlling
such settings as:

• the type of information written to Witango Server’s log file
(loggingLevel)

• the default date format used by Witango Server (dateFormat)

• how long user variables last before expiring (variableTimeout).
For a complete and detailed
list of configuration
variables, see Configuration
Variables on page 387.

S
s
t

ome configuration variables can be set in all scopes (except cookie
cope), some in particular scopes, and some only in system scope. For
hose configuration variables that can be set in all scopes, the different

scopes have the following effects:
•
 scope=SYSTEM affects all application files executed by Witango
Server. Assignments made to these configuration variables remain in
effect until you change them again (even after stopping and starting
Witango Server). The values of these variables are saved in the
t4server.ini configuration file.
The Witango Administration Application (the config.taf
application file) provided on the Witango website makes it easy to
change the values of these configuration variables from your Web
browser. You need to know the password set by configPasswd in
order to set configuration variables for the system.

For example, the configuration variable dateFormat
scope=SYSTEM would set the format of the date returned by such
meta tags as <@CURRENTDATE> in all Witango application files served
by Witango Server.

• scope=DOMAIN affects the configuration variables in a particular
Witango domain.

For example, the configuration variable dateFormat
scope=DOMAIN would set the format of the date returned by such
meta tags as <@CURRENTDATE> in all Witango application files served
in a particular Witango domain.

• scope=APPLICATION affects application files within a particular
Witango application, as defined in the application configuration file.
For example, there are situations where it is useful to have a
different dateFormat in a different application. A company that
does business in French and in English is being hosted on the same
Web server, in different Witango applications. Because of the

Using Configuration Variables
different conventions for date formats in the different languages, they
would want the date to look quite different in each application—
English or French.

The configuration variable dateFormat with scope=APPLICATION
would be set to different values within each application, and from
then on, dates returned by Witango (with a meta tag such as
<@CURRENTDATE>) would have different formats in the different
applications.
For more information, see
userKey, altuserKey on
page 428.

•
 scope=USER affects application files executed by a particular user.
As with normal user variables, these depend on the setting of a
reliable user key in order to work as expected, and they expire 30
minutes after that user last accesses Witango.
For example, you could offer the user the chance to set the
dateFormat scope=USER variable, and, for that particular user
from that point on, dates would be formatted the way that user
wants.

• scope=REQUEST affects a particular Witango application file
execution, to override the system, domain, or user settings in a
particular case. The change is effective from the action in which you
make the assignment until the end of the application file’s execution
(including all its branches if it branches to another application file, and
all methods called). For example, you can change the dateFormat
for a particular application file.

Any configuration variables that are valid in request scope are also
valid in the instance and method scope.
You assign values to configuration variables in the same way as
assignments to other kinds of variables: by using Witango Studio’s Assign
action or by using the <@ASSIGN> meta tag to set configuration variables
in HTML processed by Witango.

Caution Users cannot set system-level configuration variables unless
they know the administrative password.
361361

Using User Keys

36
Using User Keys
3622
To associate a user variable with a particular user, Witango must have a
piece of information that it can use to uniquely identify that user.

Witango refers to the unique identifier used for tracking a user’s variables
as the user key. Witango has several settings allowing you to control
what information is used as the user key. Witango default behavior is to
use three meta tags as the value of userKey:

<@APPKEY><@USERREFERENCE><@CGIPARAM CLIENT_IP>

These parts of the userKey function as follows:
For more information, see
<@APPKEY> on page 88,
<@CGIPARAM> on
page 120, and
<@USERREFERENCE> on
page 317.

•

•

<@APPKEY> returns the key value of the current application scope.
This ensures that users in different applications cannot share
variables.

<@USERREFERENCE> generates a unique number for tracking each
user.

• <@CGIPARAM CLIENT_IP> returns the IP address of the user who
is accessing a particular Witango application file. This ensures that a
session can not be taken over by someone from another IP address.

Under this scheme, when users execute their first Witango application
file, Witango generates a unique user reference number and uses it as the
user key. In the results sent back to the user, Witango includes the user
reference number as an HTTP cookie. This cookie is remembered by the
Web browser and is sent automatically with every subsequent request to
your server. Witango checks for the existence of the cookie whenever it
accesses a user variable. If it was sent, the cookie value is used as the user
key.

To help understand how user variable tracking works, imagine that two
users, John and Simone, have each executed an application file that assigns
a value to a user variable called favorite_color. Witango generates a
unique user reference number for each user and sends it in a cookie back
to their Web browsers. The user reference number is a 24-digit

Using User Keys
hexadecimal string. Inside Witango Server, the user variable information
is organized in a manner similar to this:

When, in another application file, the user variable favorite_color is
referenced, Witango first checks to see what the value of the user key is
for the current user. It then uses that key value in combination with the
user variable name to determine the value to return. If the user is John,
the user key value, sent to John’s Web browser as a cookie, is
7F00000146B4488D0C5B847CA5853794E38C12.21.21.212, and the
user variable reference returns “blue”; if the user is Simone, the user key
value is 54A497684AD2A5853794E3
8C5940014FDD1316.01.27.128 and it returns “red”.

User Keys Specific to Transactions

In the results sent back to the user, Witango includes the user reference
number as an HTTP cookie. This cookie is remembered by the Web
browser and is sent automatically with every subsequent request to your
server. Cookies are common to the Web browser application, not
specific to a Web browser window. If a user opens two windows in a
Web browser application, both windows share the same cookies and,
therefore, the same user variables. Usually, this is what you want.

Sometimes you want the user variables to be specific to a particular
transaction. In this case, you should store the needed values not as user
variables, but as hidden form fields or search arguments.

Not all Web browser applications support cookies. Currently, the two
major cookie-capable Web browsers are Netscape Navigator and
Microsoft Internet Explorer. If you need to support user reference-based
user variables with Web browsers that do not support cookies, Witango
allows the user reference number to be passed via a special search
argument, _userReference. The search argument must be passed with
every URL.

For example:

User

User Key
Value(<@APPKEY>
<@USERREFERENCE>
<@CGIPARAM
CLIENT_IP>)

Variable Name
Var
Value

John 7F00000146B4488D0C5B847CA
5853794E38C12.21.21.212

favorite_color blue

Simone 54A497684AD2A5853794E38C5
940014FDD1316.01.27.128

favorite_color red
363363

Using User Keys

364364
<A HREF="<@CGI>/purchase_item.tafitem_num=
<@COLUMN item_num>&_userReference=
<@USERREFERENCE>">Process Order

There is also a shortcut meta tag for including the entire search
argument, <@USERREFERENCEARGUMENT>.

Changing the User Key
Changing the User Key
Witango gives you full control over what information is used as the user
variable key. It does this via two configuration variables: userKey and
altUserKey.

The contents of userKey determines the default key used for tracking
user variables. The contents of altUserKey with SCOPE=system or
domain determines what key is used when the value of the key specified
by userKey with SCOPE=system or domain evaluates to empty. As
stated above, the default value for userKey is
<@APPKEY><@USERREFERENCE><@CGI CLIENT_IP>. The default value
for altUserKey is empty.

Note The userKey and altUserKey specified in the system scope
are the default keys. If the domain scope userKey and altUserKey
have been set, their values override the system settings and determine
the user key for users in that domain, because of the way that variables
are evaluated in Witango.
Assigning
Values to
userKey and
altUserKey

Y
C

W
i

ou can assign value to userKey and altUserKey using the Witango
onfiguration Manager (the config.taf application file).

When you assign a value to userKey and altUserKey, you must tell
itango Server not to evaluate meta tags in the VALUE attribute, but

nstead to evaluate the meta tag when user variables need to be keyed.
This is done with the <@LITERAL> meta tag.
For more information, see
“<@LITERAL>” on
page 176,
“<@ASSIGN>” on
page 49, and
“<@USERREFERENCE>”
on page 254 of the Meta
Tags and Configuration
Variables manual.

T
he syntax of the assignment to userKey of its default value would be as
follows:

<@ASSIGN NAME="userKey" VALUE="<@LITERAL
VALUE='<@APPKEY><@USERREFERENCE><@CGIPARAM
CLIENT_IP>'">
Alternate User
Keys

H

v

ere are some alternate possibilities for userKey (and altUserKey).
You must use the <@LITERAL> tag when assigning to these configuration
ariables:
For more information, see
“<@CGIPARAM>” on
page 74 of the Meta Tags
and Configuration Variables
manual.

•
 <@CGIPARAM USERNAME>
365365

Changing the User Key

366366
If you are using HTTP authentication for your site or for a particular
set of Witango application files, and have each user logging in with a
unique user name, this user name can be used to identify users and
their user variables.

• <@CGIPARAM CLIENT_IP>

Witango can use the client’s IP address as a user key. This user
keying mechanism is useful when you know that the users hitting
your site are guaranteed to have a one-to-one user/IP address
mapping.

Unfortunately, in many situations, the IP address is not an accurate
method of identifying a particular user. For instance, some corporate
networks are set up so that all HTTP requests are routed through a
single server. In this case, requests from different users may all have
the same IP address. When user variables are keyed on IP addresses
and an address may represent several users, user variables do not
serve their purpose of providing a way to keep user-specific data.
Returning the
Value of
userKey and
altUserKey

W
R
T

t

hen the userKey and altUserKey configuration variables are used in
esults HTML, they evaluate to the text of the tags, not the tag values.
o see the current value of the user key, use the ENCODING=METAHTML

parameter to the <@VAR> meta tag. For example, if the following text is
yped in a Results HTML field:

Variables are now being keyed on:
<@VAR NAME="userKey" scope=SYSTEM>.
⇒ Witango returns <@APPKEY><@USERREFERENCE><@CGI
CLIENT_IP>

The value of the key in the current execution is:
<@VAR NAME="userKey" scope="SYSTEM"
 ENCODING="METAHTML">
⇒ Witango returns 7F00000146B4488D0C5B847CA5853794E38C
Using
Application File
User Keys

Y
s

ou can override the default user key on an application file basis by
etting userKey and altUserKey with scope=LOCAL. These work just

like their system-wide counterparts, but apply only until the end of the
application file execution. Use local user keys when you want to
temporarily use a user key different than the system user key.

6
C H A P T E R 6

Document Object Model

Creating and Manipulating Document Instances Using DOM
This chapter describes the Document Object Model (DOM), which
allows users to manipulate XML structures, and shows how it is used in
Witango to create, manipulate, and return the values of document
instances.

The topics covered in this chapter include:

• definition of DOM

• overview of using DOM

• XPointer syntax

• manipulating a document instance

• returning XML

• applications of DOM

• building complex data structures

• separating business and presentation logic

• working with Witango application files.
367

What is DOM?

36
What is DOM?
3688
DOM is the Document Object Model, a World Wide Web Consortium
(W3C) standard for the manipulation of structured data, including XML.
For more information on
the Document Object
Model, see www.w3.org/
DOM/.

D
e
o

OM, as the name implies, allows Witango developers to manipulate the
lements of a structured document (for example, XML) as if they were
bjects. Developers can build document instances, navigate their

structure, and add, modify, or delete elements and content. DOM
creates a representation of an XML document that is an object tree, and
gives you the tools to create and manipulate the object tree in Witango
using Witango variables and meta tags.

Witango adds another intrinsic data type for Witango variables (in
addition to strings and arrays): document instance, which is an XML
document represented using DOM. Once an XML document has been
converted to a document instance, you can manipulate the document
instance using Witango meta tags.

DOM allows you to do the following:

• Create intermediate complex data structures in XML format. For
more information, see Creating Complex Data Structures on
page 382.

• Consolidate business logic (for example, database searches and the
building up of retrieved results) separately from presentation logic
(for example, HTML pages sent to a Web server). For more
information, See “Separating Business and Presentation Logic” on
page 384.

• Create, manipulate, read in, and write out Witango application files
(which are in XML format). For more information, See “Reading and
Writing Witango Application Files” on page 385.

• Create and manipulate other XML structures for a variety of
purposes (for example, Electronic Data Interchange [EDI]).

Caution Not all features of XML are accessible through DOM.
Elements, attributes, and element contents are accessible; inaccessible
XML features include those that are not useful for presentation, for
example, comments and processing instructions.

The following sections of this chapter describe the syntax and meta tags
for manipulating a document instance, and show some applications of
DOM.

Overview of Using DOM
Overview of Using DOM
The following steps give an overview of using DOM to create and
manipulate XML in Witango:
1 Set up a document instance in a Witango variable by doing one of the
following:

• Create a document instance in a Witango variable using
<@DOMINSERT>.

• Explicitly assign XML to a Witango variable using the
<@ASSIGN> and <@DOM> meta tags or the Assign action.

• Use the File Read action or <@INCLUDE> meta tag to assign
an XML document to a Witango variable, using <@DOM> or
<@DOMINSERT>.

2 Use DOM meta tags to manipulate the document instance in a
Witango variable.
The <@DOMINSERT>, <@DOMDELETE>, and <@DOMREPLACE> meta
tags manipulate the document instance. XPointer syntax is used to
select an element or groups of elements to be manipulated.

3 Return values from the document instance into your application.

You can return the entire XML that you have manipulated by
returning the value of the document instance Witango variable.
You can return individual element names, values, attribute, or range
of attributes within the document instance by using the <@VAR>,
<@ELEMENTNAME>, <@ELEMENTVALUE>, <@ELEMENTATTRIBUTE>,
and <@ELEMENTATTRIBUTES> meta tags. These meta tags use
XPointer syntax.
369369

Overview of Using DOM

37
Example T
d

3700
he following diagram shows a schematic representation of an XML
ocument and its DOM representation.

To manipulate XML in Witango, the XML must be converted to a DOM
representation. This is generally done by using the <@ASSIGN> meta tag
or Assign action in conjunction with the <@DOM> meta tag or with the use
of the <@DOMINSERT> tag. The following creates a document instance in
the myDom variable in request scope:

<@ASSIGN NAME="myDom" SCOPE="request"
VALUE="<@DOM VALUE='<portfolio ID="XMLBank">
<stocks>
<stockposition symbol="WIT">
<amount>1000000</amount>

</stockposition>
<stockposition symbol="SUNW">
<amount>10000</amount>

</stockposition>
</stocks>
<bonds/>
</portfolio>'>">

The XML document instance can then be manipulated by Witango meta
tags. For example, using the above representation, the following meta tag
deletes all <STOCKPOSITION> elements that have the attribute name
SYMBOL with the attribute value SUNW (in this case, there is only one):

<@DOMDELETE OBJECT="myDom"
ELEMENT="descendant(all,STOCKPOSITION,symbol,SUNW)"
>

<portfolio ID="XMLBank">
<stocks>

<stockposition symbol="WIT">
<amount>1000000</amount>

</stockposition>
<stockposition symbol="SUNW">

<amount>10000</amount>
</stockposition>

</stocks>
<bonds/>
</portfolio>

XML Document

stocks bonds

portfolio ID=XMLBank

stockposition WIT

stockposition amount

amount1000000

10000

DOM representation
(Document instance)

To/From
Witango
Variable

Overview of Using DOM
All sub-elements and data of this element are also deleted. When the
XML is returned within a Witango application (for example, with the
<@VAR> meta tag), the document instance is saved out as XML.

XML Document

stocks bonds

portfolio ID=XMLBank

stockposition WIT

amount

1000000

To/From
Witango
variable

<portfolio ID="XMLBank">
<stocks>

<stockposition symbol="WIT">
<amount>1000000</amount>

</stockposition>
</stocks>
<bonds/>
</portfolio>

DOM representation
(Document instance)
371371

XPointer Syntax

37
XPointer Syntax
The syntax is a stripped-
down version of that
proposed by a W3C
Working Group. See
www.w3.org/TR/WD-
xptr

X
m
g
n

3722
Pointer syntax is used by the various <@DOM...> and <@ELEMENT...>
eta tags to point at one or more elements in the document instance. In

eneral, an XPointer is a series of terms, linked together by a period, that
avigate to a particular element (or elements). For example:

root().child(1).child(2)

The pointer is a mixture of absolute and relative terms, where absolute
terms refer to a specific element, and relative terms refer to an element
by way of its relation to another element. The following pointer terms
are implemented in Witango :

• root()
• id(idvalue)

• child(number or all,nodetype,attribname,attribvalue)

• descendant(number or all,nodetype,attribname,attribvalue)

Additionally, for the child and descendant terms, only the #element
node type, and specific element names, are supported.
Root I
f an XPointer begins with root(), the location source is the root
element of the containing resource. If an XPointer omits any leading
absolute location term, it is assumed to have a leading root() absolute
location term.
ID I
p

f an XPointer term is of the form id(Name), the location source (the
oint from which that XPointer starts in the DOM tree) is the element in

the containing resource (in this case, all or part of the DOM tree) with an
attribute having a declared type of id and a value matching the given
Name.

For example, the location term id(a27) chooses the necessarily unique
element of the containing resource which has an attribute declared to be
of type id whose value is a27.
Child I
t

dentifies direct child nodes of the location source. Child nodes are nodes
hat are exactly one step downwards from a node.
Descendant T
i

he descendant keyword selects a node of the specified type anywhere
nside the location source, either directly or indirectly nested.

XPointer Syntax
The descendant location term looks down through trees of
subelements in order to end at the node type requested. The search for
matching node types occurs in the same order that the start-tags of
elements occur in the XML data stream: the first child of the location
source is tested first, then (if it is an element) that element’s first child,
and so on. In formal terms, this is a depth-first traversal.
Terms of Child
or Descendant

T
k

he following terms can be used with the child and descendant
eywords:

• number or all

For a positive number n, the nth of the candidate locations is
identified. If the instance value all is given, then all the candidate
locations are selected. The following example identifies the fifth child
element:

child(5)

• nodetype

The node type may be specified by one of the following values:

• Name

Selects a particular XML element type; only elements of the
specified type will count as candidates. For example, the
following identifies the 29th paragraph of the fourth sub-division
of the third major division of the location source:

child(3,DIV1).child(4,DIV2).child(29,P)

• #element

Identifies XML elements. If no Name is specified, #element is
the default.

• attribname, attribvalue

The attribname and attribvalue arguments are used to provide
attribute names and values to use in selecting among candidate
elements. The attribvalue argument is always case-sensitive.

Attribute names may be specified as “*” in location terms in the
(unlikely) event that an attribute value constitutes a constraint
regardless of what attribute name it is a value for.

For example, the following location term selects the first child of the
location source for which the attribute TARGET has a value:

child(1,#element,TARGET,*)

The following XPointer chooses an element using the N attribute:
373373

XPointer Syntax

374374
child(1,#element,N,2).(1,#element,N,1)

Beginning at the location source, the first child (whatever element
type it is) with an N attribute having the value 2 is chosen; then that
element’s first child element having the value 1 for the same attribute
is chosen.

A child with an invalid specification (for example, out-of-range
number) returns an error from Witango Server.
Example G
iven the following document instance:

<portfolio ID="XMLBank">
<stocks>

<stockposition symbol="WIT">
<amount>1000000</amount>

</stockposition>
<stockposition symbol="MSFT">

<amount>200000</amount>
</stockposition>
<stockposition symbol="SUNW">

<amount>10000</amount>
</stockposition>

</stocks>
<bonds/>
<cash>

<cad/>
<usd>

<amount>100000</amount>
</usd>

</cash>
</portfolio>

• root() returns the portfolio element, as would id(XMLBank).

• root().child(1).child(2) returns the second
stockposition element (symbol attribute and MSFT attribute
value), as does root().child(1).child(1,*,symbol,MSFT).

• descendant(3,amount) goes right to the third amount element in
the tree, without having to specify its parentage.
descendant(all,stockposition) returns a list of the three
stockposition elements.

• child(4) returns nothing, because, while an omitted initial absolute
term always implicitly adds root(), there is no fourth child of the
portfolio element.

Manipulating a Document Instance
Manipulating a Document Instance
This section gives details on creating and manipulating a document
instance using DOM meta tags.
Creating a
Document
Instance

T
t

T

he first step in manipulating a document instance is to create one from
he XML.

o create a document instance

Do one of the following:

• Use the <@DOM> meta tag in conjunction with an Assign action or the
<@ASSIGN> meta tag.

• Use the <@DOMINSERT> meta tag, specifying a new variable (and
optionally a scope specification). The XML to be inserted is found
between the start- and end-tags.

The following examples create a document instance in the variable named
myDom in application scope. If that variable already exists in that scope,
the value of that variable is replaced:

<@ASSIGN NAME="myDom" SCOPE=application
VALUE="<@DOM VALUE='<XML><DIV ID="1"><P>This is
an example of a structured document.</P></DIV><DIV
ID="2"><P>Here is some more text.</P><P>Here is an
additional paragraph of text.</P></DIV></XML>'>">

<@DOMINSERT OBJECT="myDom" SCOPE=application>
<XML>
<DIV ID="1">
<P>This is an example of a structured document.</P>
</DIV>
<DIV ID="2">
<P>Here is some more text.</P>
<P>Here is an additional paragraph of text.</P>
</DIV>
</XML>
</@DOMINSERT>

There are also several other different ways you can create a document
instance from XML, but they all involve variations on the basic use of
<@DOM> and <@ASSIGN>, or <@DOMINSERT>. For example, you can read
in an XML file using <@INCLUDE>, and create a document instance with
<@DOM> or <@DOMINSERT>:

<@ASSIGN NAME=myXML VALUE=<@DOM VALUE=<@INCLUDE
FILE=fred.xml>>>
375375

Manipulating a Document Instance

376376
<@DOMINSERT OBJECT=myXML>
<@INCLUDE FILE=fred.xml>
</@DOMINSERT>
Using DOM
Meta Tags

Y
t
a

ou manipulate the XML document by using the DOM meta tags to point
o the element(s) you want to delete, replace, or insert into. For inserting
nd replacing meta tags, the XML to be inserted or replaced is found

between start- and end-tags of the DOM meta tag.

To insert XML into a document instance

• Use the <@DOMINSERT> meta tag.

For example, using the above myDom document instance, the following
inserts an additional paragraph between the two <P> elements in the
second <DIV> element:

<@DOMINSERT OBJECT="myDom" SCOPE="application"
ELEMENT="root().child(2).child(1)"
POSITION="BEFORE">
<P>Here is an additional paragraph of text.</P>
</@DOMINSERT>

To delete XML from a document instance

• Use the <@DOMDELETE> meta tag.

For example, using the above myDom document instance, the following
deletes the second paragraph in the second <DIV> element.

<@DOMDELETE OBJECT="myDom" SCOPE="application"
ELEMENT="root().child(2).child(2)">

To replace XML in a document instance

• Use the <@DOMREPLACE> meta tag.

For example, using the above myDom document instance, the following
replaces the first <DIV> element (the one with the attribute ID=1).

<@DOMREPLACE OBJECT="myDom" SCOPE="application"
ELEMENT="root().descendant(all,DIV,ID,1)">
<DIV ID="1"><P>Here is a replacement paragraph
inside a replacement DIV.</P>
</DIV>
</@DOMREPLACE>

Returning XML in Witango Applications
Returning XML in Witango Applications
You can use a variety of Witango meta tags to return XML from a
document instance. You can return all or part of the document instance
using <@VAR>, return particular element names with <@ELEMENTNAME>,
return element values with <@ELEMENTVALUE>, return attribute values
with <@ELEMENTATTRIBUTE>, or return all attributes of one or more
elements with <@ELEMENTATTRIBUTES>.

When returning values, you can select whether you want to return the
value as text or as an array. By default, multiple values returned by the
<@ELEMENT...> meta tags are returned as an array, and single values are
returned as text.

If the ELEMENT attribute of any of the XML-returning meta tags is
omitted, the root element of the document instance is assumed.

The following examples assume there is a document instance variable
called myDom which contains a DOM representation of the following
XML:

<XML>
<DIV ID="1" CLASS="normal">
<P>This is an example of a structured document.</P>
</DIV>
<DIV ID="2" CLASS="urgent">
<P>Here is some more text.</P>
<P>Here is an additional paragraph of text.</P>
</DIV>
</XML>
Using <@VAR>
and
<@ASSIGN>
With DOM

T

•

o return the entire or part of a document instance

Use the <@VAR> meta tag.

The following example returns the entire document instance:

<@VAR NAME="myDom">
A
 document instance is returned by <@VAR> as XML with no conversion
of characters to HTML entities if the ENCODING attribute is not present.
No conversion occurs even when XML is placed in HTML (for example,
to be displayed as a Web page). All other ENCODING attribute settings
function normally.
377377

Returning XML in Witango Applications

378378
Note The use of <@VAR> with XML when no ENCODING attribute is
specified differs from returning other types of variables—text and
arrays—into HTML. The default behavior of <@VAR> is to return
variables as encoded for HTML, so that the returned value displays
literally in the HTML (for example, “<” and “>” characters are encoded
as their HTML entity definitions: < and >). The lack of
encoding when returning document instances reflects the fact that XML
is normally intended as instructions to the client (like HTML), generally
not as data to be displayed.
In order to display the XML in its encoded form—for example, for display in
a Web browser—you can use the ENCODING=MULTILINE attribute when
using <@VAR>, which converts the appropriate text to HTML entities but
also adds a
 HTML tag to the end of each line. You can also display
encoded XML by first assigning the XML text to a variable (using the
TYPE=TEXT attribute, which forces XML to be returned, not a document
instance), and then returning the value of that variable in the HTML. The
default encoding of variables returned with <@VAR> then takes place, for
example:

<@ASSIGN tempXML <@VAR myDOM TYPE=TEXT>>
<@VAR tempXML>

The XML is returned with the appropriate text converted to HTML entities.

If you want to return part of the document instance, you can do so by
using the ELEMENT attribute of the <@VAR> meta tag. This is a pointer to
the element that you want to return. All sub-elements and values within
that sub-element are returned as well.

For example, the following returns the second <DIV> element from the
above document instance, all sub-elements, and data in those elements:

<@VAR NAME="myDom" ELEMENT="root().child(2)">

returns:

<DIV ID="2" CLASS="urgent">
<P>Here is some more text.</P>
<P>Here is an additional paragraph of text.</P>
</DIV>

Copying all or part of a document instance to another variable

• Use the <@VAR> meta tag in conjunction with the <@ASSIGN> meta
tag.

There are two possible cases: where the ELEMENT attribute of <@VAR>
points at a single element or at multiple elements:

• When the ELEMENT attribute of <@VAR> points at a single element,
the element and its children are copied into the variable defined by
the <@ASSIGN> meta tag.

Returning XML in Witango Applications
The following example assigns the second <DIV> element from the
above document instance, all sub-elements, and data in those
elements to a new variable in user scope called newDom:

<@ASSIGN NAME="newDom" SCOPE="user" VALUE='<@VAR
NAME="myDom" ELEMENT="root().child(2)">'>

• When the ELEMENT attribute of <@VAR> points at multiple elements,
the elements and their children are copied into the variable defined
by the <@ASSIGN> meta tag; however, because a document must
have a single root element, a root element called <root> is
automatically created as the parent of the copied elements and the
root of the document instance.

The following example assigns all the <P> elements in the myDom
variable to a new variable in request scope called PDOM:

<@ASSIGN NAME="PDOM" SCOPE="request"
VALUE="<@VAR OBJECT='myPortfolio'
ELEMENT='descendant(all,P)'>">

This results in the following document instance in the PDOM variable:

<root>
<P>This is an example of a structured document.
</P>
<P>Here is some more text.</P>
<P>Here is an additional paragraph of text.</P>
</root>
Using
<@ELEMENT...
> Meta Tags
With DOM

A

a

T

ll of the <@ELEMENT...> meta tags can return either the text
representation of an array (TYPE attribute set to TEXT), or an actual
rray (TYPE attribute set to ARRAY). However, when an array is returned

in Results HTML, it is always returned as an HTML table, whether the
YPE attribute of the <@ELEMENT...> meta tags is set to TEXT or

ARRAY.
For more information, see
Arrays on page 354.

W
T

hen an array is referenced within a variable assignment, setting the
YPE attribute to TEXT returns the HTML table; setting the type

attribute to ARRAY or not putting the attribute in the meta tag (the
default) copies the array or part of the array, and the array is not
converted to an HTML representation.

To return one or more element names

• Use the <@ELEMENTNAME> meta tag.
For more information,
see<@ELEMENTNAME>
on page 186 .

F
p

or example, the following returns the name of the element that is being
ointed to from the above document instance:
379379

Returning XML in Witango Applications

380380
<@ELEMENTNAME OBJECT="myDom"
ELEMENT="root().child(2)">

returns:

DIV

The following example returns two element names as an array:

<@ELEMENTNAME OBJECT="myDom"
ELEMENT="root().child(all)">

returns:

To return one or more attribute values

• Use the <@ELEMENTATTRIBUTE> meta tag.

DIV

DIV
For more information,
see<@ELEMENTATTRIBU
TE> on page 182 .

F
t

or example, the following returns the value of the attribute named ID in
he element that is being pointed to from the above document instance:

<@ELEMENTATTRIBUTE OBJECT="myDom" ATTRIBUTE="ID"
ELEMENT="root().child(2)">

returns:

2

The following example returns two attribute values as an array:

<@ELEMENTATTRIBUTE OBJECT="myDom" ATTRIBUTE="ID"
ELEMENT="root().child(all)">

returns:

To return all attribute values of an element or elements

• Use the <@ELEMENTATTRIBUTES> meta tag.

1

2

For more information,
see<@ELEMENTATTRIBU
TES> on page 184 .

T
e
e

his meta tag returns a one-dimensional array if you are pointing at one
lement, and a two-dimensional array if you are pointing at multiple
lements.

For example, the following returns the attribute names and values of the
elements that are being pointed to from the above document instance.
Each element pointed to returns a row. The returned value is a two-
dimensional array:

Returning XML in Witango Applications
<@ELEMENTATTRIBUTES OBJECT="myDom"
ELEMENT="root().child(all)">

returns:

Row 0 (zero) of the array contains the attribute name for each column
(in this case, ID and CLASS, respectively).

To return one or more element values

• Use the <@ELEMENTVALUE> meta tag.

1 normal

2 urgent
For more information,
see<@ELEMENTVALUE>
on page 188 .

F
p

or example, the following returns the value of the element that is being
ointed to from the above document instance:

<@ELEMENTVALUE OBJECT="myDom"
ELEMENT="root().child(1).child(1)">

returns:

This is an example of a structured document.

The following example returns the element values of the elements that
are being pointed to from the above document instance. The returned
value is a one-dimensional array:

<@ELEMENTVALUE OBJECT="myDom"
ELEMENT="root().child(2).child(all)">

returns:

Here is some more text.

Here is an additional paragraph of text.
381381

Applications of DOM

38
Applications of DOM
3822
DOM allows you to parse XML. Many different standards are written in
XML, and the ability of Witango to manipulate structured data enables
you to read, modify, and write XML for a variety of purposes.

This section discusses some of the uses of the Document Object Model,
including the building up of complex data structures in application files,
the separation of presentation and business logic, and reading and writing
Witango application files (which are in XML format).
Creating
Complex Data
Structures

U
i
b
t

sing DOM, you can build up complex data structures in document
nstances with data drawn from a variety of sources. This data can then
e returned to the user using the DOM meta tags as XML, HTML, or
ext, in a variety of complex ways.

The steps to creating and using complex data structures are:

1 Decide on a structure for the data.

In order for a complex structure to be created, there has to be
agreement on some sort of document type definition. This may not
be formally specified as a DTD, but the general tree structure,
elements, attributes, and their ordering should be clear.

2 Get the data from whatever source (data sources, external actions,
objects, and so on).

3 Use Witango variables to save the intermediate results. Generally,
results from an action are returned with the resultSet array. Use
this array or portions of this array to create different Witango
variables or arrays that save the relevant information from a
database action.
For more information, see
Using DOM Meta Tags on
page 376.
4 Incorporate the data into the structure of the document instance by
using <@DOM...> meta tags to insert and modify XML.
For more information, see
Returning XML in Witango
Applications on page 377.
5 Return values from the document instance using <@ELEMENT...>
meta tags.

Example

Creation of a complex user portfolio of stocks, bonds, cash, and other
financial assets may require a variety of searches into various financial
companies’ data sources, using data returned from an object that
retrieves financial data, using external actions to return data from a script
that reads a custom financial format, and so on. Creating a document

Applications of DOM
type definition and using document instances is a way to organize all this
complex data so that it can be returned using DOM meta tags.

The tree structure of a portfolio could look something like the following:

<portfolio ID="">
<stocks>

<stockposition symbol=""></stockposition>
</stocks>
<bonds>
</bonds>
<mutualfunds>

<mfposition symbol=""></mfposition>
</mutualfunds>
<cash>

<cad></cad>
<usd></usd>

</cash>
</portfolio>

While the stocks and bond data could be retrieved from two different
data sources, the cash and mutual funds data require, respectively, a call
to an object and one to an external script. The data returned from all
these different types could be easily inserted into the data structure with
the use of DOM meta tags.

Assuming that the results from a search on stocks held by a particular
user were returned and copied from the resultSet of that action into a
mystocks array, the following meta tags return values by looping
through an array where the stock symbol is in column one, and the
number of shares being held is in column two, and inserts those values
into a stock and amount element within the Portfolio document
instance:

<@DOMINSERT OBJECT="Portfolio"
ELEMENT="root().child(stocks)">
<@FOR STOP="<@NUMROWS ARRAY=’mystocks’>">
<stockposition symbol="<@VAR
NAME=’mystocks[<@CURROW>,1]’">>
<amount><@VAR NAME="mystocks[<@CURROW>,2]>"
</amount>
</stockposition>
</@FOR>
</@DOMINSERT>

To return values from the document instance, use the ELEMENT meta
tags which refer to various element or attribute values in the document
instance.

For example, to return an array of all the stock symbols in the portfolio,
use the following meta tag:
383383

Applications of DOM

384384
<@ELEMENTATTRIBUTE OBJECT="Portfolio" NAME="symbol"
ELEMENT="root().descendants(all)">
Separating
Business and
Presentation
Logic

W
o
i
u
p

itango’s action based metaphor allows you to build up returned HTML
n Web pages, action by action, in a variety of complex ways. This model

s a good one for many Web applications. However, it may sometimes be
seful in a Witango solution to think about separating business and
resentation logic.

The business logic of a Witango application is the various actions and calls
that retrieve information. The presentation logic of a Witango application
is how Web pages are shown to the user; that is, the path that the user
goes through as they use a Web site.

These two different components of a Witango application can be used to
create complex solutions in Witango. Separating business from
presentation logic allows changes in the method of processing
information, without affecting the method of presenting information, and
is especially useful in complex projects. For example, one set of
developers could be working on the appearance of the Web pages with
proper formatting and design; the other developers could be working on
the creation of the data structures to be returned.
Witango provides you with a Presentation action that can assist with the
separation between presentation and business logic.

While it is not necessary to use XML in the form of Witango variables
and document instances in order to separate business logic from
presentation logic, it can be of enormous assistance because using DOM
meta tags can easily create complex data structures. The document
instance can be seen as an intermediate representation of results from
business logic, which can then be translated into HTML for presentation.
This is sometimes called the Presentation Document Object Model, or
PDOM.

The previous section of this chapter on complex data structures shows
examples of building up a complex document instance using DOM meta
tags and retrieving values from that document instance using ELEMENT
meta tags. The separation of business and presentation logic means that
the DOM meta tags would be found in the Results HTML of the various
actions, in order to build the structure, and the <@ELEMENT...> meta
tags would be used on the presentation pages to retrieve information
from the structure.

Applications of DOM
The following diagram shows a representation of the data flow between
business and presentation logic:

stocks bonds

portfolio

stockposition stockposition

amount amount

Data sources Objects External actions

Information from a
variety of sources is
used to create complex
data structures using
DOM meta tags in a
document instance
(XML).

Presentation pages created by the presentation developer and seen
by the user. ELEMENT meta tags are used to return values from the
complex data structure (document instance).

stock page
bond page

amounts
page

Witango Actions

Presentation Pages
Reading and
Writing
Witango
Application
Files

W
r
O
p
i
f

itango application files are in XML format. This means that you can
ead these files into a Witango variable, creating a document instance.
nce the XML has been saved as a Witango variable, you can then

erform a variety of actions on the document instance: extract
nformation from the document instance, make changes and write out the
ile, and so on.
For more information, See
“XML Format” on page 49.

F
t

or example, the following meta tags read in a Witango application file,
urning the XML into a document instance:

<@ASSIGN NAME="myTaf" VALUE=<@DOM VALUE=<@INCLUDE
FILE="Login.taf">>>
385385

Applications of DOM

386386
<@ASSIGN NAME="myTaf" VALUE="<@INCLUDE
FILE=Login.taf>">
<@DOMINSERT OBJECT="myDOM">
@@myTAF
</@DOMINSERT>

The following meta tags return the deployment data sources in the form
of an array from the Login.taf file (the DeploymentDSID attribute
lists the name of the deployment data sources for all database-accessing
actions):

<@ELEMENTATTRIBUTE OBJECT="myTaf"
NAME="DeploymentDSID"
ELEMENT="root().descendants(all)">

You can create Witango application files that generate or modify
Witango files, using the DTD for Witango application files and Witango
class files. This is useful for advanced Witango developers who want to
automate the process of generating application files.

Caution Modifying Witango application files or Witango class files
outside of Witango Studio is recommended for advanced users only.
Even advanced users should make backups of any files that are to be
modified.
Other Uses X
d

ML has many uses. The ability of Witango to create and manipulate
ocument instances enables you to do the following:

• Receive, modify, and send Electronic Data Interchange data in XML
format. For more information on EDI and XML, see:

http://www.xml.com/xml/pub/Guide/EDI.

• Generate XML for presentation on the Internet through the use of
Web browsers or plug-ins to Web browsers that can parse and
render dialects of XML:

• generate equations using the Math Markup Language
(MathML). For more information on MathML, see:

http://www.w3.org/Math/

• author multimedia presentations in Witango using the
Synchronized Multimedia Integration Language (SMIL). For
more information on SMIL, see:

http://www.w3.org/AudioVideo/

http://www.xml.com/xml/pub/Guide/EDI.
http://www.w3.org/Math/
http://www.w3.org/AudioVideo/

7
C H A P T E R 7

Configuration Variables

Setting Witango Options With Configuration Variables
Configuration variables set options controlling the operation of Witango
Server. This chapter describes the configuration variables and also lists
their default values and the scopes in which they are valid.

Configuration variables with scope other than system can be set just like
any other variable: use the <@ASSIGN> meta tag with the SCOPE
attribute set in HTML or in the Assign action when building an application
file.

To change system configuration variables, you must first set
configPasswd with scope=USER to match the system configuration
variable configPasswd, or you can use the config.taf application file
to set system configuration variables more easily.

Witango Server switches (for example, fileReadSwitch, javaSwitch)
are special configuration variables that enable or disable certain Witango
features.

Configuration variables are saved in the configuration file
(witango.ini).
387

Configuration Variables

38
A Note on Scope
3888
The description for each configuration variable lists the scopes in which
they are valid (for example, “Valid in all scopes” or “System scope only”).
If there is an attempt to set a configuration variable in an unregistered
scope an error will be generated by the Witango Server.

Note Configuration variables are never valid in cookie scope.
F
or those variables that belong to all or a variety of scopes, adding scope
specifications has the following effects:

• scope=METHOD sets the configuration variable value for the
current method within a Witango class file.

• scope=INSTANCE sets the configuration variable value for the
current instance of a Witango class file.

• scope=REQUEST sets the configuration variable value for the
current application file.

• scope=USER sets the configuration variable value to be used
with the current user.

• scope=APPLICATION sets the configuration variable value to
be used in the current Witango application.

• scope=DOMAIN sets the configuration variable value to be used
in the current Witango domain.

• scope=SYSTEM sets the configuration variable value to be used
in Witango Server. An administrative password is required to
set or change the value of a system configuration variable.

A Note on Default Locations
A Note on Default Locations
The following paths are the system defaults under different operating
systems for files whose locations are set by Witango configuration
variables; henceforth, this is called the configuration directory.

• OS X
/Applications/Witango/Server/configuration

• Windows NT / 2000
C:\Program Files\Witango\Server\Configuration\

• Linux
/usr/local/witango/configuration

Note Under Windows, the drive letter may be different than “C”,
depending on where Witango is installed.

This affects the following configuration variables:

appConfigFile page 393
defaultErrorFile page 404
domainConfigFile page 405
headerFile page 411
lockConfig page 413
objectConfigFile page 418
pidFile page 419
timeoutHTML page 426
varCachePath page 430
389389

Configuration Variables

39
Alphabetical List of Configuration Variables, With Scopes

Configuration
Variable

System Domain Application User Request

absolutePathPrefix ¸ ¸ ¸ ¸ ¸

altUserKey ¸ ¸ ¸ ¸

appConfigFile ¸

applicationSwitch ¸

aPrefix ¸ ¸ ¸ ¸ ¸

aSuffix ¸ ¸ ¸ ¸ ¸

cache ¸

cacheIncludeFiles ¸

cacheSize ¸

cDelim ¸ ¸ ¸ ¸ ¸

configPasswd ¸ ¸ ¸

cPrefix ¸ ¸ ¸ ¸ ¸

crontabFile ¸

cSuffix ¸ ¸ ¸ ¸ ¸

currencyChar ¸ ¸ ¸ ¸ ¸

customScopeSwitch ¸ ¸

customTagsPath ¸ ¸

dataSourceLife ¸

dateFormat ¸ ¸ ¸ ¸ ¸

DBDecimalChar ¸ ¸ ¸ ¸ ¸

debugMode ¸ ¸ ¸ ¸ ¸

decimalChar ¸ ¸ ¸ ¸ ¸

defaultErrorFile ¸ ¸

defaultScope ¸ ¸

docsSwitch ¸ ¸

domainConfigFile ¸

domainScopeKey ¸

DSConfig ¸
3900

Alphabetical List of Configuration Variables, With Scopes
DSConfigFile ¸

enableWitangoUserDocs ¸

encodeResults ¸ ¸ ¸ ¸ ¸

externalSwitch ¸ ¸

FMDatabaseDir ¸ ¸

fileDeleteSwitch ¸ ¸

fileReadSwitch ¸ ¸

fileWriteSwitch ¸ ¸

headerFile ¸ ¸

httpHeader ¸ ¸ ¸ ¸ ¸

itemBufferSize ¸

javaScriptSwitch ¸ ¸

javaSwitch ¸ ¸

license ¸

licenseErrorHTML ¸

listenerPort ¸

lockConfig ¸

logDir ¸

loggingLevel ¸

logToResults ¸ ¸ ¸ ¸ ¸

mailAdmin ¸

mailDefaultForm ¸ ¸ ¸ ¸ ¸

mailPort ¸ ¸

mailServer ¸ ¸

mailSwitch ¸ ¸

maxActions ¸

maxHeapSize ¸

maxSessions ¸

noSQLEncoding ¸ ¸ ¸ ¸ ¸

objectConfigFile ¸ ¸

Configuration
Variable System Domain Application User Request
391391

Configuration Variables

39
passThroughSwitch ¸ ¸

persistantRestart ¸

pidFile ¸

postArgFilter ¸ ¸ ¸ ¸ ¸

queryTimeout ¸ ¸ ¸ ¸ ¸

rDelim ¸ ¸ ¸ ¸ ¸

requestQueueLimit ¸

returnDepth ¸

rPrefix ¸ ¸ ¸ ¸ ¸

rSuffix ¸ ¸ ¸ ¸ ¸

shutdownURL ¸

startStopTimeout ¸

startupURL ¸ ¸

staticNumericChars ¸

stripCHARs ¸ ¸ ¸ ¸ ¸

TCFSearchPath ¸ ¸ ¸ ¸ ¸

thousandsChar ¸ ¸ ¸ ¸ ¸

threadPoolSize ¸

timeFormat ¸ ¸ ¸ ¸ ¸

timeoutHTML ¸

timestampFormat ¸ ¸ ¸ ¸ ¸

transactionBlocking ¸

useFullPathForIncludes ¸

userAgent ¸ ¸ ¸ ¸ ¸

userKey ¸ ¸ ¸ ¸

validHosts ¸

varCachePath ¸

variableTimeout* ¸ ¸

variableTimeoutTrigger* ¸

Configuration
Variable System Domain Application User Request
3922
*These configuration variables can be used with a custom scope.

absolutePathPrefix
absolutePathPrefix
System & Application
scope

T
p
a

his configuration variable allows the server administrator to specify a
ath which limits the File action, External (command line) actions, and
ttachments to Mail actions. The value of this configuration variable is

prepended to the path specified in the File, External, or Mail action.
T
his configuration variable can be used to set security on file reads, file
writes, file deletes, mail attachments, and external actions that invoke the
command line. Having the absolutePathPrefix set on a system-wide
or application-specific basis means that system users or application users
cannot access files in directories other than those under a certain
directory.

If this configuration variable is left empty the file action path must be a
fully qualified path, that it, it must begin either with a drive specification
or be in the UNC format (eg. \\computer\directory\file). Specifying
relative file paths will not work as the current directory is a process-level
entity and changing it from multiple worker threads will create racing
conditions with unpredictable results.
393393

Configuration Variables

39
altUserKey
3944
See “userKey, altuserKey” on page 428.

appConfigFile
appConfigFile
System scope only A
p

pplication definitions are read in by Witango Server at startup from the
ath and file determined by this system configuration variable.
T
he file is by default called applications.ini (Windows/UNIX) and
resides in the configuration directory. See “A Note on Default Locations”
on page 388.

See also

<@APPKEY> page 88
<@APPNAME> page 89
<@APPPATH> page 90
applicationSwitch page 394
395395

Configuration Variables

39
applicationSwitch
System scope only T
a

3966
his configuration variable determines whether Witango Server supports
pplication scope. When this switch is turned off, Witango Server does

not support Witango applications, and <@APPNAME>, <@APPPATH>, and
<@APPKEY> always return empty.
T
he main reason for this switch is to improve performance when
applications are not being used.

Valid values are on and off.

See also

<@APPKEY> page 88
<@APPNAME> page 89
<@APPPATH> page 90
appConfigFile page 393

aPrefix
aPrefix
Valid in all scopes T
t

his variable sets the prefix character for the entire array when the meta
ag <@VAR> is used to return the value of an array and convert the array

values to text (for example, in Results HTML).
T
he default value of this variable is <TABLE BORDER="1">, so that
returning the values of arrays when arrays are converted to text
generates HTML tables.

See also

aSuffix page 394
cPrefix page 397
cSuffix page 397
rPrefix page 421
rSuffix page 422
397397

Configuration Variables

39
aSuffix
Valid in all scopes T
3988
his variable sets the suffix character for the entire array when the meta
tag <@VAR> is used to return the value of an array and convert the array
values to text (for example, in Results HTML).
T
v

he default value of this variable is </TABLE>, so that returning the
alues of arrays when arrays are converted to text generates HTML

tables.

See also

aPrefix page 394
cPrefix page 397
cSuffix page 397
rPrefix page 421
rSuffix page 422

cache
cache
System scope only T
P

his configuration variable turns the Witango Server cache on or off.
ossible values are true and false.
The default value of this variable is false.

See also

cacheSize page 395
399399

Configuration Variables

40
cacheIncludeFiles
System scope only T
o

4000
his configuration variable turns the Witango Server include file caching
n and off. The possible values for this variable are true and false. The

default is true. This variable only has an effect if the cache configuration
variable is set to true; see the previous section.

See also

<@PURGECACHE> page 261

cacheSize
cacheSize
System scope only T
W

he value of this configuration variable specifies, in bytes, how much of
itango memory is used for caching application files and files referenced

with <@INCLUDE>.

Witango Server caches in memory each file it reads, so that subsequent
accesses of the same file are faster. The maximum size of the cache is
controlled by this configuration variable. When the cache fills up, and
Witango tries to load an uncached file, any cached included files are
purged to make room. If that fails to free enough memory to load the file,
the cached application files are purged.

You should set the value of cacheSize to a value large enough to
accommodate the files that are regularly accessed by Witango.

The default value of cacheSize is 2000000.

See also

cache page 395
401401

Configuration Variables

40
cDelim
Valid in all scopes T
c

4022
his variable sets the default delimiter character between columns for
reating arrays with the meta tag <@ARRAY>.
T
he default value of this variable is “,”.

See also

rDelim page 420

configPasswd
configPasswd
User, application, and
system scopes

T
u

his configuration variable sets the password that must be entered for a
ser to be allowed to change system configuration variables.

When you attempt to set a system configuration variable, Witango
checks to see if there is a user variable called configPasswd that
matches the corresponding system variable. If there is, Witango lets you
change configuration variables. If not, Witango returns an error message.
That is, before attempting to set system configuration variables, you must
assign the value to the configPasswd user variable that matches the
system configuration variable configPasswd.

When you use the config.taf application file, you are prompted for
this password.

configPasswd with application scope is used as the password for
assignments to configuration variables in application scope. That is, in
order to make an assignment to a configuration variable in application
scope, you must assign the value to the configPasswd user variable that
matches the application configuration variable configPasswd.
403403

Configuration Variables

40
cPrefix
Valid in all scopes T
i

4044
his variable sets the prefix character for columns (that is, individual data
tems) of an array. The meta tag <@VAR> is used to return the value of an
array and convert the array values to text (for example, in Results
HTML).
T
he default value of this variable is <TD>, so that returning the values of
arrays when arrays are converted to text generates HTML tables.

See also

aPrefix page 394
aSuffix page 394
cSuffix page 397
rPrefix page 421
rSuffix page 422

crontabFile
crontabFile
System scope only T
t

his configuration variable points to the crontab file used to set up
imed URL processing with Witango.
T
he default value of this configuration variable is empty.
405405

Configuration Variables

40
cSuffix
Valid in all scopes T
r

4066
his variable sets the suffix character for columns in an array that is
eturned when the meta tag <@VAR> is used to return the value of an

array and convert the array values to text (for example, in Results
HTML).
T
he default value of this variable is </TD>, so that returning the values of
arrays when arrays are converted to text generates HTML tables.

See also

aPrefix page 394
aSuffix page 394
cPrefix page 397
rPrefix page 421
rSuffix page 422

currencyChar
currencyChar
Valid in all scopes

(request scope invalid when
staticNumericChars=true)

T
c
e
t

he value of this configuration variable tells Witango Server what
haracter string is used as the currency symbol in money values (for
xample, in the USA and Canada, the dollar sign ($) is used). Values up to
hree characters in length may be assigned to currencyChar. If a longer

value is assigned, only the first three characters are used.

Witango Server uses this value in order to properly evaluate numbers in
conditional comparisons (for example, Branch action, <@IF>,
<@IFEQUAL> and <@ISNUM> meta tags) and in calculations performed
with <@CALC>; that is, it recognizes that strings that start or end with
these characters are to be treated as numeric and not text.

The setting is also used when Witango Server is constructing SQL for
Search, Insert, Update, and Delete actions. Witango automatically
removes the character string specified by currencyChar from any
values specified for numeric columns. Use the <@DSNUM> meta tag to
perform the same function on numbers you specify in Direct DBMS
actions.

The default value of currencyChar is $.

On Macintosh, the default is the corresponding setting in the Numbers
control panel on the server computer. You may always revert to the
default setting by assigning an empty value to this configuration variable.

currencyChar and Scope
For more information, see
“staticNumericChars” on
page 423.

W
hen staticNumericChars has the value true (the default), changing
the value of currencyChar has no effect during the execution of an
application file. Changes to currencyChar in user, domain, or system
scope take effect with the next application file execution; as a
consequence, changes to currencyChar in request scope have no
effect.
W
hen staticNumericChars has the value false, currencyChar
works with scope in the standard way.

See also

DBDecimalChar page 402
decimalChar page 403
<@DSDATE> page 178
<@DSNUM> page 180
<@DSTIME> page 178
<@DSTIMESTAMP> page 178
407407

Configuration Variables

408408
staticNumericChars page 423
thousandsChar page 424

customScopeSwitch
customScopeSwitch
System & Application
scope

T
a

his configuration variable determines whether custom scopes are
llowed. The possible values for this variable are on and off.
 W
v

hen set to false, an error is generated if an application file uses a
ariable scope that is not one of the built-in variable scopes in Witango

(that is, method, instance, request, user, cookie, domain, application, or
system scope).

A system scope value of off for this configuration variable overrides an
application scope value of on.
409409

Configuration Variables

41
customTagsPath
System & Application
scope

C
d
v

4100
ustom tag definitions are read in by Witango Server at startup from a
irectory determined by this configuration variable. This configuration
ariable can have different values for application and system scope; that is,

users can create different sets of custom tags for each application, or
custom tags that apply to all of Witango Server.
For more information on
custom tags, see “Custom
Meta Tags” on page 313.

T
u
p

he default value of this variable points to the CustomTags directory
nder the configuration directory. See “A Note on Default Locations” on
age 388. (For example, this is by default:
WITANGO_PATH\CustomTags\ under Windows, and, WITANGO-
PATH/customtags on Unix).

Any files in this directory and any subdirectories that contain custom tag
definitions are read in and used by Witango Server.

See also

<@CUSTOMTAGS> page 152
<@RELOADCUSTOMTAGS> page 268

dataSourceLife
dataSourceLife
System scope only T
W

he value of this configuration variable indicates how long
itango Server keeps open an unused connection to a data source. This

variable is specified in minutes. When the time out period is exceeded,
the connection to the data source is closed. Each time a data source
connection is used, its timeout timer is reset to zero.

When this configuration variable is set to zero, data source connections
are always closed immediately after use. Multiple actions in the same
execution using the same data source use the same connection; that is,
the connection is not closed until the end of the application file
execution.

The default value is 30 (minutes).
411411

Configuration Variables

41
dateFormat, timeFormat, timestampFormat
Valid in all scopes T
d

4122
hese configuration variables allow you to specify the formats for
isplaying and entering date, time, and timestamp values. The formats

determine the default display formats of retrieved database values as well
as those returned by the <@CURRENTDATE>, <@CURRENTTIME>, and
<@CURRENTTIMESTAMP> meta tags. Date, time, and timestamp values
specified in Update and Insert actions, and those in criteria values must
match the formats specified in these configuration variables. Witango
converts these values to the formats required by the database.

Note On Macintosh, the default values for dateFormat,
timeFormat, and timestampFormat, if they are not explicitly set,
come from the Date & Time control panel of the computer running
Witango.

FileMaker Pro data sources only: These configuration variables determine
how the date, time, and timestamp values returned by the
<@CURRENTDATE>, <@CURRENTTIME>, and <@CURRENTTIMESTAMP>
meta tags are formatted. Date, time, and timestamp values specified in
Update and Insert actions, and those in criteria values must match the
format specified in the Date & Time control panel of the Macintosh
running the FileMaker Pro application.
For more information, see
“DATETIME” on page 78.

T
t

o control the format of dates and times returned by FileMaker Pro, use
he FORMAT attribute with the datetime: class of formatting.

The following table shows valid formatting codes.

dateFormat, timeFormat, timestampFormat
Date and Time Formatting Codes

Examples

If the following date and time formats were used on the twenty-eighth of
July, 1998, at 6:30 PM:

%A, %B %d, %Y returns “Sunday, July 28, 1998”
%m/%d/%Y returns “07/28/1998”
%H:%M:%S returns “18:30:00”
%I:%M %p returns “6:30 PM”

Code Description

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of month (01–31)

%H hour (24 hour clock)

%I hour (12 hour clock)

%j day of the year (001–366)

%m month (01–12)

%M minute (00–59)

%p local equivalent of AM or PM

%S second (00–59)

%U week number of the year (Sunday= first day of week) (00–53)

%w weekday (0–6, Sunday is zero)

%W week number of the year (Monday = first day of week) (00–53)

%x local date representation

%X local time representation

%y year without century (00–99)

%Y year with century

%% % sign
413413

Configuration Variables

414414
Note If a date format string contains %Y, but the value for the year is
two-digit, the following centuries are assumed, if appropriate:

That is, a two-digit year of 99 is evaluated as 1999, and a two-digit year of
00 is evaluated as 2000.

The default values of the configuration variables are given in the following
table:

Value Century

00-36 2000s

37-99 1900s

Configuration Variable Default Value

dateFormat %m/%d/%Y

timeFormat %H:%M:%S

timestampFormat %m/%d/%Y %H:%M:%S.

DBDecimalChar
DBDecimalChar
Valid in all scopes T
c

he value of this configuration variable tells Witango Server what decimal
haracter ODBC data sources require in numbers. This value may be

determined by the ODBC driver, the database vendor’s client software,
or the DBMS server. You must make sure you set this configuration
variable appropriately for the ODBC data sources you are accessing with
Witango Server.

If you use ODBC data sources requiring different decimal characters, you
may use the DBDecimalChar with scope=REQUEST to change this
setting temporarily while accessing a specific data source.

The setting of DBDecimalChar is used when Witango Server is
constructing SQL for Search, Insert, Update, and Delete actions that use
ODBC data sources. If necessary—for example, when DBDecimalChar
differs from decimalChar—Witango automatically converts values
specified for numeric columns to use the decimal character specified in
DBDecimalChar. Use the <@DSNUM> meta tag to perform the same
function on numbers you specify in Direct DBMS actions using an ODBC
data source.

The default value of DBDecimalChar is a period (“.”).

See also

currencyChar page 398
decimalChar page 403
thousandsChar page 424
<@DSDATE> page 178
<@DSTIME> page 178
<@DSTIMESTAMP> page 178
<@DSNUM> page 180
415415

Configuration Variables

41
debugMode
Valid in all scopes T
4166
his configuration variable sets whether debug mode is on.
T
he default value of this variable is appFileSetting, which allows the
application file setting of debug mode (the checkbox) to set whether a
particular application file has debug mode on or off.

Other possible values are forceOn and forceOff, which override any
application file settings (that is, overrides the debug checkbox in the
application file).

This configuration variable does NOT affect the output to the log file. It is
used exclusively to manage the debug output in the result HTML. The
variable is evaluated once for every action executed by the Witango
Server.

decimalChar
decimalChar
Valid in all scopes

(request scope invalid when
staticNumericChars=true)

T
c
p
b

he value of this configuration variable tells Witango Server what
haracter is used as the decimal character in numbers. In the US, the
eriod, “.”, is normally used for this purpose. Only a single character may
e assigned to decimalChar. If a longer value is assigned to
decimalChar, only the first character is used.

Witango Server uses this value in order to properly evaluate numbers in
conditional comparisons (Branch action, <@IF>, and <@IFEQUAL>) and in
calculations performed with <@CALC>. The setting is also used when
Witango Server is constructing SQL for Search, Insert, Update, and
Delete actions. If necessary, Witango automatically converts values
specified for numeric columns to use the decimal character required by
the DBMS.

Use the <@DSNUM> meta tag to perform the same function on numbers
you specify in Direct DBMS actions.

Witango uses this setting to format any numeric values retrieved from a
data source.

The default value of decimalChar is “.” (a period).

On Macintosh, the default is the corresponding setting in the Numbers
control panel on the server computer. You may always revert to the
default setting by assigning an empty value to this configuration variable.

decimalChar and Scope
For more information, see
“staticNumericChars” on
page 423.

W

a

hen staticNumericChars has the value true (the default), changing
the value of decimalChar has no effect during the execution of an
pplication file. Changes to decimalChar in user, domain, or system

scope take effect with the next application file execution; as a
consequence, changes to decimalChar in request scope have no effect.
W
hen staticNumericChars has the value false, decimalChar
works with scope in the standard way.

See also

currencyChar page 398
DBDecimalChar page 402
<@DSDATE> page 178
<@DSNUM> page 180
<@DSTIME> page 178
<@DSTIMESTAMP> page 178
417417

Configuration Variables

418418
staticNumericChars page 423
thousandsChar page 424

defaultErrorFile
defaultErrorFile
System & application
scope

T
m
r

his configuration variable specifies a path to a file on the Witango Server
achine. Witango uses the contents of this file as the error message

eturned to a user whenever an error condition occurs within an
application file (unless you have specified Error HTML within the
application file itself).

The default error file is error.htx. This file is in HTML format and may
contain meta tags. You can edit the file with a text or HTML editor.

You can set different default error files for Witango applications by
assigning to this variable in application scope.

The default value of this configuration variable are the ErrorMessage and
HelpMessage parts of the <@ERROR> meta tag, when those values are
not empty.

Note The HelpMessage text is NOT written into the log file.
419419

Configuration Variables

42
defaultScope
Request or system
scope

T
c
u

4200
his configuration variable sets the default scope that variables are
reated with when the Assign action or the <@ASSIGN> meta tag are
sed without specifying a scope.

The default value of defaultScope is REQUEST.

docsSwitch
docsSwitch
System & Application
scope

T
t

his configuration variable determines whether Witango Server allows
he use of the <@DOCS> meta tag, which returns the contents of an

application file. Valid values are on (the default) and off. A switch is
provided because examining the contents of any application file could
potentially be a security issue.

A system scope value of off for this configuration variable overrides an
application scope value of on.

See also

<@DOCS> page 170
421421

Configuration Variables

42
domainConfigFile
System scope only T
s

4222
his configuration variable points to a file where Witango domains are
et up. These Witango domains are used as the key value for domain

scope in Witango.

The default value of this configuration variable is a file called
domains.ini (Windows/UNIX) in the configuration directory. See “A
Note on Default Locations” on page 388.

See also

domainScopeKey page 406
<@DOMAIN> page 172

domainScopeKey
domainScopeKey
System scope only

Meta tags evaluated

T
w
r
v

his configuration variable sets the key for the domain scope; that is,
hat value Witango uses in order to determine which Witango domain a

equest originated from and the value it uses as a key to find domain
ariables internally. The value for this configuration variable may contain

meta tags. The tags are substituted each time the variable is used by
Witango Server.

Witango uses any Witango domains as the domain scope key, if any are
set up; if none are set up, it defaults to the domain name (base URL or IP
address).
For more information, see
“<@CGIPARAM>” on
page 120, “<@CIPHER>”
on page 129, and
“<@LOGMESSAGE>” on
page 234.

T

d
I

he default value is <@CIPHER ACTION=HASH STR="<@LOWER
<@DOMAIN>>">. This uses a lower-cased, encrypted form of the Witango
omain (if any are set up), or defaults to the domain name (base URL or
P address) retrieved with <@CGIPARAM SERVER_NAME>.

The value of the domainScopeKey cannot be greater than 32 characters.
<@CIPHER action=hash> always results in a 32 character string.

When you assign a value to domainScopeKey, you must tell Witango
Server to evaluate the meta tag only when domain variables need to be
keyed. This is done with the <@LITERAL> meta tag.
For more information, see
“<@LITERAL>” on
page 232.

F
or example, the syntax of the assignment to domainScopeKey of its
default value would be as follows:

<@ASSIGN NAME=domainScopeKey VALUE=
<@LITERAL VALUE="<@CIPHER ACTION=HASH STR='<@LOWER
<@DOMAIN>>'>">>

See also

<@DOMAIN> page 172
423423

Configuration Variables

42
DSConfig
System scope only T
s

4244
his configuration variable allows you to modify some Witango data
ource parameters which may be required to tune database performance

on an individual basis. These parameters include whether the data source
driver is thread-safe, and the maximum number of connections allowed
to the data source.

DSConfig contains an array, and is not specified within the Witango
Server configuration file. The contents of the DSConfig array are
written to and read from a file.
For more information on
the format and location of
this file, see “DSConfigFile”
on page 408.

B
d

l

y default, this file is called Data Source Preferences (Macintosh) or
sConfig.ini (Windows and UNIX). You can also set the name and

ocation of the file to something other than the default by modifying the
value of the DSConfigFile configuration variable.
It is recommended that you
use the config.taf
application file to modify
the values of this variable.
Caution Do not edit the Data Source Preferences or
dsConfig.ini file directly when Witango Server is running. Either
stop Witango Server and edit this file, or use the config.taf file or
your own application files to create or modify the DSConfig array,
which is then automatically written out to the Data Source
Preferences or dsConfig.inifile.

When DSConfig is updated, changes are written immediately to the file
specified by DSConfigFile.
For more information on
the structure of the data
source configuration file,
see “DSConfigFile” on
page 408.

T
he DSConfig array has the following structure:

The type parameter defines the type of data source: ODBC, Oracle or
DAM. The name parameter defines the name of the data source, the
Oracle alias or connect string, or the DAM host name.

The maxconnections parameter defines the maximum number of
connections that Witango Server makes to the data source. The default is
‘0’ (no limit).

Setting maxconnections to a value other than zero can be useful if you
have a limited user license for your database server. For example, if you
have a five-user license only, Witango Server may use all of the
connections when running application files. Setting the maxconnections
value to less than five allows other users to connect to the database while

Row 0 type.name type.name

Row 1 (maxconnections) n n

Row 2 (singlethreaded) 1 or 0 1 or 0

DSConfig
Witango Server is also running. However, you should not set
maxconnections to a value which is too low for your data source
setup; for example, if maxconnections is set to “2” and Witango Server
has two open database connections, the next user that tries to connect
via Witango Server to a database may experience a wait until the
connection is free, or the query may time out when the queryTimeout
value is reached.

The singlethreaded parameter allows you to override what the data
source tells Witango about its thread safety. If you suspect your driver is
not thread-safe; that is, cannot be run in a multi-threaded configuration
with no ill effects, you can set this parameter to “1” (true), which means
that Witango Server only allows one thread to use the driver at any time.

If multiple data sources are using the same driver, which you want to set
as singlethreaded, you must specify singlethreaded for each data
source.
425425

Configuration Variables

42
DSConfigFile
System scope only T
c

4266
his configuration variable contains the name of the data source
onfiguration file to read from and write to. The default path is to Data
Source Preferences (Macintosh) or dsConfig.ini (Windows and
UNIX) in the configuration directory. See “A Note on Default Locations”
on page 388.

The data source configuration file is structured as follows:

[Data Sources]
myFirstDS=comment on first ds
mySecondDS=comment on second ds

[myFirstDS]
TYPE=ODBC
MAXCONNECTIONS=0
SINGLETHREADED=1

[mySecondDS]
TYPE=Oracle
MAXCONNECTIONS=5
SINGLETHREADED=0

For more information on the parameters that are set in this file, see
“DSConfig” on page 406.

Stanza names must be unique in this file. Stanza names are one of the
following: the name of the ODBC or With Enterprise.SQL data source,
the Oracle alias or connect string, or the DAM host name.

When Witango Server starts up, if DSConfigFile contains a valid path
to an existing file, the contents of the file are used to set up the
DSConfig variable.

encodeResults
encodeResults
Valid in all scopes T
o

his configuration variable tells Witango whether or not to encode the
utput sent to the Web browser by Witango in standard HTML format;

specifically, changing all high-bit characters to their encoded forms. For
example, “é” (a high-bit character, not in the standard ASCII set) is
encoded in HTML as é. If you would like to send binary data, or
are using a character set other than ISO Latin-1, you can set this value to
false.

The default value of this variable is true.
427427

Configuration Variables

42
externalSwitch
System & Application
scope

T
E

4288
his configuration variable determines whether Witango Server allows
xternal actions.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.

FMDatabaseDir
FMDatabaseDir
System & Application
scope

M

T

acintosh only.

he value of this configuration variable is a path telling Witango where to
look for request FileMaker Pro databases. When Witango tries to
connect to a local data source and finds that the database is not open, it
looks in this folder and opens the database (if present).

You can set different default paths for Witango applications by assigning
to this configuration variable in application scope.
429429

Configuration Variables

43
fileDeleteSwitch
System & Application
scope

T
t

4300
his configuration variable determines whether Witango Server allows
he deletion of external files using the File action.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.

See also

absolutePathPrefix page 393
fileReadSwitch page 410
fileWriteSwitch page 410

fileReadSwitch
fileReadSwitch
System & Application
scope

T
t
m

his configuration variable determines whether Witango Server allows
he reading in of external files using the File action or the <@INCLUDE>
eta tag.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.

See also

absolutePathPrefix page 393
fileDeleteSwitch page 409
fileWriteSwitch page 410
<@INCLUDE> page 217
431431

Configuration Variables

43
fileWriteSwitch
System & Application
scope

T
w

4322
his configuration variable determines whether Witango Server allows
riting out to external files using the File action.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.

See also

absolutePathPrefix page 393
fileDeleteSwitch page 409
fileReadSwitch page 410

headerFile
headerFile
System & Application
Scope

T
t
v

his configuration variable sets the file to be used as the HTTP header
hat is returned every time a reply is sent to a Web browser. The default
alue of this configuration variable is header.htx.

You can set different header files for Witango applications by assigning to
this variable in application scope.
433433

Configuration Variables

43
httpHeader
Valid in all scopes T
W

4344
his configuration variable determines the HTTP header used when
itango Server returns results to a user. The HTTP header sends

information to a Web browser about the request: whether it was
successful and what kind of information is being returned. It can also be
used to redirect the Web browser to a different URL.
.

For more information, see
“headerFile” on page 411.
Note Changes made to this configuration variable are not saved; it
reverts to the value specified in the file pointed to by the
headerFile each time you start Witango Server (the default). To
make a permanent change to the HTTP header, use headerFile.

The value of httpHeader scope=request determines the content of
the HTTP header for the result of the current application file execution.
You may set this at any point in the file execution.

itemBufferSize
itemBufferSize
System scope only S
r

pecifies the size, in bytes, of the largest column value that can be
etrieved from a data source. You need to increase this value only if you

need to retrieve large values. The default value is 65535 (64K).
435435

Configuration Variables

43
javaScriptSwitch
System & Application
scope

T
t
d

4366
his configuration variable determines whether Witango Server allows
he execution of JavaScript in Witango Server (that is, JavaScript
elineated with the <@SCRIPT> tag or using the Script action).

Note This is different from JavaScript that is passed onto and executed
by the Web browser using the <SCRIPT> HTML tag, which is not
affected by this configuration variable.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.

javaSwitch
javaSwitch
System & Application
scope

T
t

his configuration variable determines whether Witango Server allows
he execution of Java.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.
437437

Configuration Variables

43
license
System scope only T
s

4388
his configuration variable contains your Witango Server CD key. The
erver runs only if a valid CD key is entered.

licenseErrorHTML
licenseErrorHTML
System scope only T
r

his configuration variable defines the path to a file containing HTML to
eturn when the maximum number of sessions allowed by the Witango

Server license is exceeded. By default, this variable points to the
licError.htx file in the Configuration folder under the folder
where Witango is installed. If you do not specify a file, Witango returns a
built-in default error message.
439439

Configuration Variables

44
listenerPort
System scope only W
4400
indows and UNIX only.

This configuration variable sets the port number used by Witango Server
to listen for requests from the Witango CGI. This number can be any
valid port number that is not currently in use on your system. (Various
UNIX operating systems and applications reserve ports.)

The default value is 18000.

lockConfig
lockConfig
System scope only I
S

f this configuration variable is present and set to ‘true’, the Witango
erver configuration file (witango.ini) is set to read-only; that is,

changes made to configuration variables within the course of an
application file execution are not written out to disk. They must be made
manually to the configuration file.

If this configuration variable is not present, or is present and set to
false, there is no effect.

This configuration variable cannot be set with the config.taf
application file: you must manually add the following entry to the Witango
Server configuration file:

LOCKCONFIG=true
441441

Configuration Variables

44
logDir
System scope only T
d

4422
his configuration variable sets the directory used for logging. The log
irectory should be unique for every Witango Server running on the

same machine.

The default value of this variable is {default path}log.{name of
server}; for example, on Windows NT running the Witango
Development Studio, the default value of the variable is:

On Windows:

WINTANGO_PATH\Logs

On Linux:

WITANGO_PATH/logs

loggingLevel
loggingLevel
System scope only T
W

his configuration variable controls what information is written to the
itango.log file. There are five values that can be assigned to this

configuration variable, corresponding the five possible levels of logging.

The following table lists each value and describes what information is
logged.

Higher logging levels may affect the performance of your Web server,
particularly if there is a lot of traffic. You may want to use high logging
levels (particularly 3 and 4) only while you need to track down problems
with your application files.

The default value of loggingLevel is NoLogging.

If the loggingLevel value is set incorrectly in the configuration file, a
warning will be reported to the witangoevents.log file and logging will be
turned off.

If the system$loggingLevel system variable is assigned an incorrect value in
an application file, the request will fail with an error.

See also

debugMode page 403
logToResults page 415

Level Information Logged

0 None

1 application file execution, search and post argument values.

2 LogLevel1 information plus application file actions.

3 LogLevel2 information plus generated SQL, variable and action
result values.

4 LogLevel3 information plus Results HTML.
443443

Configuration Variables

44
logToResults
Valid in all scopes C
R

4444
ontrols whether the logging information execution is returned with
esults HTML. This option is useful for debugging. When set to true, all

the information written to the Witango log file for an application file
execution is also returned with the Results HTML. The default value of
logToResults is false.

The current setting of loggingLevel configuration variable determines
the amount of information logged. To see logging information for a
particular application file execution, assign true to this configuration
variable with scope=REQUEST.

Note Selecting the Debug mode option in the application file window
is equivalent to setting logToResults scope=REQUEST to true
and loggingLevelscope=REQUEST to LogLevel3. Because
these variables are set with request scope, they are only set to these
values for the duration of the file execution.

See also

debugMode page 403
loggingLevel page 414

mailAdmin
mailAdmin
System scope only T
a

his configuration variable specifies the e-mail address of the
dministrator to whom the messages are sent when the maximum

number of sessions is exceeded.
445445

Configuration Variables

44
mailDefaultFrom
Valid in all scopes T
m

4466
his configuration variable determines the default From value for e-mail
essages sent using the Mail action of Witango.
T
his default is overridden by any value you type in the From field of the
Mail action.

This configuration variable is also used as the default value of the FROM
attribute of the <@URL> tag, and the From value in HTTP requests
generated by Witango’s timed URL processing, startup/shutdown URLs,
and the URL specified in variableTimeoutTrigger.

See also

mailPort page 416
mailServer page 416

mailPort
mailPort
System & Application
Scope

T
s

his configuration variable specifies the port that the e-mail server
pecified by mailServer uses.

The default value of this variable is 25.

See also

mailDefaultFrom page 415
mailServer page 416
447447

Configuration Variables

44
mailServer
System & Application
Scope

T
m

4488
his configuration variable sets the SMTP e-mail server that is used for
essages sent with the Mail action.

See also

mailDefaultFrom page 415
mailPort page 416

mailSwitch
mailSwitch
System & Application
scope

T
m

his configuration variable determines whether Witango Server allows e-
ail messages to be generated within Witango using the Mail action.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.

See also

mailDefaultFrom page 415
mailPort page 416
mailServer page 416
449449

Configuration Variables

45
maxActions
System scope only I
4500
f this configuration variable is set to a positive number (the default is
zero), the number of Witango actions executed so far by a query is
checked against the value of this variable. If the number of actions
exceeds the value, the query aborts and returns an error.

Note A looping query always aborts when the execution time exceeds
the time specified in the configuration variable queryTimeout.
maxActions provides finer control over infinite loops.

See also

queryTimeout page 420

maxHeapSize
maxHeapSize
System scope only U
NIX only.

This configuration variable sets the maximum allowable heap size, in
bytes. Witango Server restarts itself in a clean state, if its heap size
exceeds this value.

The default value is 20000000.
451451

Configuration Variables

45
maxSessions
System scope only M
4522
acintosh only.

This system configuration variable determines the maximum number of
sessions Witango Server opens for a particular data source host. It
accepts any positive integer as a value. A value of zero indicates no
maximum.

Note This system configuration variable is applicable only to DAM data
sources under Macintosh. It has no effect on connections made to
other data source types or on other operating systems.

The default value of maxSessions is zero, indicating that there is no
limit on the number of data source connections that Witango Server
makes to a particular DAM host.

noSQLEncoding
noSQLEncoding
Valid in all scopes T
a

his configuration variable determines whether text in Direct DBMS
ctions is SQL-encoded by default (single quote characters doubled). The

default value is false. Setting the value to true turns off automatic SQL-
encoding in Direct DBMS actions.
I
f noSQLEncoding is set to true, you can use the ENCODING=SQL
attribute on most value-returning meta tags to SQL-encode the value
returned by that meta tag.

See also

Encoding Attribute page 72
453453

Configuration Variables

45
objectConfigFile
System & Application
scope

O
t
c

4544
bject configuration information—specifically, which objects are allowed
o be run on Witango Server—is read from the file pointed to by this
onfiguration variable. The default value of this variable is a file called
objects.ini (Windows/UNIX) in the configuration directory. See “A
Note on Default Locations” on page 388.

passThroughSwitch
passThroughSwitch
System & Application
scope

T
W
(

he use of meta tags in data source specifications is by default enabled in
itango. The passThroughSwitch option controls whether meta tags

such as <@POSTARG>) are permitted in all fields when connecting to a
data source using an application file. If this switch is disabled, all data
source parameters—type, name, database, user name, and password—
must be hard coded.

A system scope value of off for this configuration variable overrides an
application scope value of on.

Valid values are on and off.
455455

Configuration Variables

45
persistentRestart
System scope only W
4566
indows and UNIX only.

This configuration variable controls how the server handles an automatic
restart. An automatic restart is initiated when maxHeapSize is exceeded
(UNIX only) and when Witango detects a problem with servicing
requests.

When set to true, the server first attempts to completely shut down the
running server before restarting a new one. All variables in use at the
time of the shutdown are preserved.

When set to false, a new server is started immediately, even before the
old one is stopped. This setting ensures high server availability, but
variables from the old server instance are not available in the new one.
The default value is true.

See also

maxHeapSize page 417

pidFile
pidFile
System scope only W
indows and UNIX only.

This configuration variable sets the location of a file is used to track the
Witango Server process. It should have a unique name for every Witango
Server running on the same machine. The default value is {default
path}pid.{name of server}.
457457

Configuration Variables

45
postArgFilter
Valid in all scopes T
o

4588
he postArgFilter configuration variable accepts a value containing
ne or more characters, each of which is automatically removed from

post argument values received by Witango Server. The characters can be
specified by their ASCII number using the <@CHAR> tag.
For more information, see
“<@CGIPATH>” on
page 113.

T
l
<

his configuration variable is useful for automatically removing the
inefeeds that some Web browsers use for ending lines entered into
TEXTAREA> form fields, and that appear as boxes in Macintosh database

applications. To use postArgFilter for this purpose, assign <@CHAR
10> to it.

The default value of postArgFilter is empty.

queryTimeout
queryTimeout
System scope only T
n

his configuration file variable causes queries that exceed the specified
umber of seconds to time out and return the HTML page specified in
timeoutHTML. This variable is specified in seconds.

The default value of queryTimeout is 300.

See also

timeoutHTML page 426
459459

Configuration Variables

46
rDelim
Valid in all scopes T
c

4600
his variable sets the default delimiter character between rows for
reating arrays with the meta tag <@ARRAY>.
T
he default value of this variable is “;”.

This variable is valid in all scopes.

See also

cDelim page 396

requestQueueLimit
requestQueueLimit
System scope only W
indows and UNIX only.

This variable allows customization of the size of the queue used to hold
incoming requests. By default, the value of this configuration variable is 0,
which indicates no maximum. If your Witango Server typically processes
lengthy requests, then setting a value for the queue size can prevent
Witango Server from getting to a point where the queue contains so
many items that it cannot process them before the user’s Web browser
times out.
461461

Configuration Variables

46
returnDepth
System scope only T
“

4622
his configuration file option sets the maximum number of branch
levels” that you can have in a Witango application file. This applies to

Branch actions that have the Return option set. It specifies the number of
returns that can be outstanding at any time. If this limit is exceeded
during an application file execution, an error occurs.

This configuration variable also specifies the number of call method
“levels” when method calls are made on Witango class files, which in turn
call other Witango class files.

The default value is 20. Setting this configuration variable to a larger value
may increase the memory requirements of Witango Server.

rPrefix
rPrefix
Valid in all scopes T
w

his variable sets the prefix character for array rows that is returned
hen the meta tag <@VAR> is used to return the value of an array and

convert the array values to text (for example, in Results HTML).
T
he default value of this variable is <TR>, so that returning the values of
arrays when arrays are converted to text generates HTML tables.

See also

aPrefix page 394
aSuffix page 394
cPrefix page 397
cSuffix page 397
rSuffix page 422
463463

Configuration Variables

46
rSuffix
Valid in all scopes T
w

4644
his variable sets the suffix character for array rows that is returned
hen the meta tag <@VAR> is used to return the value of an array and

convert the array values to text (for example, in Results HTML).
T
he default value of this variable is </TR>, so that returning the values of
arrays when arrays are converted to text generates HTML tables.

See also

aPrefix page 394
aSuffix page 394
cPrefix page 397
cSuffix page 397
rPrefix page 421

shutdownUrl
shutdownUrl
System scope only T
W

his configuration variable contains the HTTP URL to be requested when
itango Server shuts down.
T
he default value is empty.

See also

startStopTimeout page 422
startupUrl page 423
465465

Configuration Variables

46
startStopTimeout
System scope only T
f

4666
his configuration variable determines how long Witango Server waits
or a response from the URLs that are called when Witango Server shuts
down or starts up. The value is specified in seconds.
T
he default value is 60.

See also

shutdownUrl page 422
startupUrl page 423

startupUrl
startupUrl
System & Application
Scope

T
r

his configuration variable contains the HTTP URL, if any, that is
equested when Witango Server or an application starts up.
T
he default value is empty.

You can set different startup URLs for Witango applications by assigning
to this variable in application scope.

See also

shutdownUrl page 422
startStopTimeout page 422
467467

Configuration Variables

46
staticNumericChars
System scope only T
c

4688
his configuration variable determines when Witango Server checks for
hanges to the configuration variables that determine the thousands,

decimal, and currency characters used for numerical evaluation.

The default value of true means Witango Server obtains these
characters from the thousandsChar, decimalChar, and
currencyChar configuration variables at the beginning of each
application file execution only. Any changes to the user, domain, and
system scope variables take effect with the next application file execution.
Request scope for these configuration variables is never used when
staticNumericChars has the value true.

When staticNumericChars has the value false, any changes to the
thousandsChar, decimalChar, and currencyChar configuration
variables in any scope take effect immediately.

Tip There is a significant performance benefit to a setting of true for
this configuration variable. Use a setting of false only if you must
support different numeric formats over the course of a single
application file execution.

stripCHARs
stripCHARs
Valid in all scopes T
d

his configuration variable sets whether CHAR (fixed-length text field)
ata from data sources is automatically stripped of trailing spaces.

Possible values are true and false.

The default value is true.
469469

Configuration Variables

47
TCFSearchPath
Valid in all scopes

Meta tags evaluated

T
c
m
u

4700
his configuration variable is used to define the search path for Witango
lass files on Witango Server. The value for this configuration variable
ay contain meta tags. The tags are substituted each time the variable is

sed by Witango Server. This configuration variable contains a semi-
colon separated list of Web server document root relative paths in which
to look for Witango class files. For example, TCFSearchPath may
contain the following:

MyApp/TCFs/Logon/;MyApp/TCFs/GuestBook/;FoneList/
Objects/;DougApp/OtherStuff/MyObjects/

The default value of TCFSearchPath is <@CLASSFILEPATH>;
<@APPFILEPATH>, which means that Witango class files are searched for
in the directories that are returned by these meta tags.

Subfolders of the specified folders are not searched; each subfolder must
be specified separately in order to have Witango find Witango class files
there.

See also

<@APPFILEPATH> page 87
<@CLASSFILEPATH> page 134

thousandsChar
thousandsChar
Valid in all scopes

(request scope invalid when
staticNumericChars=true)

T
c
t
c

he value of this configuration variable tells Witango Server what
haracter is used as the thousands separator in numbers. For example, in
he US, the comma (“,”) is normally used for this purpose. Only a single
haracter may be assigned to thousandsChar. If a longer value is

assigned to it, only the first character is used. The value also should not
be the same one specified for the decimalChar configuration variable,
as this would create confusion when numbers were specified.

Witango Server uses this value in order to properly evaluate numbers in
conditional comparisons (for example, Branch action, <@IF>,
<@IFEQUAL> and <@ISNUM> meta tags) and in calculations performed
with the <@CALC> meta tag.

The setting is also used when Witango Server is constructing SQL for
Search, Insert, Update, and Delete actions. Witango automatically
removes the character specified by thousandsChar from any values
specified for numeric columns. Use the <@DSNUM> meta tag to perform
the same function on numbers you specify in Direct DBMS actions.

The default value of thousandsChar is “,” (a comma).

On Macintosh, the default is the corresponding setting in the Numbers
control panel on the server computer. You may always revert to the
default setting by assigning an empty value to this configuration variable.

thousandsChar and Scope
For more information, see
“staticNumericChars” on
page 423.

W

a

hen staticNumericChars has the value true (the default), changing
the value of thousandsChar has no effect during the execution of an
pplication file. Changes to thousandsChar in user, domain, or system

scope take effect with the next application file execution; as a
consequence, changes to thousandsChar in request scope have no
effect.
When staticNumericChars has the value false, thousandsChar
works with scope in the standard way.

See also

currencyChar page 398
DBDecimalChar page 402
decimalChar page 403
<@DSDATE> page 178
<@DSNUM> page 180
<@DSTIME> page 178
471471

Configuration Variables

472472
<@DSTIMESTAMP> page 178
staticNumericChars page 423

threadPoolSize
threadPoolSize
System scope only W
indows and UNIX only.

This variable determines the number of worker threads that Witango
Server allocates to process requests. This is the maximum number of
requests that Witango Server tries to process simultaneously. If the
number of concurrent requests reaches this limit, additional requests are
queued until threads become available. Increasing this number may have a
detrimental effect on hardware that cannot support the load. The default
value is 20.
473473

Configuration Variables

47
timeFormat
4744
See “dateFormat, timeFormat, timestampFormat” on page 400.

timeoutHTML
timeoutHTML
System scope only T
a

his configuration variable points to the HTML file that is returned when
 query times out in Witango Server.

The file is by default called timeout.html and resides in the
configuration directory. See “A Note on Default Locations” on page 388.

See also

queryTimeout page 420
475475

Configuration Variables

47
timestampFormat
4766
See “dateFormat, timeFormat, timestampFormat” on page 400.

transactionBlocking
transactionBlocking
System scope only T
o

his configuration variable determines whether Witango Server blocks
ther processes during a transaction. Transactions begin with the Begin

Transaction action and end when an End Transaction action is reached,
an error occurs (automatic rollback), or the end of an application file or a
Return action is reached (automatic commit).
T
his variable accepts true or false as values. The default value is true.
It is read only at startup; a restart is required to effect changes to it.

Caution Setting this configuration variable to false may cause poor
performance due to record contention when multiple users are
executing transactions with Witango.
477477

Configuration Variables

47
useFullPathForIncludes
System scope only T
f

4788
his configuration variable specifies whether Witango Server uses a full
ile path in any files that are included in a Witango application file or class
file using the <@INCLUDE> meta tag. If the variable is set to true, then all
included paths must be specified from the root of the Web server’s file
system.

userAgent
userAgent
Valid in all scopes T
r

he value of this configuration variable is used in the header of HTTP
equests sent by Witango Server as a result of timed URL execution,

startup and shutdown URLs, and the URL specified in
variableTimeoutTrigger. It is also used as the default value of the
USERAGENT attribute of the <@URL> meta tag.

The User-Agent value in HTTP requests gives the destination server
information about the program (such as, name, version, and platform)
that is requesting the URL. For instance, the User-Agent value passed by
Netscape Navigator 4.04 for Windows NT is:

Mozilla/4.04 [en] (WinNT; I)

Servers often use the user-agent information to determine the format of
the results returned. (Witango application files can get the user-agent
information from a request using <@CGIPARAM NAME="USER_AGENT">.)
For example, a server may return a special version of a Web page,
including Web browser-specific HTML for additional features, when the
Web browser is Netscape Navigator or Internet Explorer.

The default value of userAgent is empty, causing Witango Server URL
requests to use "Witango Application Server/
[version]([platform])", where [version] and [platform] are
the values returned by <@VERSION> and <@PLATFORM> meta tags.

See also

<@URL> page 310
479479

Configuration Variables

48
userKey, altuserKey
Request, application,
domain and system
scopes

Meta tags evaluated

T

T
a

U
y

4800
hese variables set the key used to identify users in Witango.

he value for this configuration variable may contain meta tags. The tags
re substituted each time the variable is used by Witango Server.

ser variables let you store values associated with a particular user of
our Web site. These values can then be accessed in any application file.

In order for user variables to work properly, Witango must be able to
uniquely identify each user who accesses it. The World Wide Web and
the protocol it uses (HTTP) do not make this easy.
 W
itango gives you several options for specifying how Witango identifies
each user. You need to choose the one that best suits your environment.
You make this choice by assigning values to these configuration variables.

The userKey and altuserKey configuration variables tell Witango
Server what piece(s) of information to use to identify a user when
assigning to and evaluating user variables. The value of userKey is the
default key for user variables. If its contents evaluate to empty,
altUserKey is used instead.

Note If userKey contains a literal value, <@USERREFERENCE>, or
any other meta tag guaranteed to return a value, then the value of
altUserKey is irrelevant, as userKey will never be empty.

When you assign a value to userKey and altUserKey, you must tell
Witango Server not to evaluate the content of the VALUE attribute, but
instead to evaluate the meta tag when user variables need to be keyed.
This is done with the <@LITERAL> meta tag.
For more information, see
“<@URL>” on page 310.

T
he syntax of the assignment to userKey of its default value would be as
follows:

<@ASSIGN NAME=userKey VALUE=<@LITERAL
VALUE="<@APPKEY><@USERREFERENCE><@CGIPARAM
CLIENT_IP>">

When you use <@VAR> to get the value of either of these configuration
variables, the meta tags assigned to it are returned, not the values of
those meta tags, because of the use of the <@LITERAL> meta tag. To get
the actual value of the key, use the ENCODING=METAHTML formatting
parameter in <@VAR>.
For more information, see
“Encoding Attribute” on
page 72.

F
<

or example, <@VAR NAME=userKey> might return
@APPKEY><@USERREFERENCE><@CGIPARAM CLIENT_IP>, indicating

that user configuration variables are keyed on the Witango application,

userKey, altuserKey
the Witango user reference ID assigned to each user, and the IP address
the application file is being sent to. To get the actual value of the key for
the current user, you would use <@VAR NAME=userKey
ENCODING=METAHTML>, which would return the value of the string
currently being used as the user key in the current application file (a 24-
digit hexadecimal string).

The default value of userKey is
<@APPKEY><@USERREFERENCE><@CGIPARAM CLIENT_IP>. The
presence of the client IP address in the userKey ensures that a session
cannot be “taken over” by someone from another IP address. The
presence of <@APPKEY> in the key means that the same variable name
can be used in different applications without conflicting.

The default value of altUserKey is empty.

See also

<@APPKEY> page 88
<@CGIPARAM> page 120
<@USERREFERENCE> page 317
<@VAR> page 320
481481

Configuration Variables

48
validHosts
System scope only W
4822
indows and UNIX only.

This configuration variable specifies a list of hosts from which Witango
Server accepts Witango CGI connections. The hosts are given in a colon-
separated list, in either domain name or IP address form. This prevents
an arbitrary user on your network or the Internet from using your
Witango Server.

Any changes made to this configuration variable will have an immediate
effect on the Witango Server.

varCachePath
varCachePath
System scope only T
s

his specifies a directory to which Witango writes all variables when it is
hutdown, and re-reads those variables from when Witango is started.

Note Variables continue to expire in the usual fashion; if you restart
Witango after the specified user timeout period has elapsed, all the
variables immediately expire upon being reloaded.

The default value of this variable is {defaultpath}variables.{name
of Witango Server}; for example, on Windows when running
Witango, the value of the variable is:

On Windows:

WITANGO_PATH\Configuration\variables.Witango_Server.

On Unix:

 WITANGO_PATH/configuration/
variables.Witango_Server.
483483

Configuration Variables

48
variableTimeout
User, custom, and
system scopes

T
d
F

4844
he system scope version of this configuration variable determines the
efault period, in minutes, after which domain and user variables expire.
or user variables, the expiry timer is reset to zero each time the user

accesses Witango Server. For application variables, the expiry timer is
reset each time the Witango application is accessed. For domain
variables, the expiry timer is reset each time a user from the domain
accesses Witango Server. For custom variables, the expiry timer is reset
each time a variable in the custom scope is accessed.

Setting variableTimeout to zero indicates that variables never expire.
In general, this value is appropriate for the domain scope only.

To change the expiry timeout period for domain variables only, assign the
desired value to variableTimeout in domain scope. For example, to
specify that domain scope variables never expire, make the following
assignment:

<@ASSIGN NAME=variableTimeout SCOPE=domain VALUE=0>

Setting this variable with user scope sets the expiry timeout for the
current user, overriding the value in the system scope.

Setting this variable with application scope sets the expiry timeout for
Witango application, overriding the value in the system scope.

See also

variableTimeoutTrigger page 431

variableTimeoutTrigger
variableTimeoutTrigger
User, and custom
scopes

J
s

ust before a user’s, or a custom scope’s variables expire, the HTTP URL
pecified in that scope’s variableTimeoutTrigger is activated. (The

time after which variables expire is set in the configuration variable
variableTimeout.) This URL could be used to execute an application
file that clears the database of temporary user session data, purges the
user name from a list of logged-in chat users, or many other possibilities.

There is no default timeout trigger. To have a trigger execute upon the
expiry of each user's variables, you would assign the desired value to
variableTimeoutTrigger (in user scope) at some point during each
user's session. To set a trigger for a particular domain, you would assign
to variableTimeoutTrigger in domain scope in an application file
being accessed from that domain. To set a trigger for a particular
application, you would assign to variableTimeoutTrigger in
application scope in an application file being accessed from that Witango
application.

The URL in this configuration variable cannot contain meta tags because
the trigger mechanism does not evaluate meta tags. Nevertheless, you
can include user-, application-, or domain-specific information in the URL
by including meta tags in the assignment to variableTimeoutTrigger,
which are evaluated at the time of the assignment.

See also

mailDefaultFrom page 415
userAgent page 427
variableTimeout page 430
485485

Configuration Variables

486486

8
C H A P T E R 8

Witango Server Error
Codes

A Listing of Witango Server Error Numbers and Messages
During execution of an application file by Witango Server, you may
encounter certain error conditions. This chapter lists the main error
numbers and messages generated by Witango Server for the various
error conditions.

Note The error numbers apply only if the type of error is internal. For
other types of errors (for example, DBMS), consult the appropriate
documentation (for example, database driver or server).
433

Witango Server Error Codes

434434
Main
Error
Number

Message

-1 There was not enough memory to complete the requested operation.

-2 The specified object was not found.

-3 The application file was either missing or invalid.

-4 Unable to connect to the specified data source. Verify that data source
is properly configured and that database server is online.

-5 Bad application file format version.

-8 Invalid value specified. Previous value has been used.

-9 Invalid or empty variable key.

-10 Invalid or empty variable name.

-11 Invalid or empty array name.

-12 Missing or invalid rows loop.

-13 Cannot initialize the JavaScript runtime.

-14 Invalid scope for this script.

-15 Script execution timeout.

-16 Begin Transaction encountered while existing transaction still open.

-17 End Transaction encountered with no open transaction.

-18 Error during expression evaluation.

-19 The maximum number of concurrent requests has been exceeded.

-20 The application file tag nesting exceeded limit.

-21 Loop execution timeout.

-22 The specified script language is not supported.

-23 Perl interpreter detected a syntax or runtime error.

-24 Expression Format detected a syntax or run-time error.

-25 Administrator has disabled custom scopes.

-26 Witango application file not part of specified application scope.

-27 Invalid Password detected.

-100 Data source client library not found.

-101 General error during data source operation.

-102 No data source connection exists.

-103 Connection to data source already exists.

-104 No data found.

-105 Invalid column number specified. Column number not in range of
selected columns.

-106 The maximum number of concurrent connections for this data source
has been exceeded. Please try again later.

-107 Could not open specified database. Verify database name and ensure
proper access privileges.

-108 Maximum licensed number of connections exceeded. Please try again
later.

-109 This type of data source is not supported by the server license.

-110 The specified data source cannot be found.

-111 Invalid meta tag for this action. A data source is needed here.

-112 Data source timed out. The data source operation took too long to
execute. Try adjusting the server timeout parameter.

-113 Unable to communicate with the specified data source. The existing
connection was lost. Please try again.

-114 The file specified is not part of the application designated by your server
license.

-116 Could not write to configuration file. Check the file permissions.

-117 This action requires a data source.

-118 This action could not be completed because the SQL statement is too
long.

-119 Invalid user name or password. Logon denied.

-201 Failed to connect to gateway.

-202 There are no gateways currently defined.

-203 A gateway with that name already exists.

-204 Failed to remove gateway.

-205 A data source with that name already exists.

-206 There are no data sources currently defined.

Main
Error
Number

Message
435435

Witango Server Error Codes

436436
-301 The specified file or directory does not exist.

-302 A permissions error occurred while trying to access the specified file.

-303 Can not open the specified file.

-304 Unable to obtain a write lock on the file.

-305 The specified file already exists.

-306 No file name is specified.

-307 File Actions require a full file path.

-321 Unable to connect to the specified SMTP server.

-322 Mail messages must have a From address.

-323 Witango supports only US-ASCII (7-bit) characters in message content.

-324 Connected to SMTP server, but a communication error occurred.

-325 Mail messages must have a destination address.

-326 An invalid From address was specified.

-327 An unexpected error occurred while sending the mail message.

-328 An invalid attachment path was specified.

-329 The custom header for E-MAIL was greater than 32K.

-401 This feature has been disabled by the administrator.

-501 Only a branch to a top-level action is allowed when branching to
different file.

-502 The number of nested returning Branch actions or class file method
calls exceeds the limit. Check for an endless loop, or increase the
returnDepth configuration variable value.

-503 The file was not loaded because it has a corrupt structure.

-504 The application file specified in this Branch action cannot be found.

-505 The Branch destination action cannot be found in the specified
application file.

-506 The number of actions executed so far exceeds the limit. Check for an
endless loop or increase the maxActions configuration variable value.

-507 Witango class files may not be called directly. To call a method in a
Witango class file, use the Call Method Action instead.

-510 The structure of the application file is corrupt.

Main
Error
Number

Message

-511 This action may not have a child.

-512 This action has a malformed structure.

-513 The branch destination cannot be found or is at an invalid level.

-514 The Break action is valid only within For and While Loop actions and in
groups.

-515 The Elseif/Else action is valid only when preceded by an If action.

-520 A NULL node was encountered.

-521 An empty node was encountered.

-522 A container-type node was expected but not found.

-601 System scope is for configuration variables only. Try using Domain
scope instead.

-602 The Domain scope is not defined. Set the value of domainScopeKey.

-603 The array subscript is not within the range for the defined array.

-604 The string used to construct the array is invalid. Check the delimiters,
and make sure the dimensions match.

-605 You cannot apply array subscript operations on scalar variables.

-606 You do not have the correct password to set system variables.

-607 You cannot get the value of the configuration password.

-608 You cannot purge the contents of the system scope.

-609 You may not set configuration variables in the cookie scope. Try using
the user or local scope instead.

-610 Destination's dimensions do not match the source's for array section
assignment.

-611 Row and column dimensions within the <@ARRAY> tag must be
greater than 0 if there is no initialization string.

-612 The initialization string does not match the specified row and column
dimensions, or the row and column dimensions are inconsistent within
the initialization string.

-613 The row and column delimiters must be fully unique if the array
dimensions are not specified.

-614 An array was expected as a parameter.

-615 Parameter arrays must have the same number of columns.

Main
Error
Number

Message
437437

Witango Server Error Codes

438438
-616 A scalar cannot be pushed into an array with multiple columns.

-617 A value to add must be specified.

-618 The COLS argument cannot be parsed.

-619 The EXPR argument of a FILTER tag cannot be parsed.

-620 Invalid scope specified. This scope is valid only in methods.

-621 The specified variable is read only.

-622 The specified object instance could not be created.

-623 You do not have the correct password to purge cache.

-624 The application scope is not defined.

-625 The POSTARGARRAY argument of the URL tag requires an array with
exactly two columns.

-626 Invalid Object type, must be one of: COM, JAVABEAN, or TCF.

-700 Invalid outer join.

-701 A table specified is an inner table to more than one outer table.

-702 Outer join specified creates cyclic join relationships.

-800 An error occurred while preparing the parameters for this method
invocation.

-801 An error occurred while invoking this method.

-802 An error occurred while processing the results of this method
invocation.

-803 The specified object's handler doesn't support method invocation.

-804 The specified method is not implemented.

-805 Insufficient security for the requested operation.

-806 An unspecified method call error occurred.

-807 Cannot access handler.

-808 Cannot create native object.

-809 Cannot bind to native object.

-810 Error getting object's introspection info.

-811 Given buffer is too small.

Main
Error
Number

Message

-812 A memory error occurred.

-813 A bad state transition was attempted.

-814 Bad or missing object identity.

-815 Cannot locate object.

-816 The requested data is not available.

-817 The object does not hold an open collection.

-818 No license to use this object.

-819 The native object was released.

-820 Requested feature not implemented by handler.

-821 Unspecified error.

-822 The specified collection index is not valid for this object.

-901 The specified object is not a document.

-902 An error occurred while parsing the XML.

-903 The specified element cannot be found, or element specifier is empty.

-904 An error occurred while updating the document object or element.

-905 An error occurred while deleting the document object or element.

-906 An error occurred while creating the document object.

-1000 The maximum number of concurrent URL requests has been exceeded.
Please try again later.

-1020 The Arguments associated with tags are not defined.

-1030 External action environment variable has value but no name.

-1031 External action environment variable has name but no value.

-1032 Your request could not be processed because this personal server is
already serving requests from another IP address.

-1050 The specified Purge call could not be executed.

-1060 Maximum licensed number of user exceeded. Please try again later.

Main
Error
Number

Message
439439

Witango Server Error Codes

440440

9
C H A P T E R 9

<@CALC> Expression
Operators

A List of Expression Operators for use with the <@CALC>
Meta Tag
This chapter covers the following topics:

• numbers

• hexadecimal, octal and binary numbers

• arithmetic operators

• mathematical functions

• string functions

• logical operations

• comparison operations

• calculation variables

• sub-expressions
441

Numbers

44
Numbers
4422
A valid number for use in the <@CALC> meta tag is a sequence of digits,
optionally preceded or trailed by a currency sign (default “$”, otherwise
set by the configuration variable currencyChar), with any number of
thousand separator characters, an optional decimal point, and an
exponentiation part. As well, an empty variable or empty string evaluates
to zero.

Numbers can be used with any operators and functions, even with the
string specific function len, which returns the length of the number
converted to a string.

When a number is used in logical expression, any non-zero number is
considered true, and zero is considered false.

Logical expressions themselves return “1” if they are true or “0” if they
are false.

Two symbolic constants, true and false, which evaluate to “1” and “0”,
respectively, are provided for convenience.

An empty string evaluates to zero for the purposes of calculation. That is,
if the variable foo is empty, the following operations are valid:

<@CALC '@@foo + 1'> OK, returns 1
<@CALC '"" + 1'> OK, returns 1
<@CALC 'mean(@@foo 1)'> OK, returns 0.5

The thousand separator set to space

A special case occurs when the thousand separator is set to a space. A
number containing a space can be processed if it is a result of a tag
evaluation; however, a number literal must be quoted if it includes spaces.

For example:

<@ASSIGN NAME=fred VALUE="1 000 000">

<@CALC "@@fred / 100"> Ok, returns 10000.0
<@CALC "@@fred > '1 000'"> Ok, returns 1.0
<@CALC "@@fred > 1 000"> Error
For more information, see
“currencyChar” on
page 398, decimalChar on
page 403, DBDecimalChar
on page 402, and
thousandsChar on
page 424.

T
s

A

<

he thousands separator, currency sign, and other numerical formats are
et by Witango configuration variables. They can be set in various scopes.

rray evaluation

@CALC> treats array references using non-array-specific operators and
functions as a numerical value returning the number of rows in the array.

Numbers
This provides an easy way to verify whether an array is empty or contains
a certain value. For example, you can test for the existence of an array
variable with <@CALC EXPR="@@array_variable > 0"
TRUE="Yes!" FALSE="No such variable.">.

For example:

The variable fred contains the following array:

The variable barney contains the following array:

<@CALC @@fred> returns 2.

<@CALC @@barney> returns 3.

<@IF EXPR="@@fred > @@barney" TRUE="true!"
FALSE="alas"> returns “alas”.

1 2

3 4

1 2

5 6

7 8
443443

Hexadecimal, Octal and Binary Numbers

44
Hexadecimal, Octal and Binary Numbers
4444
The calculator can accept hexadecimal, octal, and binary numbers. The
num function converts strings representing hexadecimal, octal and binary
numbers to decimal numbers, and the result of the conversion can be
used anywhere where a number is used. The following table specifies the
conversion rules.

Note If a decimal number is passed to this function, it either yields an
error or an incorrect result.

For example, all the following expressions generate errors:

num(0x123fga) ERROR: letter g is invalid
num(012380) ERROR: digit 8 is invalid
num(123) ERROR: digits 2 and 3 are invalid

Prefix Valid Symbols Converted As Examples

0x 0123456789abcdef Hexadecimal num (0xff)
num (0x0123f3a4)

0 01234567 Octal num (0123456)
num (0120235)

None 01 Binary num (1011110010100)
num (111)

Strings
Strings
Any Witango meta tag that does not evaluate to a valid number or array
reference is considered a string. No additional quoting is required. There
is a single exception to this rule, further explained in Meta Tag Evaluation
on page 453.

Strings can be used only in comparison operations, contains clauses or as
arguments to the len function. A string literal—that is, a string, directly
included in the expression—must be enclosed in single quotes if it
contains spaces, special characters or starts with a digit.
For more information, see
“Calculation Variables” on
page 447.
Note Single letters must always be enclosed in quotes in string
operations so that they are treated as letters, and not as calculation
variables.

The following examples show string comparisons. If a string literal
contains a single quote or a backslash, it must be escaped with a
backslash.

<@ASSIGN NAME=name VALUE="John Lennon">
<@CALC EXPR="@@name=John"> false
<@CALC EXPR="@@name=John Lennon"> ERROR
<@CALC EXPR="@@name='John Lennon'"> true
<@CALC EXPR="@@name='John*'"> true

<@ASSIGN NAME=name VALUE="John's trousers">
<@CALC EXPR="@@name=John*" true
<@CALC EXPR="@@name='John\'s trousers'"> true
<@CALC EXPR="@@name='John's'"> ERROR

<@ASSIGN NAME=dir VALUE="C:\test">
<@CALC EXPR="@@dir='C:\test'"> false
<@CALC EXPR="@@dir='C:\\test'"> true

When a string is encountered on one side of the comparison operation,
the other operand is forced to a string, too. For example:

2.15 <='abba'
'123.456.78.12'=@@ip_address

Function len returns the length of the string, so the result of this
operation can be used anywhere a number can be used. Strings can not
be assigned to calculation variables.

For example, these are valid expressions:

ABBA='BLACK SABBATH' false
len(JOHN LENNON) + len(FREDDY MERCURY) - 5 > 0 true
445445

Strings

446446
but these are not:

a :=ABBA ERROR: cannot assign string
FREDDY < 0 ERROR: cannot compare string and number

and this tag returns true although you may expect it to return false:

<@CALC EXPR="a=b">

Note A single letter on both sides of the comparison operator
evaluates to a calculation variable, meaning a number comparison is
performed.

String comparisons using <@CALC> are case insensitive.

Calculation Variables
Calculation Variables
A calculation variable is a single case-insensitive letter (A–Z) that can be
assigned a numeric value and used in subsequent operations. You can
write small programs inside the tag with calculation variables and
statement separators, or put a program in a separate file and use
<@INCLUDE> to calculate the result.

Single letters must always be enclosed in quotes in string operations so
that they are treated as letters, and not as calculation variables. For
example:
For more information, see
“beginswith” on page 449.
<@CALC EXPR="Henry beginswith 'H'"> evaluates the string
“Henry” to see if it begins with the string “H” (case-insensitive).

<@CALC EXPR="1234 beginswith H"> evaluates “1234” to see if
it begins with the value specified in the calculation variable H
(number-to-string conversions are performed).

The following table shows predefined calculation variables. You may use
these values in your programs, or have any of these calculation variables
reassigned with any other value.

Variable Meaning Value

G (3 - sqrt(5))/2, the golden ratio. 0.381966011250105

E e, the base of natural logarithms. 2.718281828459045

L log10(e), the ratio between natural and
decimal logarithms.

0.434294481903252

P pi, the circumference to diameter ratio of a
circle.

3.141592653589793

Q sqrt(2), the square root of 2. 1.414213562373095

I Has a meaning only inside foreach
expression.

Current row index

J Has a meaning only inside foreach
expression.

Current column index

X Has a meaning only inside foreach
expression.

Current array element
index
447447

Operators

44
Operators
4488
The following table shows the operators listed in order of increasing
precedence. Operators having the same precedence, for example, plus
and minus, are not separated by a rule.

Note The beginswith operator should be used instead of a
trailing asterisk as a wildcard in comparisons.The use of asterisks
as wildcards is deprecated and will be removed in a future release.

Operator Meaning and Return Value Usage

; Sub-statement separator, returns the value of the
last statement.

statement ;
statement

:= Assignment operator, assigns the value of the
expression to the calculation variable, and returns
that value.

variable :=
expression

||
OR

Logical OR, returns 1 if any of the expressions is
evaluated to a non-zero value, or 0 otherwise.

expr || expr
expr OR expr

&&
AND

Logical AND, returns 1 if both of the expressions
are evaluated to non-zero values, or 0 otherwise.

expr && expr
expr AND expr

< Numeric or string LESS. Returns 1 if left operand is
greater than right one, or 0 otherwise.

expr < expr
string < string

> Numeric or string GREATER. Returns 1 if left
operand is greater than right one, or 0 otherwise.

expr > expr
string > string

<= Numeric or string LESS OR EQUAL. Returns 1 if left
operand is less than or equal to right one, or 0
otherwise.

expr <= expr
string <= string

>= Numeric or string GREATER OR EQUAL. Returns 1
if left operand is greater than or equal to right one,
or 0 otherwise.

expr >= expr
string >= string

= numeric or string EQUAL. Returns 1 if left operand
is equal to right one, or 0 otherwise.

expr = expr
string = string

!= Numeric or string NOT EQUAL. Returns 1 if left
operand is not equal to right one, or 0 otherwise.

expr != expr
string != string

? : Ternary comparison. Evaluates to expr1 if condition
is true, or to expr2 otherwise.

(cond) ? expr1:
expr2

Operators
contains Containment. Returns true if specified string or
number is contained in the array.

array contains
string
array contains
number

contains Occurrence. Returns true if specified string or
number is a substring of the source string.

source_string
contains string
source_string
contains number

beginswith Occurrence. Returns true if specified string or
number begins the source string. (Case-insensitive.)

source_string
beginswith string
source_string
beginswith
number

endswith Occurrence. Returns true if specified string or
number ends the source string. (Case-insensitive.)

source_string
endswith string
source_string
endswith
number

+ Addition. Returns the sum of the expressions. expr + expr

– Subtraction. Returns the difference of the
expressions.

expr – expr

* Multiplication. Returns the product of the
expressions.

expr * expr

/ Division. Returns the quotient of the expr1 divided
by the expr2.

expr1 / expr2

% Modulo. Returns the remainder of expr1 divided by
expr2.

expr1 % expr2

^ Power. Returns expr1 raised to expr2 power. expr1 ^ expr2

– Unary minus. Returns the negation of the
expression.

– expr

+ Unary plus. Returns the expression itself. + expr

!
NOT

Logical NOT. Returns 0 if the value of the
expression is not 0, or 1 otherwise.

! expr
NOT expr

Operator Meaning and Return Value Usage
449449

Built-in Functions

45
Built-in Functions
4500
Each built-in function expects either a single numeric argument, or a
space-separated list of mixed numeric and array arguments, or a string. It
is an error to specify an argument of the wrong type to a function. If an
array, specified as an argument to a function, contains non-numeric
elements, these elements are ignored without any error diagnostics.

The following tables list all built-in functions.

Built-in Functions
Numeric functions of the form func(expr)

String functions of the form func(string)

Function Meaning and Return Value Arguments and
Usage

abs |x|, the absolute value of the expression abs(expr)

acos cos-1(x), the arccosine of the expression,
returned in radians

acos(expr)

asin sin-1(x), the arcsine of the expression, returned
in radians

asin(expr)

atan tan-1(x), the arctangent of the expression,
returned in radians

atan(expr)

ceil expression rounded to the closest integer
greater than or equal to the expression

ceil(expr)

cos cos(x), the cosine of the expression, specified
in radians

cos(expr)

exp ex, the exponentiation of the expression exp(expr)

fac x! (or 1*2*3*...*x) factorial of the expression fac(expr)

floor expression rounded to the closest integer less
than the expression

floor(expr)

log In(x) (or loge(x)), the natural logarithm of the
expression

log(expr)

log10 log10(x), the decimal logarithm of the
expression

log10(expr)

sin sin(x), the sine of the expression, specified in
radians

sin(expr)

sqrt sqrt(x) (or x1/2), the square root of the
expression

sqrt(expr)

tan tan(x), the tangent of the expression, specified
in radians

tan(expr)

Function Meaning and Return Value Arguments
and Usage

len returns the length of the string enclosed in
parentheses

len(text)

num converts a string, representing a hexadecimal,
octal, or binary number into a number

num(text)
451451

Built-in Functions

452452
Array functions of the form func(expr|array expr|array)

Function Meaning and Return Value Arguments and
Usage

max max(A1, A2,...An). returns the largest element max(expr expr ...)

min min(A1, A2,...An). returns the smallest element min(expr expr ...)

sum A1+A2+...+An. returns the sum of the elements sum(expr expr...)

prod A1*A2*...*An. returns the product of the
elements

prod(expr expr...)

mean Amean=(A1+A2+...+An) /n. returns the mean of
the elements

mean(expr expr...)

var Avar=((A1-Amean)2+((A2-Amean)2+...+((An-

Amean)2)/(n-1) returns the (squared) variance
of the elements

var(expr expr...)
Array
Operators

C

T

ontains Operator

he contains operator has the following syntax:

<@VAR NAME="array"> contains number or string

This operator checks if the specified number or string is contained in the
array. The string should be enclosed in quotes, if it contains any non-
alphanumeric characters. The operator returns “1” if the element is
found, or “0” otherwise.

For example, the following expression, which uses the <@IF> meta tag,
returns “Cool” if “Queen” is found in the CDs array, and “Too Bad” if it
is not.

<@IF EXPR="<@VAR NAME=CDs> contains Queen" TRUE=Cool
FALSE="Too bad">

Foreach Operator

The foreach operator has the following syntax:

<@VAR array> foreach {statement; ...}
For more information, see
“<@ARRAY>” on page 93.

For more information, see
“<@ASSIGN>” on
page 96.

T

•

his operator steps through the elements of an array and it assigns

the value of the elements to the variable “X”

• the current row number to the variable “I”

• and the current column number to the variable “J”

Built-in Functions
and it executes the statements inside the braces “{ }”for each element.
All non-numeric elements are interpreted as zeroes.

The operator returns the last calculated value of the expression.

The values of “X, I, J” are restored upon the exit from the foreach
operator. For example, if array CDs is initialized as follows:

<@ASSIGN NAME="CDinitValue" VALUE="AC/
DC,Scorpions,Deep Purple,Black
Sabbath,Queen;19.50,22.50,22.50,17.90,29.00">
<@ASSIGN NAME="CDs" VALUE="<@ARRAY ROWS='2'
COLS='5' VALUE=@@CDinitValue CDELIM=','
RDELIM=';'>">

then the following program prints the name of the most expensive CD:

<@VAR NAME=CDs[1,<@CALC "t :=1; p :=0.0;

<@VAR NAME=CDs> foreach
{ t :=(p < x)? j: t; p :=(p < x)? x: p; }; t">]>

Meta Tag Evaluation

There are two special cases when a meta tag is not treated as a string.
Consider the following two examples:

<@CALC EXPR="<@POSTARG NAME=prog>">
<@CALC EXPR="<@INCLUDE FILE=myprog>">

If the post argument prog contains an expression submitted by a user, or
the file myprog contains an expression to be calculated, one would expect
<@CALC> to produce the result of the calculation. The rule is, if the
expression contains a single meta tag, such an expression is fully
evaluated by the calculator, rather than treated as a string.

Ordering of Operation Evaluation With Parentheses

Parentheses can be used to order the evaluation of expressions that
otherwise are evaluated in the order specified in the Operators table
(page 448). For example:

<@CALC EXPR= "7*3+2">

This example evaluates to “23”.

<@CALC EXPR= "7*(3+2)">

This example evaluates to “35”.

A more complex example can be constructed using different operators
and nested parentheses:
453453

Built-in Functions

454454
<@CALC EXPR="(<@ARG _function> = 'detail') and
((len(<@ARG id>) != 0 and <@ARG mode>='abs')
or (<@ARG mode>='next' or <@ARG mode>='prev'">))>

This tag evaluates to “1” (true) if the _function argument is equal to
“detail” and any one of the following conditions are met:

• id arg is not empty and the mode arg is “abs”

• mode argument is “next”

• mode argument is “prev”.
See Also <
@CALC> page 105

1
C H A P T E R 1 0

Lists of Meta Tags

A listing of Witango Server Meta Tags
This Appendix displays meta tags in the following listings:

• alphabetical table of meta tags and meta tags with their
attributes

• alphabetical listing of meta tags by function

• alphabetical reference to all meta tags, their function, syntax
and explanation.
455

Alphabetical List of Meta Tags

45
Alphabetical List of Meta Tags
4566
Meta Tag Abstract

<@ABSROW> Returns the position of the current row within
the total rowset.

<@ACTIONRESULT> Returns the value of the specified item from the
first row of results of the specified action.

<@ADDROWS> Adds one or more rows to an array.

<@APPFILE> Returns the path to the current application file,
including the file name.

<@APPFILENAME> Returns the current application file’s name.

<@APPFILEPATH> Returns the path to the current application file,
excluding the application file name, but including
the trailing slash.

<@APPKEY> Returns the key value of the current application
scope.

<@APPNAME> Returns the name of the current application.

<@APPPATH> Returns the path to the current application

<@ARG> Returns search and/or post argument values.

<@ARGNAMES> Returns an array of all search and post
arguments passed to the current application file.

<@ARRAY> Returns an array with a specified number of
rows and columns.

<@ASCII> Returns the ASCII value of the first character in
a string.

<@ASSIGN> Assigns a value to a variable.

<@BIND> Explicitly passes a value in the Direct DBMS
action using the parameter binding capabilities of
ODBC or OCI.

<@BREAK> Ends execution of a loop.

<@CALC> Returns the result of a calculation.

<@CALLMETHOD> Calls a specified method of an object

<@CGI> Returns the full path and name of the Witango
CGI.

<@CGIPARAM> Evaluates to the specified CGI attribute.

Alphabetical List of Meta Tags
<@CHAR> Returns the character that has the specified
ASCII value.

<@CHOICELIST> Creates HTML selection list boxes, pop-up
menus/drop-down lists, and radio button
clusters using data from variables, database
values, and so on.

<@CIPHER> Performs encryption/decryption on strings.

<@CLASSFILE> Returns the path to the current Witango class
file, including the file name.

<@CLASSFILEPATH> Returns the path to the current Witango class
file, excluding the Witango class file name.

<@CLEARERRORS> Clears errors and allows Witango Server to
resume processing..

<@COL> Returns the value of a numbered column.

<@COLS> </@COLS> Processes the enclosed HTML once for each
column in the current row.

<@COLUMN> Returns the value of a named column.

<@COMMENT> </@COMMENT> Includes comments in Witango application files.

<@CONFIGPATH> Returns the full path to the configuration
directory of Witango Server.

<@CONNECTIONS> Provides information about each data source,
mail server, or external action currently in use
by Witango Server.

<@CONTINUE> Ends the current iteration of a loop.

<@CREATEOBJECT> Creates a new instance of a particular object.

<@CRLF> Evaluates to a carriage return/linefeed
combination. Used in the file pointed to by
headerFile (the HTTP header).

<@CURCOL> Returns the index (1, 2, 3...) of the column
currently being processed if placed inside a
<@COLS></@COLS> block.

<@CURRENTACTION> Returns the name of the executing action.

<@CURRENTDATE>,
<@CURRENTTIME>,
<@CURRENTTIMESTAMP>

Returns the current date, time, or timestamp.

<@CURROW> Returns the number of the current row being
processed in a <@ROWS> or <@FOR> block.

<@CUSTOMTAGS> Returns an array of all custom meta tags in the
scope specified.
457457

Alphabetical List of Meta Tags

458458
<@DATASOURCESTATUS> Returns an array containing summary
information about data sources, mail servers or
external actions used by Witango Server.

<@DATEDIFF> Returns the number of days between the two
dates specified.

<@DATETOSECS>,
<@SECSTODATE>

Converts a date into seconds.

<@DAYS> Adds days to a date.

<@DBMS> Returns the concatenated name and version of
the database used by the current action’s data
source.

<@DEBUG> </@DEBUG> Delimits text to appear in Results HTML only in
debug mode.

<@DEFINE> Creates an empty variable.

<@DELROWS> Deletes one or more rows from an array.

<@DISTINCT> Returns an array containing the distinct rows in
the input array.

<@DOCS> Displays the content of an application file in
HTML.

<@DOM> Parses XML into a document instance.

<@DOMAIN> Returns the key value of the current domain
scope.

<@DOMDELETE> Deletes XML from a document instance.

<@DOMINSERT> Inserts XML into a document instance.

<@DOMREPLACE> Replaces XML in a document instance.

<@DQ>, <@SQ> Returns a double quote, for use within quoted
attributes.

<@DSDATE>, <@DSTIME>,
<@DSTIMESTAMP>

Converts a date, time, or timestamp value to the
format required by the current action’s data
source.

<@DSNUM> Converts a number to the format required by
the current action’s data source.

<@DSTYPE> Returns the type of data source associated with
the current action.

<@ELEMENTATTRIBUTE> Returns the value of one or more attributes
from a document instance.

<@ELEMENTATTRIBUTES> Returns the value of all attributes of one or
more elements from a document instance.

<@ELEMENTNAME> Returns an element name or names from a
document instance.

Alphabetical List of Meta Tags
<@ELEMENTVALUE> Returns an element value or values from a
document instance.

<@EMAIL> Enables the composition and manipulation of an
email message.

<@EMAILSESSION> Enables the sending and receiving of email
messages using the email protocols SMTP, POP3
and IMAP4.

<@ERROR> Returns the value of the named error
component of the current error.

<@ERRORS> </@ERRORS> In conjunction with <@ERROR>, iterates over a
list of errors.

<@EXCLUDE> </@EXCLUDE> Processes text for meta tags, without adding the
results of that processing to the Results HTML.

<@EXIT> Ends the processing of current HTML and
continues with the next action in the application
file.

<@FILTER> Returns an array containing rows matching a
specified expression.

<@FOR> </@FOR> Allows looping in HTML.

<@FORMAT> Allows formatting of text, numeric, and datetime
values.

<@GETPARAM> Retrieves the contents of a parameter variable
within a Witango class file.

<@HTTPREASONPHRASE> For manipulation of default headers.

<@HTTPSTATUSCODE> For manipulation of default headers.

<@IF>, <@ELSEIF>,
<@ELSEIFEMPTY>,
<@ELSEIFEQUAL>, </@IF>

Performs conditional processing.

<@IFEMPTY> <@ELSE> </@IF> Includes text in HTML if a provided value is
empty.

<@IFEQUAL> <@ELSE> </@IF> Includes text in HTML if two values are equal.

<@INCLUDE> Returns the contents of a specified file.

<@INTERSECT> Returns the intersection of two arrays.

<@ISALPHA> Checks whether a value is a valid string
containing only alphabetical characters.

<@ISDATE>, <@ISTIME>,
<@ISTIMESTAMP>

Checks whether a value is a valid date, time, or
timestamp.

<@ISMETASTACKTRACE> Checks whether a metastacktrace is available.

<@ISNULLOBJECT> Tests whether a variable is a null object.
459459

Alphabetical List of Meta Tags

460460
<@ISNUM> Checks whether a value is a valid number.

<@KEEP> Returns a string stripped of specified characters.

<@LEFT> Returns the first n characters from a string.

<@LENGTH> Returns the number of characters in a string.

<@LITERAL> Causes Witango to suppress meta tag
substitution for the supplied value.

<@LOCATE> Returns the starting position of a substring in a
string.

<@LOGMESSAGE> Saves a message to the Witango Server log file.

<@LOWER> Converts a string to lowercase.

<@LTRIM> Returns string stripped of leading spaces.

<@MAKEPATH> Performs normalisation of paths.

<@MAP> Concatenates columns of an array.

<@MAXROWS> Returns the value specified in the Maximum
Matches field of a Search or Direct DBMS
action.

<@METAOBJECTHANDLERS> Returns an array with a row for each object-
handling plug-in.

<@METASTACKTRACE> Returns an array containing the Meta Stack
Trace.

<@MIMEBOUNDARY> Generates a MIME boundary string.

<@NEXTVAL> Increments a variable and returns the value.

<@NULLOBJECT> Creates null objects.

<@NUMAFFECTED> Returns the number of rows affected by the last
executed Insert, Update, Delete, or
DirectDBMS action.

<@NUMCOLS> Returns the number of columns retrieved by an
action or in a specified array.

<@NUMOBJECTS> Returns the count of the objects in the
collection or iterator.

<@NUMROWS> Returns the number of rows retrieved by an
action or in a specified array.

<@OBJECTAT> Given an iterator or collection object and an
index, returns a single item from the object.

<@OBJECTS></@OBJECTS> Loops through collection and iterator objects in
variables returned by method calls.

<@OMIT> Returns a string stripped of specified characters.

Alphabetical List of Meta Tags
<@PAD> Returns a padded string appending or prefixing a
given character.

<@PLATFORM> Returns the name of the operating platform.

<@POSTARG> Returns the value of the named post argument.

<@POSTARGNAMES> Returns an array containing the names of all post
arguments.

<@PRODUCT> Returns the name of Witango Server's product
type.

<@PURGE> Removes one or all variables from a scope.

<@PURGECACHE> Allows selective purging of the file cache.

<@PURGERESULTS> Empties the accumulated Results HTML.

<@RANDOM> Returns a random number.

<@REGEX> Finds strings using regular expressions.

<@RELOADCONFIG> Forces a reload of configuration files.

<@RELOADCUSTOMTAGS> Forces a reload of the custom tags file of the
specified scope.

<@REPLACE> Replaces strings.

<@RESULTS> Evaluates to the accumulated Results HTML.

<@RIGHT> Extracts the last n characters from the string.

<@ROWS> </@ROWS> Allows iteration over the rows of an action’s
results or an array.

<@RTRIM> Returns a string stripped of trailing spaces.

<@SCRIPT> Executes scripts written in JavaScript.

<@SEARCHARG> Returns the value of the specified search
argument.

<@SEARCHARGNAMES> Returns an array containing the names of all
search arguments.

<@SECSTODATE>,
<@SECSTOTIME>,
<@SECSTOTS>

Converts seconds to a date.
Converts seconds to a time.
Converts seconds to a timestamp.

<@SERVERNAME> Returns the name of the current Witango
server.

<@SERVERSTATUS> Returns status information about Witango
Server.

<@SETCOOKIES> Returns the correct Set-Cookie lines to set the
values of cookie variables.

<@SETPARAM> Sets the value of a parameter variable within a
Witango class file.
461461

Alphabetical List of Meta Tags

462462
<@SORT> Sorts the input array by the column(s) specified.
Does not return anything.

<@SQ> Returns a single quote, for use within quoted
attributes.

<@SQL> Returns last action-generated SQL.

<@STARTROW> Returns the position of the first row retrieved.

<@SUBSTRING> Extracts a substring.

<@THROWERROR> Generates a custom error.

<@TIMER> Allows you to create and use named elapsed
timers.

<@TIMETOSECS>,
<@SECSTOTIME>

Converts a time to seconds.

<@TMPFILENAME> Generates a unique temporary file name.

<@TOGMT> Transforms a local time to GMT.

<@TOKENIZE> Sections a string into a one-row array.

<@TOTALROWS> Returns the total number of rows matched by a
Search action.

<@TRANSPOSE> Exchanges row and column specifications for
values in an array.

<@TRIM> Returns a string stripped of leading and trailing
spaces.

<@TSTOSECS>, <@SECSTOTS> Converts a timestamp to seconds.

<@UNION> Returns the union of two arrays.

<@UPPER> Returns a string converted to uppercase.

<@URL> Retrieves the specified URL, returns its data, and
optionally a variety of additional information.

<@URLDECODE> Decodes a string encoded in URL format.

<@URLENCODE> Makes a string compatible for inclusion in a URL.

<@USERREFERENCE> Returns a value identifying the user executing
the application file.

<@USERREFERENCEARGUMENT
>

Evaluates to
_userReference=<@USERREFERENCE>.

<@USERREFERENCECOOKIE> Used in default HTTP header of Witango when
returning results.

<@VAR> Retrieves the contents of a variable.

<@VARINFO> Returns information about a variable.

Alphabetical List of Meta Tags
<@VARNAMES> Returns an array of all variable names for a given
scope.

<@VARPARAM> Explicitly passes a value in the
<@CALLMETHOD> meta tag.

<@VERSION> Returns the version number of Witango Server.

<@WEBROOT> Returns the path to the Web server document
root.

<@!> Allows commenting of application files.
463463

Alphabetical List of Meta Tags, With Attributes

46
Alphabetical List of Meta Tags, With Attributes
Square brackets [] denote
optional attributes (or tags,
in the case of multi-tag
expressions).

<
<
<
<

4644
@ABSROW>
@ACTIONRESULT NAME NUM [ENCODING] [FORMAT]>
@ADDROWS ARRAY VALUE [POSITION] [SCOPE]>
@APPFILE [ENCODING]>

<@APPFILENAME [ENCODING]>
<@APPFILEPATH [ENCODING]>
<@APPKEY [ENCODING]>
<@APPNAME [ENCODING]>
<@APPPATH [ENCODING]>
<@ARG NAME [TYPE] [ENCODING] [FORMAT]>
<@ARGNAMES>
<@ARRAY [ROWS] [COLS] [VALUE] [CDELIM] [RDELIM]>
<@ASCII CHAR>
<@ASSIGN NAME VALUE [SCOPE] [EXPIRES] [PATH] [DOMAIN] [SECURE]>
<@BIND NAME [DATATYPE] [SCOPE] [BINDTYPE] [PRECISION] [SCALE]
[BINDNAME]>
<@BREAK>
<@CALC EXPR [PRECISION] [ENCODING] [FORMAT]>
<@CALLMETHOD OBJECT METHOD [SCOPE] [METHODTYPE] [PARAMTYPES]>
<@CGI [ENCODING]>
<@CGIPARAM NAME [ENCODING]>
<@CHAR CODE [ENCODING]>
<@CHOICELIST NAME TYPE OPTIONS [SIZE] [MULTIPLE] [CLASS] [STYLE] [onBlur]
[onClick] [onFocus] [VALUES] [SELECTED] [SELECTEXTRAS] [OPTIONEXTRAS]
[TABLEEXTRAS] [TREXTRAS] [TDEXTRAS] [LABELPREFIX] [LABELSUFFIX]
[COLUMNS] [ROWS] [ORDER] [ENCODING]>
<@CIPHER ACTION TYPE STR [KEY] [ENCODING][KEYTYPE]>
<@CLASSFILE [ENCODING]>
<@CLASSFILEPATH [ENCODING]>
<@CLEARERRORS>
<@COL [NUM] [ENCODING] [FORMAT]>
<@COLS></@COLS>
<@COLUMN NAME [ENCODING] [FORMAT]>
<@COMMENT></@COMMENT>
<@CONFIGPATH>
<@CONNECTIONS [DSN] [TYPE] [ENCODING] [{array attributes}]>
<@CONTINUE>
<@CREATEOBJECT TYPE OBJECTID [SCOPE] [EXPIRYURL] [INITSTRING]
[SYSTEMOBJECT]>
<@CRLF>
<@CURCOL>
<@CURRENTACTION [ENCODING]>
<@CURRENTDATE [ENCODING] [FORMAT]>
<@CURRENTTIME [ENCODING] [FORMAT]>
<@CURRENTTIMESTAMP [ENCODING] [FORMAT]>
<@CURROW>
<@CUSTOMTAGS [SCOPE] [{array attributes}]>
<@DATASOURCESTATUS [DSN] [TYPE] [ENCODING] [{array attributes}]>
<@DATEDIFF DATE1 DATE2 [FORMAT]>
<@DATETOSECS DATE [FORMAT]>

Alphabetical List of Meta Tags, With Attributes
<@DAYS DATE DAYS [ENCODING] [FORMAT]>
<@DBMS [ENCODING]>
<@DEBUG></@DEBUG>
<@DEFINE [NAME] [SCOPE]TYPE [ROWS][COLS]>
<@DELROWS ARRAY [POSITION] [NUM] [SCOPE]>
<@DISTINCT ARRAY [COLS] [SCOPE]>
<@DOCS [FILE] [ENCODING]>
<@DOM VALUE>
<@DOMAIN>
<@DOMDELETE OBJECT [SCOPE] [ELEMENT]>
<@DOMINSERT OBJECT [SCOPE] [ELEMENT] [POSITION]></@DOMINSERT>
<@DOMREPLACE OBJECT [SCOPE] [ELEMENT]></@DOMREPLACE>
<@DQ>
<@DSDATE DATE [INFORMAT] [ENCODING]>
<@DSTIME TIME [INFORMAT] [ENCODING]>
<@DSTIMESTAMP TS [INFORMAT] [ENCODING]>
<@DSNUM NUM [ENCODING]>
<@DSTYPE [ENCODING]>
<@ELEMENTATTRIBUTE OBJECT ATTRIBUTE [SCOPE] [ELEMENT] [TYPE]
[{array attributes}]>
<@ELEMENTATTRIBUTES OBJECT [SCOPE] [ELEMENT] [TYPE]
[{array attributes}]>
<@ELEMENTNAME OBJECT [SCOPE] [ELEMENT] [TYPE] [{array attributes}]>
<@ELEMENTVALUE OBJECT [SCOPE] [ELEMENT] [TYPE] [{array attributes}]>
<@EMAIL [COMMAND] NAME SCOPE [PARTID] [FIELDNAME] [FIELDVALUE] [TYPE]
[DECODEDATA] [MESSAGE]>
<@EMAILSESSION [COMMAND] [SESSIONID] PROTOCOL SERVER [PORT]
[USERNAME] [PASSWORD] [MAILBOX] [MODE] [FIELD] [MESSAGEID] [NAME]
[SCOPE]>
<@ERROR PART [ENCODING]>
<@ERRORS></@ERRORS>
<@EXCLUDE></@EXCLUDE>
<@EXIT>
<@FILTER ARRAY EXPR [SCOPE]>
<@FOR [START] [STOP] [STEP] [PUSH]></@FOR>
<@FORMAT STR [FORMAT] [INFORMAT] [ENCODING]>
<@GETPARAM NAME [TYPE] [ENCODING] [FORMAT] [{array attributes}]>
<@HTTPREASONPHRASE>
<@HTTPSTATUSCODE>
<@IF EXPR [TRUE] [FALSE]>
<@IF EXPR>
[<@ELSEIF EXPR>]
[<@ELESIFEMPTY VALUE>]
[<@ELSEIFEQUAL VALUE1 VALUE2>]
[<@ELSE>]
</@IF>
<@IFEMPTY VALUE>
[<@ELSE>]
</@IF>
<@IFEQUAL VALUE1 VALUE2>
[<@ELSE>]
</@IF>
<@INCLUDE FILE>
<@INTERSECT ARRAY1 ARRAY2 [COLS] [SCOPE1] [SCOPE2]>
<@ISALPHA STR>
465465

Alphabetical List of Meta Tags, With Attributes

466466
<@ISDATE VALUE>
<@ISMETASTACKTRACE>
<@ISNULLOBJECT OBJECT [SCOPE]>
<@ISNUM VALUE>
<@ISTIME VALUE>
<@ISTIMESTAMP VALUE>
<@KEEP STR CHARS [ENCODING]>
<@LEFT STR NUMCHARS [ENCODING]>
<@LENGTH STR>
<@LITERAL VALUE [ENCODING]>
<@LOCATE STR FINDSTR>
<@LOGMESSAGE MESSAGE [LOGLEVEL] [TYPE={ACTIVITY*|EVENT}]>
<@LOWER STR [ENCODING]>
<@LTRIM STR [ENCODING]>
<@MAKEPATH [PATH1] [PATH2] [TYPE]>
<@MAP NAME [SCOPE] VALUE [ENCODING]>
<@MAXROWS>
<@METAOBJECTHANDLERS [{array attributes}]>
<@METASTACKTRACE>
<@MIMEBOUNDARY LEVELID [BOUNDARY]>
<@NEXTVAL NAME [SCOPE] [STEP]>
<@NULLOBJECT>
<@NUMAFFECTED>
<@NUMCOLS [ARRAY]>
<@NUMOBJECTS OBJECT [SCOPE]>
<@NUMROWS [ARRAY]>
<@OBJECTAT OBJECT NUM [SCOPE]>
<@OBJECTS OBJECT ITEMVAR [SCOPE] [ITEMSCOPE] [START] [STOP]>
</@OBJECTS>
<@OMIT STR CHARS [ENCODING]>
<@PAD STR CHAR NUMCHARS [POSITION] [ENCODING]>
<@PLATFORM [ENCODING]>
<@POSTARG NAME [TYPE] [ENCODING] [FORMAT]>
<@POSTARGNAMES>
<@PRODUCT [ENCODING]>
<@PURGE [NAME] [SCOPE]>
<@PURGECACHE [PATH] [TYPES]>
<@PURGERESULTS>
<@RANDOM [HIGH] [LOW]>
<@REGEX EXPR STR TYPE>
<@RELOADCONFIG>
<@RELOADCUSTOMTAGS [SCOPE]>
<@REPLACE STR FINDSTR REPLACESTR [POSITION] [ENCODING]>
<@RESULTS [ENCODING]>
<@RIGHT STR NUMCHARS [ENCODING]>
<@ROWS [ARRAY] [SCOPE] [PUSH] [START] [STOP] [STEP]></@ROWS>
<@RTRIM STR [ENCODING]>
<@SCRIPT EXPR [SCOPE]>
<@SCRIPT [SCOPE]></@SCRIPT>
<@SEARCHARG NAME [TYPE] [ENCODING] [FORMAT]>
<@SEARCHARGNAMES>
<@SECSTODATE SECS [ENCODING] [FORMAT]>
<@SECSTOTIME SECS [ENCODING] [FORMAT]>
<@SECSTOTS SECS [ENCODING] [FORMAT]>
<@SERVERNAME>

Alphabetical List of Meta Tags, With Attributes
<@SERVERSTATUS [VALUE] [ENCODING]>
<@SETCOOKIES>
<@SETPARAM NAME VALUE>
<@SORT ARRAY [COLS] [SCOPE]>
<@SQ>
<@SQL [ENCODING]>
<@STARTROW>
<@SUBSTRING STR START NUMCHARS [ENCODING]>
<@THROWERROR [NUM] [DESCRIPTION]>
<@TIMER [NAME] [VALUE]>
<@TIMETOSECS TIME [FORMAT]>
<@TMPFILENAME [ENCODING]>
<@TOGMT TS [ENCODING] [FORMAT]>
<@TOKENIZE VALUE CHARS>
<@TOTALROWS>
<@TRANSPOSE ARRAY [SCOPE]>
<@TRIM STR [ENCODING]>
<@TSTOSECS TS [FORMAT]>
<@UNION ARRAY1 ARRAY2 [COLS] [SCOPE1] [SCOPE2]>
<@UPPER STR [ENCODING]>
<@URL LOCATION [BASE] [USERAGENT] [FROM] [ENCODING] [USERNAME]
[PASSWORD] [POSTARGS] [POSTARGARRAY] [WAITFORRESULT]
[DETAILEDRESPONSE]>
<@URLDECODE STR>
<@URLENCODE STR>
<@USERREFERENCE>
<@USERREFERENCEARGUMENT>
<@USERREFERENCECOOKIE>
<@VAR NAME [SCOPE] [TYPE] [ENCODING] [FORMAT] [{array attributes}]>
<@VARINFO NAME ATTRIBUTE [SCOPE]>
<@VARNAMES SCOPE>
<@VARPARAM NAME [DATATYPE] [SCOPE]>
<@VERSION [ENCODING]>
<@WEBROOT>
<@! COMMENT>
467467

Meta Tags List by Function

46
Meta Tags List by Function
4688
Action/Application File Information
<@ACTIONRESULT>
<@APPFILENAME>
<@CURRENTACTION>
<@DOCS>
<@LOGMESSAGE>
<@RESULTS>
<@SQL>

Application Scope
<@APPKEY>
<@APPNAME>
<@APPPATH>

Array Operations
<@ADDROWS>
<@ARRAY>
<@ASSIGN>
<@DELROWS>
<@DEFINE>
<@DISTINCT>
<@FILTER>
<@INTERSECT>
<@MAP>
<@NUMCOLS>
<@REGEX>
<@ROWS> </@ROWS>
<@SORT>
<@TOKENIZE>
<@TRANSPOSE>
<@UNION>
<@VAR>
<@VARINFO>

Conditionals
<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
<@IFEMPTY> <@ELSE> </@IF>@ELSEIFEMPTY
<@IFEQUAL> <@ELSE> </@IF>@IF

Custom Meta Tags
<@RELOADCUSTOMTAGS>
<@CUSTOMTAGS>

Meta Tags List by Function
Data Sources
<@BIND>
<@CONNECTIONS>
<@DATASOURCESTATUS>
<@DBMS>
<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
<@DSNUM>
<@DSTYPE>
<@SQL>

Database Output
<@ABSROW>
<@COL>
<@COLS> </@COLS>
<@COLUMN>
<@CURCOL>
<@CURROW>
<@FORMAT>
<@MAXROWS>
<@NUMAFFECTED>
<@NUMROWS>
<@PURGERESULTS>
<@ROWS> </@ROWS>
<@STARTROW>
<@TOTALROWS>

Date and Time
<@CURRENTDATE>, <@CURRENTTIME>, <@CURRENTTIMESTAMP>
<@DATEDIFF>
<@DATETOSECS>, <@SECSTODATE>
<@DAYS>
<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>
<@TIMER>
<@TIMETOSECS>, <@SECSTOTIME>
<@TOGMT>
<@TSTOSECS>, <@SECSTOTS>

Document Instance (XML)
<@ASSIGN>
<@DEFINE>
<@DOCS>
<@DOM>
<@DOMDELETE>
<@DOMINSERT>
<@DOMREPLACE>
<@ELEMENTATTRIBUTE>
<@ELEMENTATTRIBUTES>
469469

Meta Tags List by Function

470470
<@ELEMENTNAME>
<@ELEMENTVALUE>
<@VAR>

Email
<@EMAIL>
<@EMAILSESSION>
<@DEFINE>
<@MIMEBOUNDARY>

Error Handling
<@CLEARERRORS>
<@ERROR>
<@ERRORS> </@ERRORS>
<@ISMETASTACKTRACE>
<@METASTACKTRACE>
<@THROWERROR>

File Access
<@APPFILE>
<@APPFILENAME>
<@APPFILEPATH>
<@CLASSFILE>
<@CLASSFILEPATH>
<@INCLUDE>
<@TMPFILENAME>
<@WEBROOT>

Formatting
<@FORMAT>

HTML Processing
<@CHOICELIST>
<@COMMENT> </@COMMENT>
<@DEBUG> </@DEBUG>
<@EXCLUDE> </@EXCLUDE>
<@EXIT>
<@!>

HTTP Processing
<@HTTPREASONPHRASE>
<@HTTPSTATUSCODE>

Meta Tags List by Function
Loop Processing
<@BREAK>
<@CONTINUE>
<@FOR> </@FOR>
<@ROWS> </@ROWS>
<@OBJECTS></@OBJECTS>

Numeric Operations
<@CALC>
<@DSNUM>
<@ISNUM>
<@NEXTVAL>
<@RANDOM>

Objects
<@CALLMETHOD>
<@CREATEOBJECT>
<@ISNULLOBJECT>
<@METAOBJECTHANDLERS>
<@NULLOBJECT>
<@NUMOBJECTS>
<@OBJECTAT>
<@OBJECTS></@OBJECTS>
<@VARPARAM>

Paths
<@APPFILE>
<@APPFILEPATH>
<@CGI>
<@CGIPARAM>
<@CLASSFILE>
<@CLASSFILEPATH>
<@CONFIGPATH>
<@MAKEPATH>

Server
<@SERVERNAME>
<@SERVERSTATUS>

Script Execution
<@SCRIPT>

String Operations
<@ASCII>
471471

Meta Tags List by Function

472472
<@CHAR>
<@CIPHER>
<@DQ>, <@SQ>
<@ISALPHA>
<@KEEP>
<@LEFT>
<@LENGTH>
<@LOCATE>
<@LOWER>
<@LTRIM>
<@OMIT>
<@PAD>
<@REGEX>
<@REPLACE>
<@RIGHT>
<@RTRIM>
<@SUBSTRING>
<@TOKENIZE>
<@TRIM>
<@UPPER>
<@URLENCODE>

Witango Class Files
<@CLASSFILE>
<@CLASSFILEPATH>
<@GETPARAM>
<@SETPARAM>

Witango Information
<@PLATFORM>
<@PRODUCT>
<@VERSION>

1
C H A P T E R 1 1

Using DLLs With Witango

Programmer Reference for Extending the Functionality of
Witango Using DLLs
This Chapter provides information on creating Dynamic Link Libraries
(DLLs) for use with the External action when executing Witango
application files on the Windows platform. This information is provided
for those programmers who want to extend the functionality of Witango
Server through the use of DLLs.
473

TExtParamBlock

47
TExtParamBlock
4744
Witango passes each function the following parameter block:

struct TExtParamBlock{
DWORD ThreadId;
DWORD CurrRow;
DWORD CurrColumn;
VOID *UserData;
VOID *Reserved;

};

Witango uses this “extension parameter block” to communicate the
current state to the DLL. The DLL uses it to track user data between
invocations of the DLL. The members of the parameter block are:

• DWORD ThreadId;

The ID of the calling thread allocated by Witango. The value is set by
Witango; it may not be changed by the DLL.

• DWORD CurrRow;

The row number currently processed by Witango. This value is
incremented by Witango as it iterates through each row of the result
set. Starting value is 0.

• DWORD CurrColumn;

The column number currently processed by Witango. This value is
incremented by Witango as it iterates through each column of a
particular row of the result set. Starting value is 0.

• VOID *UserData;

Contains any user defined data. If the DLL requires some memory on
a per query basis, use the UserData member to keep a reference to
the memory block. UserData is usually assigned at the time of
ExtSrcConnect call. It must be freed in the ExtSrcDisconnect
function.

• VOID *Reserved;

Reserved for future use by Witango. Do not reference or set this
member.

DLL Functions
DLL Functions
DLL writers must implement five functions in their DLL. A sixth function,
used to process errors, is optional. Witango calls these functions to
process specific events.

The prototypes for these functions are defined in the ExtSrc.h file,
included with Witango.

These DLL functions are:

• extern "C" _export int ExtSrcConnect(TExtParamBlock
*param_block);

This function is called when the external data source is connected,
usually the first time the External action that references the DLL is
executed. The UserData member of the TExtParamBlock
structure should be initialized at this point.

This function must return one of the following values:

EXT_SRC_SUCCESS (if connection is successful)

EXT_SRC_ERROR (otherwise)

• extern "C" _export int
ExtSrcDisconnect(TExtParamBlock *param_block);

This function is called when the external data source is disconnected,
usually when the Witango Service is stopped. This function provides
the last opportunity to deallocate any memory referenced by the
UserData member of the parameter block.

This function must return one of the following values:

EXT_SRC_SUCCESS (if disconnection is successful)

EXT_SRC_ERROR (otherwise)

• extern "C" _export int
ExtSrcExecuteQuery(TExtParamBlock *param_block,
char *p1, char *p2, char *p3);

The ExtSrcExecuteQuery function is called once for each time the
External action is executed by Witango Server. This function either
returns an error code or the number of columns in the result set
arising from the execution of the DLL. The number of columns is
used by the Witango Server to control when the
ExtSrcGetNextColumn function is called.
475475

DLL Functions

47
 4766
The declaration of this function depends on the number of
parameters you intend to pass to the DLL. After the param_block
parameter you need to include a char * parameter for each
parameter defined in the External action window in Witango Editor.
For example, the prototype shown above is for a DLL that has three
parameters defined for it in the External action.

This function must return one of the following values:

EXT_SRC_ERROR (in case of error)

result set quantity (zero or greater number identifying the
number of columns in the result set)

• extern "C" _export int
ExtSrcFetchNextRow(TExtParamBlock *param_block);

This function is called by Witango Server once for each row of the
result set created by the ExtSrcExecuteQuery function. The
result of this function determines the number of times it is called:
Witango Server continues to call ExtSrcFetchNextRow until the
function returns EXT_SRC_NODATA or EXT_SRC_ERROR.

This function does not return data to Witango Server. It should be
used by the DLL to load or prepare the data for retrieval. After
calling this function, the ExtSrcGetNextColumn function is called
to retrieve the data from each column. ExtSrcGetNextColumn is
called once for each column in the result set; the number of columns
is determined by the result of the ExtSrcExecuteQuery function.

This function must return one of the following values:

EXT_SRC_SUCCESS (if the row is retrieved successfully)

EXT_SRC_NODATA (if there are no rows remaining to return)

EXT_SRC_ERROR (if an error occurs)

• extern "C" _export int
ExtSrcGetNextColumn(TExtParamBlock *param_block,
UCHAR *buffer, DWORD blen, DWORD *actlen);

This function is called by Witango Server once for each column of
the result set for each row fetched by the ExtSrcFetchNextRow
function.The number of columns is determined by the result of the
ExtSrcExecuteQuery function. If the value of the CurrColumn
member of param_block is equal or greater than the value
returned by ExtSrcExecuteQuery, ExtSrcGetNextColumn
returns EXT_SRC_ERROR.

DLL Functions
This function has the following parameters:

TExtParamBlock *param_block (pointer to the external
action parameter block)

UCHAR *buffer (pointer to a 32K buffer allocated by Witango)

DWORD blen (size of the buffer allocated by Witango (currently
set to 32K))

DWORD *actlen (actual size of the data written by the DLL to
the buffer plus one)

This function must return one of the following values:

EXT_SRC_SUCCESS (if the column's data is retrieved
successfully)

EXT_SRC_ERROR (if an error occurs)

• extern "C" _export int
ExtSrcErrorCode(TExtParamBlock *param_block);

This is an optional function. If implemented, Witango calls
ExtSrcErrorCode whenever one of the other DLL functions
returns EXT_SRC_ERROR to Witango.
477477

DLL Functions

478478

Index
Index

Symbols
207, 225, 236, 237, 242

! meta tag 327
$ 354
@@ 354

A
absolutePathPrefix 393
ABSROW meta tag 80
action

adding 42
assign 387
attribute 42

See also results HTML, no results HTML,
error HTML, and push

assigning 12, 48
indicator icon 49

copying 45
deleting 44
dragging into SQL query text window 21
editing 44
moving 45
multi-column list 16
naming and renaming 43
properties 47

action, name of
Assign 343
Presentation 384

ACTIONRESULT meta tag 81
ADDROWS meta tag 82
altUserKey 428
altUserKey 365
appConfigFile 393
APPFILE meta tag 84
APPFILENAME meta tag 85
APPFILEPATH meta tag 86
APPKEY meta tag 87
application

application folder 348
application file

See also action, Group action, builder, and
project

about 57
changed but not saved 59
creating 59
debugging 48, 63
dirty file indicator 59
dragging column into 18
inserting comment 327
overriding default user key 365
run-only 61
saving 60
specifying URL of 62
window 41, 58
XML format 57

application scope 346, 348, 358, 360, 388
applicationSwitch 394
applicationSwitch 349
APPNAME meta tag 88
APPPATH meta tag 89
aPrefix 394
APREFIX attribute 79
ARG meta tag 90
ARGNAMES meta tag 91
array 237

See also variable
about 343, 354
adding rows 82
concatenatation of cells 237
deleting rows 164
exchanging for values 299
format 355
in resultSet 357
returning distinct rows 166
returning intersection of two arrays 217
returning matching rows 200
returning union of two arrays 303
returning value 355
setting up 355
sorting by columns 285

array in CALC 105, 442
ARRAY meta tag 92, 355
array-returning attributes 79
ASCII meta tag 94
Assign action 355

defining variable 343, 344
with ARRAY meta tag 355

assign action 387
479479

Index

48
ASSIGN meta tag 95, 344, 378, 387
aSuffix 394
ASUFFIX attribute 79
attribute

APREFIX 79
array 79
ASUFFIX 79
CPREFIX 79
CSUFFIX 79
ENCODING 70, 72
FORMAT 75
naming 69
quoting 70
RPREFIX 79
RSUFFIX 79

attribute value
returning, in document instance 380

attribute, associated with action 12, 48

B
Base64 130, 131
BIND meta tag 100
Blowfish 129, 131
BREAK meta tag 103
business logic 54, 368, 384

C
cache 395
cacheIncludeFiles 395
cacheSize 395
CALC meta tag 104, 108, 447

array 105, 442
calculation variables 108, 447

calculation variables
CALC

string comparisons 108, 447
CALLMETHOD meta tag 115
CASE 75
cDelim 396
cDelim 355
CGI meta tag 118
CGIPARAM meta tag 119, 364
CHAR meta tag 122
CHOICELIST meta tag 123
CIPHER meta tag 128
CLASSFILE meta tag 132
CLASSFILEPATH meta tag 133
4800
CLEARERROR meta tag 134
COL meta tag 51, 135
COLS meta tag 136
COLUMN meta tag 49, 51, 137
command, in menu 4

See also menu
COMMENT meta tag 138
complex data structure 382
configPasswd 396
configPasswd 351
CONFIGPATH meta tag 139
configuration file

default location 388
Configuration Manager 364
configuration variable 387

about 360
absolutePathPrefix 393
altUserKey 428
and custom scope 353
and system scope 350
appConfigFile 393
application scope 388
applicationSwitch 394
aPrefix 394
aSuffix 394
cache 395
cacheIncludeFiles 395
cacheSize 395
cDelim 396
configPasswd 396
cPrefix 397
crontabFile 397
cSuffix 397
currencyChar 398
customScopeSwitch 399
customTagsPath 399
dataSourceLife 399
dateFormat 400
DBDecimalChar 402
debugMode 403
decimalChar 403
defaultErrorFile 404
defaultScope 405
docsSwitch 405
domain scope 388
domainConfigFile 405
domainScopeKey 406
DSConfig 406
DSConfigFile 408
encodeResults 409

Index
externalSwitch 409
fileDeleteSwitch 409
fileReadSwitch 410
fileWriteSwitch 410
FMDatabaseDir 409
headerFile 411
httpHeader 411
instance scope 388
itemBufferSize 411
javaScriptSwitch 412
javaSwitch 412
license 412
licenseErrorHTML 412
listenerPort 413
lockConfig 413
logDir 413
loggingLevel 414
logToResults 415
mailAdmin 415
mailDefaultFrom 415
mailPort 416
mailServer 416
mailSwitch 416
maxActions 417
maxHeapSize 417
maxSessions 417
method scope 388
noSQLEncoding 418
objectConfigFile 418
passThroughSwitch 418
persistentRestart 419
pidFile 419
postArgFilter 420
queryTimeout 420
rDelim 420
request scope 388
requestQueueLimit 421
returnDepth 421
rPrefix 421
rSuffix 422
scope 387
shutdownUrl 422
startStopTimeout 422
startupUrl 423
staticNumericChars 423
stripCHARS 424
system scope 388
TCFSearchPath 424
thousandsChar 424
threadPoolSize 425
timeFormat 400
timeoutHTML 426
timestampFormat 400
transactionBlocking 426
useFullPathForInclude 427
user scope 388
userAgent 427
userKey 428
validHosts 429
varCachePath 430
variableTimeout 430
variableTimeoutTrigger 431

configuration variable, name of
altUserKey 362, 364, 365
applicationSwitch 349
cDelim 355
configPasswd 351
customScopeSwitch 353
dateFormat 350, 360
defaultScope 358
loggingLevel 360
rDelim 355
userKey 362, 364, 365
variableTimeout 348, 360

CONNECTIONS meta tag 140
context-sensitive menu 7

editing 9
for action 12, 47
for action attribute 49

CONTINUE meta tag 143
cookie

HTTP 362, 363
properties 347
setting up 347

cookie scope 345, 347, 358
cPrefix 397
CPREFIX attribute 79
CREATEOBJECT meta tag 144
CRLF meta tag 146
crontabFile 397
cSuffix 397
CSUFFIX attribute 79
CURCOL meta tag 147
currencyChar 398
CURRENTACTION meta tag 148
CURRENTDATE meta tag 149, 350
CURRENTTIME meta tag 149
CURRENTTIMESTAMP meta tag 149
CURROW meta tag 150
custom scope 351, 358
481481

Index

48
customScopeSwitch 399
customScopeSwitch 353
CUSTOMTAGS meta tag 151
customTagsPath 399

D
data source

selecting column 18
workspace 18

dataSourceLife 399
DATASOURCESTATUS meta tag 152
DATEDIFF meta tag 155
dateFormat 400
dateFormat 350, 360
DATETIME 78
DATETOSECS meta tag 156
DAYS meta tag 158
DBDecimalChar 402
DBMS meta tag 159
DEBUG meta tag 160
debugging

application file 48, 63
icon 64

debugMode 403
decimalChar 403
default location

configuration file 388
default scope 358
defaultErrorFile 404
defaultScope 405
defaultScope 358
DELROWS meta tag 164
dirty file indicator 59
DISTINCT meta tag 166
DLL

creating 473
TExtParamBlock 474
using with Witango 473

DOCS meta tag 169
docsSwitch 405
document instance

about 368
attribute value 380
converting XML 370
copying 378
creating 369, 375
element name and value 379
example of using 370
4822
inserting, deleting, and replacing XML 376
meta tag

See also DOM meta tag
using ASSIGN 375, 378
using VAR 377

modifying 369
returning values 369
returning XML 377, 379
syntax 372

Document Object Model
See also XML, document instance, and XPointer
about 367, 368
benefits of using 368, 382
complex data structure 382
limitations of 368
steps to use 369
using meta tag 376

document type definition
See DTD

DOM
See Document Object Model

DOM meta tag 170, 375, 376
domain key 349
DOMAIN meta tag 161, 171
domain name 349
domain scope 346, 349, 358, 360, 388
domainConfigFile 405
domainScopeKey 406
DOMDELETE meta tag 172, 376
DOMINSERT meta tag 173, 375, 376
DOMREPLACE meta tag 175, 376
DQ meta tag 176
DSConfig 406
DSConfigFile 408
DSDATE meta tag 177
DSNUM meta tag 179
DSTIME meta tag 177
DSTIMESTAMP meta tag 177
DSTYPE meta tag 180
DTD 58

E
editing

commands 9
finding and replacing 23
indenting text 11
moving text 11
selecting text 10

Index
using context-sensitive menu 9
using tab character 9
window

See results HTML, no results HTML, and
error HTML

word wrap 9
ELEMENT... meta tag 379
ELEMENTATTRIBUTE meta tag 181, 380
ELEMENTATTRIBUTES meta tag 183, 380
ELEMENTNAME meta tag 185, 379
ELEMENTVALUE meta tag 187, 381
ELSE meta tag 213
ELSEIF meta tag 209
ELSEIFEMPTY meta tag 209
ELSEIFEQUAL meta tag 209
EMAIL 189
email 189
EMAIL meta tag 189
EMAILSESSION 192
EMAILSESSION meta tag 192
encodeResults 409
ENCODING attribute 70, 72

value
JAVASCRIPT 73
METAHTML 72
MULTILINE 72
MULTILINEHTML 72
NONE 72
SQL 73
URL 73

error conditions 433
error HTML 12

See also error message, custom
associating with an action 48, 52
creating or editing 52
using meta tag 52

error message, custom 53
ERROR meta tag 52, 195
Error Numbers 433
error numbers 433
ERRORS meta tag 52, 197
EXCLUDE meta tag 198
executing

application file, using plug-in and CGI
application file
executing, using plug-in and CGI 62

EXIT meta tag 199
Extensible Markup Language

See XML
externalSwitch 409
F
file, special

error.htx 53
file, text or HTML

See text file
fileDeleteSwitch 409
fileReadSwitch 410
fileWriteSwitch 410
FILTER meta tag 200
find and replace text or regular expression

See editing
FMDatabaseDir 409
FOR meta tag 203
FORMAT attribute 75

CASE 75
DATETIME 78
NUM 75
TEL 77

FORMAT meta tag 204

G
generating line terminators for HTTP header 143
GETPARAM meta tag 205, 208

H
headerFile 411
Hex 130, 131
HMAC_SHA 129, 130
HTML

color-coding 9
editing window 7

HTML file
See text file

HTTP
cookie 362, 363

httpHeader 411
HTTPREASONPHRASE 207
HTTPREASONPHRASE meta tag 207
HTTPSTATUSCODE meta tag 208

I
IF meta tag 209
IFEMPTY meta tag 213
IFEQUAL meta tag 214
483483

Index

48
IMAP4 192
INCLUDE meta tag 216, 375
inserting comment in application file 327
instance scope 346, 351, 388
INTERSECT meta tag 217
ISALPHA meta tag 220
ISDATE meta tag 221
ISMETASTACKTRACE meta tag 225
ISNULLOBJECT meta tag 226
ISNULLOBJECTmeta tag 226
ISNUM meta tag 227
ISTIME meta tag 221
ISTIMESTAMP meta tag 221
itemBufferSize 411

J
Java server 433
JAVASCRIPT value for ENCODING attribute 73
javaScriptSwitch 412
javaSwitch 412

K
KEEP meta tag 228
keyboard shortcut 29

L
LEFT meta tag 229
LENGTH meta tag 230
license 412
licenseErrorHTML 412
list by function 468
listenerPort 413
LITERAL meta tag 231, 364
LOCATE meta tag 232
lockConfig 413
logDir 413
loggingLevel 414
loggingLevel 360
LOGMESSAGE meta tag 232, 233
logToResults 415
LOWER meta tag 234
LTRIM meta tag 235
4844
M
mailAdmin 415
mailDefaultFrom 415
mailPort 416
mailServer 416
mailSwitch 416
MAKEPATH meta tag 236
MAP meta tag 237
MARS 130, 131
maxActions 417
maxHeapSize 417
MAXROWS meta tag 239
maxSessions 417
MD5MAC 129, 130
menu

See also keyboard shortcut
Attributes 12
Edit 8
File 13
View 5, 16, 30

menu, context-sensitive
See context-sensitive menu

Meta Stack Trace 225, 241
meta tag 468

! 327
ABSROW 80
ACTIONRESULT 81
ADDROWS 82
alphabetical list 456
alphabetical list, with attributes 464
APPFILE 84
APPFILENAME 85
APPFILEPATH 86
APPKEY 87
APPNAME 88
APPPATH 89
ARG 90
ARGNAMES 91
ARRAY 92
ASCII 94
ASSIGN 95, 387
BIND 100
BREAK 103
CALC 104, 108, 447

array 105, 442
CALLMETHOD 115
CGI 118
CGIPARAM 119
CHAR 122

Index
CHOICELIST 123
CIPHER 128
CLASSFILE 132
CLASSFILEPATH 133
CLEARERROR 134
COL 135
color-coding 9
COLS 136
COLUMN 137
COMMENT 138
CONFIGPATH 139
CONNECTIONS 140
CONTINUE 143
CREATEOBJECT 144
CRLF 146
CURCOL 147
CURRENTACTION 148
CURRENTDATE 149
CURRENTTIME 149
CURRENTTIMESTAMP 149
CURROW 150
CUSTOMTAGS 151
DATASOURCESTATUS 152
DATEDIFF 155
DATETOSECS 156
DAYS 158
DBMS 159
DEBUG 160
DELROWS 164
DISTINCT 166
DOCS 169
DOM 170
DOMAIN 161, 171
DOMDELETE 172
DOMINSERT 173
DOMREPLACE 175
DQ 176
DSDATE 177
DSNUM 179
DSTIME 177
DSTIMESTAMP 177
DSTYPE 180
ELEMENTATTRIBUTE 181
ELEMENTATTRIBUTES 183
ELEMENTNAME 185
ELEMENTVALUE 187
ELSE 213
ELSEIF 209
ELSEIFEMPTY 209
ELSEIFEQUAL 209
EMAIL 189
EMAILSESSION 192
ENCODING attribute 72
ERROR 195
ERRORS 197
EXCLUDE 198
EXIT 199
FILTER 200
FOR 203
FORMAT 204
format attribute 75
formatting 69
GETPARAM 205, 208
HTTPREASONPHRASE 207
HTTPSTATUSCODE 208
IF 209
IFEMPTY 213
IFEQUAL 214
in Document Object Model 376
in error HTML 52
in no results HTML 51
in results HTML 49, 51
in variable 344
INCLUDE 216
INTERSECT 217
ISALPHA 220
ISDATE 221
ISMETASTACKTRACE 225
ISNULLOBJECT 226
ISNUM 227
ISTIME 221
ISTIMESTAMP 221
KEEP 228
LEFT 229
LENGTH 230
LITERAL 231
LOCATE 232
LOGMESSAGE 232, 233
LOWER 234
LTRIM 235
MAKEPATH 236
MAP 237
MAXROWS 239
METAOBJECTHANDLERS 240
METASTACKTRACE 241
MIMEBOUNDARY 242
naming attributes 69
NEXTVAL 243
NULLOBJECT 244
NUMAFFECTED 245
485485

Index

48
NUMCOLS 246
NUMOBJECTS 247
NUMROWS 248
OBJECTAT 249
OBJECTS 250
OMIT 251
PAD 252
PLATFORM 253
POSTARG 254
POSTARGNAMES 255
PRODUCT 256
PURGE 257
PURGECACHE 258
PURGERESULTS 259
RANDOM 260
REGEX 261
RELOADCONFIG 263
RELOADCUSTOMTAGS 264
REPLACE 265
RESULTS 266
RIGHT 267
ROWS 268
RTRIM 270
SCRIPT 271
SEARCHARG 274
SEARCHARGNAMES 275
SECSTODATE 156
SECSTOTIME 294
SECSTOTS 301
SERVERNAME 277
SERVERSTATUS 278
SETCOOKIES 282
SETPARAM 283
SORT 285
SQ 176
SQL 288
STARTROW 289
SUBSTRING 290
syntax 69
THROWERROR 291
TIMER 293
TIMETOSECS 294
TMPFILENAME 295
TOGMT 296
TOKENIZE 297
TOTALROWS 298
TRANSPOSE 299
TRIM 300
TSTOSECS 301
4866
UNION 303
UPPER 306
URL 307
URLDECODE 312
URLENCODE 313
USERREFERENCE 314
USERREFERENCEARGUMENT 315
USERREFERENCECOOKIE 316
VAR 317
VARINFO 322
VARNAMES 323
VARPARAM 324
VERSION 325
WEBROOT 326

meta tag PAD 252
meta tag, name of

ARRAY 355
ASSIGN 344, 378
CGIPARAM 364
COL 51
COLUMN 49, 51
CURRENTDATE 350
DOM 375
DOMDELETE 376
DOMINSERT 375, 376
DOMREPLACE 376
ELEMENT... 379
ELEMENTATTRIBUTE 380
ELEMENTATTRIBUTES 380
ELEMENTNAME 379
ELEMENTVALUE 381
ERROR 52
ERRORS 52
INCLUDE 375
LITERAL 364
POSTARG 344
PURGE 354
ROWS 51
USERREFERENCE 364
VAR 353, 355, 377, 378

METAHTML value for ENCODING attribute 72
METAOBJECTHANDLERS meta tag 240
METASTACKTRACE meta tag 241
method scope 346, 351, 388
MIMEBOUNDARY meta tag 242
multi-column list 16
MULTILINE value for ENCODING attribute 72
MULTILINEHTML value for ENCODING

attribute 72

Index
N
naming

action 43
variable 344

naming attributes 69
New Record Builder 57
NEXTVAL meta tag 243
no results HTML 12

associating with an action 48, 51
creating or editing 51
using meta tag 51

NONE value for ENCODING attribute 72
noSQLEncoding 418
NULLOBJECT meta tag 244
NULLTOKENS 297
NUM 75
NUMAFFECTED meta tag 245
NUMCOLS meta tag 246
NUMOBJECTS meta tag 247
NUMROWS meta tag 248

O
object instance

scope 351
object tree 368
OBJECTAT meta tag 249
objectConfigFile 418
OBJECTS meta tag 250
OMIT meta tag 251

P
PAD meta tag 252
passThroughSwitch 418
persistentRestart 419
pidFile 419
PLATFORM meta tag 253
POP3 192
POSTARG meta tag 254, 344
postArgFilter 420
POSTARGNAMES meta tag 255
Presentation action 384

about 55
setting up 55

presentation logic 54, 368, 384
presentation page

about 55
in Presentation action 55
PRODUCT meta tag 256
project

workspace 30
properties

action 47
cookie 347
window 7

PURGE meta tag 257, 354
PURGECACHE meta tag 258
PURGERESULTS meta tag 259
push

associating with an action 48, 53

Q
queryTimeout 420
quoting attributes 70

R
RANDOM meta tag 260
rDelim 420
rDelim 355
REGEX meta tag 261
regular expression 24, 25, 26

See also editing
RELOADCONFIG meta tag 263
RELOADCUSTOMTAGS meta tag 264
reloading server configuration 263
renaming

action 43
REPLACE meta tag 265
request scope 361, 388
requestQueueLimit 421
result

returning to Web browser 53
Results action

See also results HTML and no results HTML
adding HTML 54

results HTML 12
associating with an action 48, 49
creating or editing 49
using meta tag 49, 51

RESULTS meta tag 266
resultSet

in array format 357
named columns 357

returnDepth 421
487487

Index

48
returning
name of current application file 85
rows affected by action executed 245
server product type 256
Web server document root 326

RIGHT meta tag 267
ROWS meta tag 51, 268
rPrefix 421
RPREFIX attribute 79
rSuffix 422
RSUFFIX attribute 79
RTRIM meta tag 270
run-only file, creating

application file 61

S
scope

See also variable
about 343, 345
configuration variable 387
effects of using 360
for Witango application file 345
for Witango class file 345, 346, 351

scope, name of
See also the names of the specific scopes
application 346, 348
cookie 345, 347
custom 351
default 358
domain 346, 349
instance 346, 351
method 346, 351
system 346, 350
user 345, 348

SCRIPT meta tag 271
search argument

userReference 363
Search Builder 57
SEARCHARG meta tag 274
SEARCHARGNAMES meta tag 275
SECSTODATE meta tag 156
SECSTOTIME meta tag 294
SECSTOTS meta tag 301
Server Preferences 388
SERVERNAME meta tag 277
SERVERSTATUS meta tag 278
SETCOOKIES meta tag 282
SETPARAM meta tag 283
4888
setting
options with configuration variables 387

SHA 129, 130
SHA256 129, 130
SHA384 130
shutdownUrl 422
SMTP 192
SORT meta tag 285
SQ meta tag 176
SQL meta tag 288
SQL query

performing 22
setting up 19
window 18

SQL value for ENCODING attribute 73
STARTROW meta tag 289
startStopTimeout 422
startupUrl 423
staticNumericChars 423
string comparisons in CALC 108, 447
string, find and replace 23
stripCHARS 424
SUBSTRING meta tag 290
syntax of meta tags 69
system configuration variable 350
system scope 346, 350, 358, 360, 388

T
tab, in editing text

See editing
TCFSearchPath 424
TEL 77
terminating

current iteration of COLS, ROWS, or FOR
block 143

execution of COLS, ROWS, or FOR
block 103

processing of Results, No Results, and Error
HTML 199

text file
creating 13
opening and saving 14

text, editing
See editing

TExtParamBlock 474
thousandsChar 424
threadPoolSize 425
THROWERROR meta tag 291

Index
timeFormat 400
timeoutHTML 426
TIMER meta tag 293
timestampFormat 400
TIMETOSECS meta tag 294
TMPFILENAME meta tag 295
TOGMT meta tag 296
TOKENIZE meta tag 297
TOTALROWS meta tag 298
transactionBlocking 426
TRANSPOSE meta tag 299
TRIM meta tag 300
TripleDES 129, 131
TSTOSECS meta tag 301

U
UNION meta tag 303
UPPER meta tag 306
URL meta tag 307
URL value for ENCODING attribute 73
URLDECODE 312
URLENCODE meta tag 313
useFullPathForInclude 427
user key

about 362
alternate 364
assigning value 364
changing 364
for application file 365

user scope 345, 348, 358, 361, 388
userAgent 427
userKey 428
userKey 365
USERREFERENCE meta tag 314, 364
userReference search argument 363
USERREFERENCEARGUMENT meta tag 315
USERREFERENCECOOKIE meta tag 316
using

configuration variable 387
ust 229

V
validHosts 429
value

in array 355
using variable to return 353

VAR meta tag 317, 353, 355, 377, 378
varCachePath 430
variable

See also scope, array, and configuration variable
about 343
belonging to a scope 345
meta tag in 344
naming requirement 344
purging 354
returning value 353

default scoping rules 353
shortcut syntax 354

system configuration 350
variable, configuration. See configuration variable
variableTimeout 430
variableTimeout 348, 360
variableTimeoutTrigger 431
VARINFO meta tag 322
VARNAMES meta tag 323
VARPARAM meta tag 324
VERSION meta tag 325

W
Web server document root

returning 326
WEBROOT meta tag 326
window

application file 58
component 4
HTML editing 7
properties 7
SQL query 18

Witango class file 57
scope 345, 346, 351

Witango domain
about 349

Witango Studio
window component 4

witango.ini 388
word wrap 9, 16
workspace

about 5
cycling 30
floating and docking 6
project 30

X
XML
489489

Index

49
See also Document Object Model and
document instance

about 57
DTD 58
folder 58
format 57
4900
advantages 57
object tree 368

XPointer
example 374
syntax 372

	Witango Programmer’s Guide
	Table of Contents
	Introduction
	Conventions used in this manual

	Witango Studio Basics
	Witango Studio Window Components
	Viewing Interface Components
	Floating and Docking Interface Components
	Floating and Docking the Workspace Window
	Using Context- Sensitive Menus
	Properties Window
	HTML Editing Window
	Working With Multi-column Lists
	The SQL Query Window
	Finding and Replacing Text
	Keyboard Shortcuts
	Witango Actions
	The HTML Toolbar
	Working With Actions
	Adding an Action
	Naming an Action
	Deleting an Action
	Editing an Action
	Moving an Action
	Copying an Action
	Context- Sensitive Action Menu
	Action Properties
	Assigning Attributes to Actions
	Adding HTML (Results Action)
	Presentation Action

	Using Witango Application Files
	XML Format
	Application File Window
	Unsaved Changes Indicator
	Creating an Application File
	Saving an Application File
	Saving a Witango Application File or Witango Class File as Run- Only
	Executing Application Files

	Debugging Files
	Turning Debug On
	Viewing Debug

	Meta Tags
	Where You Can Use Meta Tags
	Format of Meta Tags
	Syntax
	Naming Attributes
	Quoting Attributes

	Encoding Attribute
	NONE
	METAHTML
	MULTILINE
	MULTILINEHT ML
	URL
	JAVASCRIPT
	SQL
	CDATA

	Format Attribute
	Array-to-Text Conversion Attributes
	<@ABSROW>
	<@ACTIONRESULT>
	<@ADDROWS>
	<@APPFILE>
	<@APPFILENAME>
	<@APPFILEPATH>
	<@APPKEY>
	<@APPNAME>
	<@APPPATH>
	<@ARG>
	<@ARGNAMES>
	<@ARRAY>
	Examples

	<@ASCII>
	<@ASSIGN>
	<@BIND>
	<@BREAK>
	<@CALC>
	<@CALLMETHOD>
	<@CGI>
	<@CGIPARAM>
	<@CHAR>
	<@CHOICELIST>
	<@CIPHER>
	<@CLASSFILE>
	<@CLASSFILEPATH>
	<@CLEARERRORS>
	<@COL>
	<@COLS> </@COLS>
	<@COLUMN>
	<@COMMENT> </@COMMENT>
	<@CONFIGPATH>
	<@CONNECTIONS>
	<@CONTINUE>
	<@CREATEOBJECT>
	<@CRLF>
	<@CURCOL>
	<@CURRENTACTION>
	<@CURRENTDATE>, <@CURRENTTIME>, <@CURRENTTIMESTAMP>
	<@CURROW>
	<@CUSTOMTAGS>
	<@DATASOURCESTATUS>
	<@DATEDIFF>
	<@DATETOSECS>, <@SECSTODATE>
	<@DAYS>
	<@DBMS>
	<@DEBUG> </@DEBUG>
	<@DEFINE>
	<@DELROWS>
	<@DISTINCT>
	<@DOCS>
	<@DOM>
	<@DOMAIN>
	<@DOMDELETE>
	<@DOMINSERT>
	<@DOMREPLACE>
	<@DQ>, <@SQ>
	<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
	<@DSNUM>
	<@DSTYPE>
	<@ELEMENTATTRIBUTE>
	<@ELEMENTATTRIBUTES>
	<@ELEMENTNAME>
	<@ELEMENTVALUE>
	<@EMAIL>
	<@EMAILSESSION>
	<@ERROR>
	<@ERRORS> </@ERRORS>
	<@EXCLUDE> </@EXCLUDE>
	<@EXIT>
	<@FILTER>
	<@FOR> </@FOR>
	<@FORMAT>
	<@GETPARAM>
	<@HTTPREASONPHRASE>
	<@HTTPSTATUSCODE>
	<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
	<@IFEMPTY> <@ELSE> </@IF>
	<@IFEQUAL> <@ELSE> </@IF>
	<@INCLUDE>
	<@INTERSECT>
	<@ISALPHA>
	<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
	<@ISMETASTACKTRACE>
	<@ISNULLOBJECT>
	<@ISNUM>
	<@KEEP>
	<@LEFT>
	<@LENGTH>
	<@LITERAL>
	<@LOCATE>
	<@LOGMESSAGE>
	<@LOWER>
	<@LTRIM>
	<@MAKEPATH>
	<@MAP>
	<@MAXROWS>
	<@METAOBJECTHANDLERS>
	<@METASTACKTRACE>
	<@MIMEBOUNDARY>
	<@NEXTVAL>
	<@NULLOBJECT>
	<@NUMAFFECTED>
	<@NUMCOLS>
	<@NUMOBJECTS>
	<@NUMROWS>
	<@OBJECTAT>
	<@OBJECTS></@OBJECTS>
	<@OMIT>
	<@PAD>
	<@PLATFORM>
	<@POSTARG>
	<@POSTARGNAMES>
	<@PRODUCT>
	<@PURGE>
	<@PURGECACHE>
	<@PURGERESULTS>
	<@RANDOM>
	<@REGEX>
	<@RELOADCONFIG>
	<@RELOADCUSTOMTAGS>
	<@REPLACE>
	<@RESULTS>
	<@RIGHT>
	<@ROWS> </@ROWS>
	<@RTRIM>
	<@SCRIPT>
	<@SEARCHARG>
	<@SEARCHARGNAMES>
	<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>
	<@SERVERNAME>
	<@SERVERSTATUS>
	<@SETCOOKIES>
	<@SETPARAM>
	<@SORT>
	<@SQ>
	<@SQL>
	<@STARTROW>
	<@SUBSTRING>
	<@THROWERROR>
	<@TIMER>
	<@TIMETOSECS>, <@SECSTOTIME>
	<@TMPFILENAME>
	<@TOGMT>
	<@TOKENIZE>
	<@TOTALROWS>
	<@TRANSPOSE>
	<@TRIM>
	<@TSTOSECS>, <@SECSTOTS>
	<@UNION>
	<@UPPER>
	<@URL>
	<@URLDECODE>
	<@URLENCODE>
	<@USERREFERENCE>
	<@USERREFERENCEARGUMENT>
	<@USERREFERENCECOOKIE>
	<@VAR>
	<@VARINFO>
	<@VARNAMES>
	<@VARPARAM>
	<@VERSION>
	<@WEBROOT>
	<@!>

	Custom Meta Tags
	Using Custom Meta Tags
	Attributes of Custom Meta Tags
	Tag Name Conflicts
	Custom Meta Tag Limitations

	Creating Custom Meta Tags: Tag Definition File
	Custom Tag Definition File Format

	Loading Tags
	Reloading Custom Meta Tags
	Returning Information on Custom Meta Tags

	Installing Custom Meta Tag Definition Files
	Application- specific Custom Meta Tags

	Custom Meta Tag Example: tabletag.xml
	Custom Tag Generator

	Working With Variables
	About Variables
	Naming Variables
	Variable Types
	Understanding Scope
	Basic Witango Scopes
	Witango Class File�only Scopes
	Custom Scopes
	Returning Variable Values
	Purging Variables
	Arrays
	How Witango Determines Default Scope in Variable Assignments

	Using Configuration Variables
	Using User Keys
	Changing the User Key
	Assigning Values to userKey and altUserKey
	Alternate User Keys
	Returning the Value of userKey and altUserKey
	Using Application File User Keys

	Document Object Model
	What is DOM?
	Overview of Using DOM
	Example

	XPointer Syntax
	Root
	ID
	Child
	Descendant
	Terms of Child or Descendant
	Example

	Manipulating a Document Instance
	Creating a Document Instance
	Using DOM Meta Tags

	Returning XML in Witango Applications
	Using <@VAR> and <@ASSIGN> With DOM
	Using <@ELEMENT... > Meta Tags With DOM

	Applications of DOM
	Creating Complex Data Structures
	Separating Business and Presentation Logic
	Reading and Writing Witango Application Files
	Other Uses

	Configuration Variables
	A Note on Scope
	A Note on Default Locations
	Alphabetical List of Configuration Variables, With Scopes
	absolutePathPrefix
	altUserKey
	appConfigFile
	applicationSwitch
	aPrefix
	aSuffix
	cache
	cacheIncludeFiles
	cacheSize
	cDelim
	configPasswd
	cPrefix
	crontabFile
	cSuffix
	currencyChar
	customScopeSwitch
	customTagsPath
	dataSourceLife
	dateFormat, timeFormat, timestampFormat
	DBDecimalChar
	debugMode
	decimalChar
	defaultErrorFile
	defaultScope
	docsSwitch
	domainConfigFile
	domainScopeKey
	DSConfig
	DSConfigFile
	encodeResults
	externalSwitch
	FMDatabaseDir
	fileDeleteSwitch
	fileReadSwitch
	fileWriteSwitch
	headerFile
	httpHeader
	itemBufferSize
	javaScriptSwitch
	javaSwitch
	license
	licenseErrorHTML
	listenerPort
	lockConfig
	logDir
	loggingLevel
	logToResults
	mailAdmin
	mailDefaultFrom
	mailPort
	mailServer
	mailSwitch
	maxActions
	maxHeapSize
	maxSessions
	noSQLEncoding
	objectConfigFile
	passThroughSwitch
	persistentRestart
	pidFile
	postArgFilter
	queryTimeout
	rDelim
	requestQueueLimit
	returnDepth
	rPrefix
	rSuffix
	shutdownUrl
	startStopTimeout
	startupUrl
	staticNumericChars
	stripCHARs
	TCFSearchPath
	thousandsChar
	threadPoolSize
	timeFormat
	timeoutHTML
	timestampFormat
	transactionBlocking
	useFullPathForIncludes
	userAgent
	userKey, altuserKey
	validHosts
	varCachePath
	variableTimeout
	variableTimeoutTrigger

	Witango Server Error Codes
	<@CALC> Expression Operators
	Numbers
	Hexadecimal, Octal and Binary Numbers
	Strings
	Calculation Variables
	Operators
	Built-in Functions
	Array Operators

	Lists of Meta Tags
	Alphabetical List of Meta Tags
	Alphabetical List of Meta Tags, With Attributes
	Meta Tags List by Function

	Using DLLs With Witango
	TExtParamBlock
	DLL Functions

	Index

